JPH0453946B2 - - Google Patents

Info

Publication number
JPH0453946B2
JPH0453946B2 JP516784A JP516784A JPH0453946B2 JP H0453946 B2 JPH0453946 B2 JP H0453946B2 JP 516784 A JP516784 A JP 516784A JP 516784 A JP516784 A JP 516784A JP H0453946 B2 JPH0453946 B2 JP H0453946B2
Authority
JP
Japan
Prior art keywords
temperature
heating device
substrate
precipitation
cvd film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP516784A
Other languages
Japanese (ja)
Other versions
JPS60149772A (en
Inventor
Miharu Kayane
Toshitsugu Ooi
Fusao Fujita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP516784A priority Critical patent/JPS60149772A/en
Publication of JPS60149772A publication Critical patent/JPS60149772A/en
Publication of JPH0453946B2 publication Critical patent/JPH0453946B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/46Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for heating the substrate
    • C23C16/463Cooling of the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/46Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for heating the substrate

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、CVD(Chemical Vapor
Deposition)膜の形成方法および装置に係り、特
に被膜の結晶性を改善する方法および装置に関す
る。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to CVD (Chemical Vapor
The present invention relates to a method and apparatus for forming a film (deposition), and particularly to a method and apparatus for improving the crystallinity of a film.

〔発明の背景〕[Background of the invention]

CVD法によつて形成される金属又はセラミツ
クなどの膜としては、半導体膜、誘電体膜、およ
び超硬膜あるいは耐食膜の如き保護膜などが知ら
れており、電子工業、機械工業、原子力工業など
様々な分野で応用されている。ここでは保護被膜
として適用されるCVD膜の形成方法を中心とし
て説明する。
Films made of metal or ceramics formed by the CVD method include semiconductor films, dielectric films, and protective films such as super hard films and anti-corrosion films. It is applied in various fields such as Here, we will mainly explain the method of forming a CVD film that is used as a protective film.

一般に、従来のCVD膜形成方法は、基体を所
定の温度(析出温度)に加熱保持しながら、その
基体表面に原料ガスを供給して気相化学反応を生
じさせ、その反応生成物としての非揮発性物質か
らなる膜を、基体表面に析出形成させている。こ
のように形成される膜の結晶形態は、CVD条件
のうち主として析出温度および過飽和度に依存す
るとされている。保護被膜に要求される条件、例
えば耐酸化性、又は耐熱応力性などの機械的性質
の点では、比較的低い析出温度で形成される微粒
多結晶が望ましい。しかしながら、これによると
析出速度が遅く、特に厚膜のCVD膜を得るとき
には多大な時間を要し、実用性に欠けるので、析
出温度を高くすることが望ましい。また、CVD
材料の中には、SiCのように温度を下げると遊離
シリコンが同時に析出しやすく、これにより
CVD膜性状が悪くなるため、高温で析出反応を
行なわざるを得ないものもある。
In general, conventional CVD film formation methods involve heating and holding a substrate at a predetermined temperature (deposition temperature) while supplying raw material gas to the surface of the substrate to cause a gas phase chemical reaction. A film made of a volatile substance is deposited and formed on the surface of the substrate. The crystal morphology of the film thus formed is said to depend primarily on the deposition temperature and degree of supersaturation among the CVD conditions. In view of the conditions required for the protective coating, such as mechanical properties such as oxidation resistance or thermal stress resistance, fine-grained polycrystals formed at a relatively low precipitation temperature are desirable. However, according to this method, the deposition rate is slow and it takes a long time especially when obtaining a thick CVD film, which is impractical, so it is desirable to raise the deposition temperature. Also, CVD
In some materials, such as SiC, when the temperature is lowered, free silicon tends to precipitate at the same time.
In some cases, the deposition reaction must be carried out at high temperatures because the CVD film properties deteriorate.

