JPH0453915B2 - - Google Patents

Info

Publication number
JPH0453915B2
JPH0453915B2 JP62282677A JP28267787A JPH0453915B2 JP H0453915 B2 JPH0453915 B2 JP H0453915B2 JP 62282677 A JP62282677 A JP 62282677A JP 28267787 A JP28267787 A JP 28267787A JP H0453915 B2 JPH0453915 B2 JP H0453915B2
Authority
JP
Japan
Prior art keywords
water
rock
soft
soft rock
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62282677A
Other languages
Japanese (ja)
Other versions
JPH01123889A (en
Inventor
Yoshio Ishikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ISHIKAWA KUNIE
Original Assignee
ISHIKAWA KUNIE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ISHIKAWA KUNIE filed Critical ISHIKAWA KUNIE
Priority to JP62282677A priority Critical patent/JPH01123889A/en
Publication of JPH01123889A publication Critical patent/JPH01123889A/en
Publication of JPH0453915B2 publication Critical patent/JPH0453915B2/ja
Granted legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D9/00Tunnels or galleries, with or without linings; Methods or apparatus for making thereof; Layout of tunnels or galleries
    • E21D9/04Driving tunnels or galleries through loose materials; Apparatus therefor not otherwise provided for
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D9/00Tunnels or galleries, with or without linings; Methods or apparatus for making thereof; Layout of tunnels or galleries
    • E21D9/06Making by using a driving shield, i.e. advanced by pushing means bearing against the already placed lining
    • E21D9/0642Making by using a driving shield, i.e. advanced by pushing means bearing against the already placed lining the shield having means for additional processing at the front end
    • E21D9/0664Making by using a driving shield, i.e. advanced by pushing means bearing against the already placed lining the shield having means for additional processing at the front end with means for applying a coating layer to the front face, e.g. by spraying

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Pit Excavations, Shoring, Fill Or Stabilisation Of Slopes (AREA)
  • Excavating Of Shafts Or Tunnels (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は、地中では岩石として存在するが大気
に触れると吸湿して崩壊する軟岩に対処し、その
崩壊を防止する方法に関する。
The present invention relates to a method for dealing with soft rock that exists as a rock underground, but which absorbs moisture and collapses when exposed to the atmosphere, and for preventing the collapse.

【従来の技術】[Conventional technology]

泥岩、風化蛇紋岩、変朽安山岩などの、「軟岩」
とよばれる一群の岩石は、賦存状態すなわち地中
にある間は岩石の形をしているが、掘り出されて
応力から開放され、新鮮な面が大気に触れると、
吸湿して崩壊する性質がある。これが急速に進行
して粘土化する場合は「スウエリング」と呼び、
比較的緩やかに進行して細片化する場合を「スレ
ーキング」と呼ぶ。後者も直接水を触れさせる
と、速やかに起る。 これらの現像は、土木工事にとつてわずらわし
い問題である。近年敷設される道路や鉄道は、高
速の交通を実現するため辻回曲折を避け直線状の
ルートをえらぶので、岩石や土壌の性質にかかわ
らず掘削通過することを余儀なくされる。そこで
軟岩に遭遇すると、トンネル掘削においては掘削
断面を支保工で支持しきれないとか、切通しにお
いては法面が安定しないという問題がある。不安
定な法面に対しては、しばしばセメントモルタル
の吹付けを行なうが、相手が軟岩の場合は、モル
タルが岩塊の一部を伴つて剥離し、落下してしま
う。 また、工事により発生した「ズリ」とよばれる
岩片は、一般に路床材として再利用されており、
それが好ましいが、軟岩のズリは細粉化ないし粘
土化してしまうため使用できない。消石灰を混合
して安定化する試みが沖縄泥岩に対して行なわれ
たが、実効を挙げるに至らず、止むを得ず客土を
おこなつているのが現状である。
"Soft rocks" such as mudstone, weathered serpentinite, and metamorphosed andesite
A group of rocks, called a rock, takes the form of a rock while it is in its endemic state, i.e., underground, but when it is dug out, released from stress, and its fresh surface is exposed to the atmosphere,
It has the property of absorbing moisture and disintegrating. When this progresses rapidly and turns into clay, it is called "swelling".
A case in which the particles progress relatively slowly and become fragmented is called "slaking." The latter also occurs quickly when it comes into direct contact with water. These developments are a troublesome problem for civil engineering works. In order to achieve high-speed traffic, the roads and railways constructed in recent years choose straight routes to avoid twists and turns, so they are forced to pass through excavations regardless of the nature of the rock or soil. When soft rock is encountered, there are problems in tunnel excavation where the cross section of the excavation cannot be supported by shoring, and in cutting through, the slope is unstable. Cement mortar is often sprayed onto unstable slopes, but if the target is soft rock, the mortar will peel off along with some of the rock mass and fall. In addition, rock fragments called "zuri" generated during