ところが、析出温度を高くすると結晶は柱状多
結晶となり、耐食性や機械的性質が劣つてしまう
という欠点が生ずることになる。
However, when the precipitation temperature is increased, the crystals become columnar polycrystals, resulting in a disadvantage that corrosion resistance and mechanical properties are inferior.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、微粒多結晶のCVD膜の析出
速度を向上させることができるCVD膜形成方法
および装置を提供することにある。
An object of the present invention is to provide a method and apparatus for forming a CVD film that can improve the deposition rate of a fine-grained polycrystalline CVD film.

〔発明の概要〕[Summary of the invention]

本発明は、基体表面の温度を、柱状多結晶が形
成される析出温度以上に設定される値とに保持し
ながら、間欠的に析出下限温度以下に設定される
値に低下させることにより、基体表面上での核生
成を間欠的に起させ、柱状晶の生成を防止させる
とともに、比較的析出温度を高く維持して、高い
析出速度を確保しようとするものである。
In the present invention, the temperature of the substrate surface is maintained at a value set above the precipitation temperature at which columnar polycrystals are formed, while intermittently lowering the temperature to a value set below the minimum precipitation temperature. The purpose is to cause nucleation to occur intermittently on the surface, to prevent the formation of columnar crystals, and to maintain a relatively high precipitation temperature to ensure a high precipitation rate.

即ち、従来法によれば、析出速度を主体的に考
慮して、温度をある程度高い一定値に保持したた
め、結晶は最初の核発生に支配され、それ以後は
新たな核発生が殆んど起らず、柱状晶になつてし
まうのである。本発明はこのことに着目し、
CVD膜の析出生成過程において、間欠的に基体
表面の温度を下げて析出を停止させることによ
り、核発生を頻繁に起させて、結晶を微粒化させ
ようとするのである。
In other words, according to the conventional method, since the temperature was maintained at a certain high constant value while taking the precipitation rate into consideration, the crystal was dominated by the initial nucleation, and after that, almost no new nucleation occurred. Instead, they turn into columnar crystals. The present invention focuses on this,
In the process of depositing a CVD film, the temperature of the substrate surface is lowered intermittently to stop the deposition, thereby causing frequent nucleation and making the crystals finer.

〔発明を実施例〕[Embodiments of the invention]

以下、本発明の適用された実施例装置に基づい
て説明する。
An explanation will be given below based on an example device to which the present invention is applied.

第1図に一実施例装置の概略構成図を示す。 FIG. 1 shows a schematic configuration diagram of an embodiment of the apparatus.

CVD装置本体は、容器1、加熱台2、固定加
熱装置3、調整加熱装置4などを含んで構成され
ている。固定加熱装置3は加熱台2上に載置され
た基体5を、所定の基底温度T1に加熱するよう
に、その出力P1が設定されており、例えば高周
波加熱装置などから形成されている。調整加熱装
置4は基体5の温度を所定の範囲で調整するため
の加熱装置であり、例えばレーザ加熱装置、赤外
線加熱装置、高周波加熱装置、又は抵抗線加熱装
置などが適用可能であるが、温度制御特性などの
点から、本実施例ではレーザ加熱装置が適用され
ている。レーザ光線6は窓7をとおして基体5の
上面に照射されるようになつている。
The main body of the CVD apparatus includes a container 1, a heating table 2, a fixed heating device 3, an adjustable heating device 4, and the like. The fixed heating device 3 has its output P 1 set so as to heat the base 5 placed on the heating table 2 to a predetermined base temperature T 1 , and is formed of, for example, a high-frequency heating device. . The adjustment heating device 4 is a heating device for adjusting the temperature of the substrate 5 within a predetermined range, and for example, a laser heating device, an infrared heating device, a high frequency heating device, or a resistance wire heating device can be applied. In view of control characteristics and the like, a laser heating device is used in this embodiment. The laser beam 6 is irradiated onto the upper surface of the base 5 through a window 7.

また、原料ガス8は入口ノズル9から容器1内
に流入され、基体5の表面に供給されるようにな
つている。原料ガスの一部と反応副生物を含んで
なる排ガス10は排出ノズル11から容器1外に
流出されるようになつている。
Further, the raw material gas 8 flows into the container 1 from an inlet nozzle 9 and is supplied to the surface of the base 5. Exhaust gas 10 containing a portion of the raw material gas and reaction by-products is discharged from the container 1 through a discharge nozzle 11.

一方、加熱台2には基体5の表面温度Tを検
出する温度検出器12が設けられており、検出温
度Tは比較器13と14とに入力されるように
なつている。比較器13の他の入力端には、反応
生成物が析出する最低温度(以下、析出下限界温
度と称する)T以下に設定された下限値温度T
が、設定器15から入力されている。この比較
器13はT≦Tのとき、調整加熱装置4を稼
動させる指令信号を出力することになつている。
他方、比較器14の他の入力端には、柱状晶の析
出温度以上に設定された上限値温度Tが、設定
器16から入力されている。この比較器14はT
≧Tのとき、調整加熱装置4を停止させる指
令信号を出力するようになつている。
On the other hand, the heating table 2 is provided with a temperature detector 12 for detecting the surface temperature T B of the base 5 , and the detected temperature T B is input to comparators 13 and 14 . The other input terminal of the comparator 13 has a lower limit temperature T set at the lowest temperature at which the reaction product precipitates (hereinafter referred to as the lower limit temperature for precipitation) TD .
L is input from the setting device 15. This comparator 13 is designed to output a command signal for operating the adjustment heating device 4 when T B ≦T L.
On the other hand, to the other input terminal of the comparator 14, an upper limit temperature T H set to be higher than the precipitation temperature of columnar crystals is inputted from the setting device 16. This comparator 14 is T
When BTH , a command signal to stop the adjustment heating device 4 is output.

このように構成される実施例の動作について、
次に説明する。
Regarding the operation of the embodiment configured in this way,
This will be explained next.

まず、第2図aのように、固定加熱装置3を熱
出力P1にて連続的に稼動する。これによつて基
体5の表面温度Tは、第2図cに示す下限値T
以下の基低温度T1にまで昇温される。次に、
調整加熱装置4を時間t=t0にて作動させると、
<Tであるから、比較器13からの稼動指
令によつて調整加熱装置4が稼動され、第2図b
に示すように、熱出力P2のレーザ光線が基体5
に照射される。これにより、基体5の表面温度T
は第2図cに示すように上昇される。このとき
同時に原料ガス8の供給を開始すると、T≧T
となるt=t1において、基体5の表面にCVD
膜の析出が始まる。そして、t=t2においてT
=Tになると、比較的14からの停止指令信号
によつて調整加熱装置4が停止され、その熱出力
P2は“0″になる。これにより、Tは第2図
cに示すように下降され、T<Tとなるt=
t3において、CVD膜の析出が停止される。なお、
上記の過程は、第2図dに示すように、TがT
に達した後、ある一定の保持期間tを経てタ
イマ信号により調整加熱装置4を停止させるよう
にしてもよい。第2図cにおいて、さらにT
下降され、t=t4にてT≦Tに達すると再び
調整加熱装置4が稼動され、基体5に熱出力P2
のレーザ光線が照射される。このようにして、以
降は同様に、上述した動作が周期的に繰り返され
る。
First, as shown in FIG. 2a, the fixed heating device 3 is operated continuously at a heat output P1 . As a result, the surface temperature TB of the base 5 is lowered to the lower limit value T shown in FIG. 2c.
The temperature is raised to the base low temperature T 1 below L. next,
When the regulating heating device 4 is activated at time t=t 0 ,
Since T B <T H , the adjustment heating device 4 is operated by the operation command from the comparator 13, and as shown in FIG.
As shown in FIG .
is irradiated. As a result, the surface temperature T of the base 5
B is raised as shown in FIG. 2c. At this time, if the supply of raw material gas 8 is started at the same time, T B ≧T
At t=t 1 when D , CVD is applied to the surface of the base 5.
Film deposition begins. Then, at t=t 2 T B
= T H , the adjustment heating device 4 is stopped by the stop command signal from the comparison 14, and its heat output is stopped.
P2 becomes "0". As a result, T B is lowered as shown in FIG. 2c, and t= T B < T D.
At t 3 , deposition of the CVD film is stopped. In addition,
In the above process, as shown in Figure 2d, T B is T
After reaching H , the adjustment heating device 4 may be stopped by a timer signal after a certain holding period tH . In FIG. 2c, T B is further lowered, and when T B ≦T L is reached at t=t 4 , the adjusting heating device 4 is operated again, and a heat output P 2 is applied to the base body 5.
is irradiated with a laser beam. In this manner, the above-described operations are repeated periodically thereafter.

したがつて、従来法のようにT以上の一定温
度で析出を連続的に行なわせると、第3図Aに示
すように、CVD膜17の結晶は最初に生成され
た核に支配されて注状のものになるが、本実施例
によれば、間欠的に基体5の表面温度TをT
以下にして、析出を間欠的に行なわせていること
から、その都度核生成が起り、CVD膜17の結
晶は第3図Bに示すように微粒なものとなり、耐
食性および機械的性質に優れた被膜が形成され
る。
Therefore, when precipitation is performed continuously at a constant temperature above T D as in the conventional method, the crystals of the CVD film 17 are dominated by the initially generated nuclei, as shown in FIG. 3A. According to this embodiment, the surface temperature T B of the base 5 is intermittently changed to T D
Since the precipitation is performed intermittently in the following manner, nucleation occurs each time, and the crystals of the CVD film 17 become fine grained as shown in Figure 3B, resulting in excellent corrosion resistance and mechanical properties. A film is formed.

なお、基体表面温度Tの変化周期Fは、基体
5関係の熱時定数の調整加熱装置4の熱出力P2
によつて定まるものであり、周期Fが短いと析出
速度が極端に遅くなり、逆に長すぎると柱状晶の
発達を抑制することができないので、P2を適当
に選定して所望の周期とすることが肝要である。
因に、第2図dのように、保持期間tがあり、
しかもレーザ等により急熱・急冷されて周期Fが
ほぼtに等しくなるときは、目安となる周期F
は次式(1)により求められる。
Incidentally, the change period F of the substrate surface temperature T B is determined by the thermal output P 2 of the heating device 4 for adjusting the thermal time constant related to the substrate 5.
If the period F is short, the precipitation rate will be extremely slow, and if it is too long, the growth of columnar crystals cannot be suppressed . It is essential to do so.
Incidentally, as shown in Figure 2d, there is a retention period tH ,
Moreover, when the period F becomes approximately equal to tH due to rapid heating and cooling by a laser, etc., the period F becomes a guideline.
is determined by the following equation (1).

F≒t<希望する結晶粒径/一定温度における被膜
形成速度 ……(1) 例えば、被膜形成速度が15μm/分、希望する
結晶粒径を45μm以下とすると、目安となるFは
3分以下となる。
F≒t H <desired crystal grain size/film formation rate at constant temperature... (1) For example, if the film formation rate is 15 μm/min and the desired crystal grain size is 45 μm or less, the standard F is 3 minutes. The following is true.

また、上記実施例において、加熱装置を固定用
と調整用とに分割して構成したものについて示し
たが、加熱装置を分割せずにいずれか一方のみを
設け、それを比較器13,14の出力により稼動
させるようにしても同一の効果が得られる。
Furthermore, in the above embodiment, the heating device is divided into a fixing device and an adjusting device. The same effect can be obtained even if the device is operated by output.

さらに、CVD装置本体、基体、および所望の
CVD膜種類などが定まれば、計算もしくは実験
的に、加熱装置の熱出力に対する基体表面温度T
の相関が定められるから、タイマなどにより加
熱装置を周期Fに基づいて断続稼動させるように
すれば、第1図図示実施例の温度検出器12、比
較器13,14および設定器15,16を省略し
て、装置を簡単化することができる。また、その
場合、加熱装置を断続させずに、第4図に示すよ
うに、周期Fの正弦波が重畳された特性の熱出力
にしても効果は同一である。
Furthermore, the CVD equipment main body, substrate, and desired
Once the type of CVD film is determined, the substrate surface temperature T relative to the thermal output of the heating device can be determined by calculation or experiment.
Since the correlation of B is determined, if the heating device is operated intermittently based on the period F using a timer or the like, the temperature detector 12, comparators 13, 14, and setting devices 15, 16 of the embodiment shown in FIG. can be omitted to simplify the device. Further, in that case, the effect is the same even if the heating device is not turned on and off and the heat output has a characteristic in which a sine wave with period F is superimposed as shown in FIG. 4.

上述してきたように、第1図図示実施例又はそ
の変形例によれば、柱状晶の析出速度と同等の速
度により、微粒多結晶のCVD膜を形成すること
ができ、耐食性および機械的性質に優れた被膜と
することができる。
As described above, according to the embodiment shown in FIG. 1 or its modification, a fine-grained polycrystalline CVD film can be formed at a rate equivalent to the precipitation rate of columnar crystals, and the corrosion resistance and mechanical properties are improved. An excellent coating can be obtained.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、微粒多
結晶のCVD膜の析出速度を向上させることがで
き、耐食性および機械的性質に優れたCVD被膜
を得ることができる。
As explained above, according to the present invention, it is possible to improve the precipitation rate of a fine-grained polycrystalline CVD film, and it is possible to obtain a CVD film with excellent corrosion resistance and mechanical properties.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の適用された一実施例装置の概
略構成図、第2図は第1図図示実施例の動作を説
明するタイムチヤート、第3図A,Bはそれぞれ
柱状晶と微粒晶の結晶構造を模式的に示す図、第
4図は本発明の他の実施例加熱装置の熱出力タイ
ムチヤートである。 3……固定加熱装置、4……調整加熱装置、5
……基体、8……原料ガス、12……温度検出
器、13,14……比較器、15,16……設定
器。
Fig. 1 is a schematic configuration diagram of an embodiment of the device to which the present invention is applied, Fig. 2 is a time chart explaining the operation of the embodiment shown in Fig. 1, and Figs. FIG. 4 is a diagram schematically showing the crystal structure of , and FIG. 4 is a heat output time chart of a heating device according to another embodiment of the present invention. 3... Fixed heating device, 4... Adjustable heating device, 5
... Substrate, 8 ... Raw material gas, 12 ... Temperature detector, 13, 14 ... Comparator, 15, 16 ... Setting device.

Claims (1)

【特許請求の範囲】 1 加熱された基体表面に原料ガスを供給して気
相反応させ、前記基体表面に反応生成物からなる
膜を析出形成させるCVD膜形成方法において、
前記基体表面の温度を柱状晶の膜が形成される析
出温度以上に設定された温度に保持しながら、間
欠的に析出下限界温度以下に設定された温度に低
下させることを特徴とするCVD膜形成方法。 2 基体表面を加熱する加熱装置と、前記基体表
面に原料ガスを供給する原料供給装置とを備え、
前記基体表面に気相反応生成物からなる膜を析出
形成させるCVD膜形成装置において、前記基体
表面の温度を検出する温度検出器と、柱状晶の膜
が形成される析出温度以上の上限値と析出下限温
度以下の下限値とをそれぞれ設定する温度設定器
と、前記検出温度が前記上限値以上に達してから
一定時間経過した後前記加熱装置の停止指令信号
を、前記検出温度が前記下限値以下のとき前記加
熱装置の稼動指令信号を出力する比較器と、を備
えて構成したことを特徴とするCVD膜形成装置。 3 特許請求の範囲第3項記載の発明において、
前記加熱装置は、前記基体表面温度を前記下限値
以下の温度に連続加熱する固定加熱装置と、前記
比較器の出力信号によつて断続稼動される調整加
熱装置と、からなるものであることを特徴とする
CVD膜形成装置。
[Scope of Claims] 1. A CVD film forming method in which a source gas is supplied to a heated substrate surface to cause a gas phase reaction, and a film made of a reaction product is deposited and formed on the substrate surface,
A CVD film characterized in that the temperature of the substrate surface is maintained at a temperature set above a precipitation temperature at which a columnar crystal film is formed, and is intermittently lowered to a temperature set below a lower precipitation limit temperature. Formation method. 2 comprising a heating device that heats the surface of the substrate and a raw material supply device that supplies raw material gas to the surface of the substrate,
The CVD film forming apparatus that deposits and forms a film made of a gas phase reaction product on the surface of the substrate includes a temperature detector that detects the temperature of the surface of the substrate, and an upper limit value above the precipitation temperature at which a columnar crystal film is formed. a temperature setting device that sets a lower limit value that is lower than or equal to the lower limit precipitation temperature; and a temperature setting device that sets a stop command signal for the heating device after a certain period of time has passed since the detected temperature reaches the upper limit value; A CVD film forming apparatus comprising: a comparator that outputs an operation command signal for the heating device when: 3 In the invention described in claim 3,
The heating device includes a fixed heating device that continuously heats the surface temperature of the substrate to a temperature below the lower limit value, and an adjustable heating device that is intermittently operated according to the output signal of the comparator. Features
CVD film forming equipment.
JP516784A 1984-01-13 1984-01-13 Method and device for forming cvd film Granted JPS60149772A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP516784A JPS60149772A (en) 1984-01-13 1984-01-13 Method and device for forming cvd film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP516784A JPS60149772A (en) 1984-01-13 1984-01-13 Method and device for forming cvd film

Publications (2)

Publication Number Publication Date
JPS60149772A JPS60149772A (en) 1985-08-07
JPH0453946B2 true JPH0453946B2 (en) 1992-08-28

Family

ID=11603674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP516784A Granted JPS60149772A (en) 1984-01-13 1984-01-13 Method and device for forming cvd film

Country Status (1)

Country Link
JP (1) JPS60149772A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009185314A (en) * 2008-02-04 2009-08-20 Meiji Univ Apparatus for producing dlc film, member therewith, and production method therefor

Also Published As

Publication number Publication date
JPS60149772A (en) 1985-08-07

Similar Documents

Publication Publication Date Title
US4421592A (en) Plasma enhanced deposition of semiconductors
US5186973A (en) HFCVD method for producing thick, adherent and coherent polycrystalline diamonds films
US5169676A (en) Control of crystallite size in diamond film chemical vapor deposition
US20060000414A1 (en) Semiconductor processing equipment for forming films of uniform properties on semiconductor substrates
JPH1012563A (en) Member for heat treatment of high-purity cvd-sic semiconductor and its manufacture
JPH0736387B2 (en) Semiconductor device manufacturing method
US5200231A (en) Method of manufacturing polycrystalline diamond layers
JPH04210476A (en) Formation of silicon carbide film
JPS6086096A (en) Precipitation of filmy diamond
JPH0453946B2 (en)
JP3586870B2 (en) Oriented thin film forming substrate and method for producing the same
JPH03141198A (en) Production of polycrystal diamond layer
JPH02263789A (en) Silicon substrate having diamond single crystalline film and its production
US4609424A (en) Plasma enhanced deposition of semiconductors
US5624720A (en) Process for forming a deposited film by reacting between a gaseous starting material and an oxidizing agent
USH1792H (en) Selection of crystal orientation in diamond film chemical vapor deposition
JPH0424922A (en) Forming method for high permittivity thin film and forming apparatus thereof
WO1996001913A1 (en) Monocrystalline diamond film production by chemical vapor deposition
JPH0869974A (en) Manufacturing method of semiconductor film
JPH064520B2 (en) Manufacturing method of oxide thin film
JP3472253B2 (en) Method of forming diamond film
JPH062139A (en) Formation of diamond film
Kaverina et al. The influence of the structure of amorphous silicon deposited in ultrahigh vacuum on the solid phase epitaxial growth rate
JPH0333094A (en) Synthesizing method of diamond
JPH11314999A (en) Production of oxide thin film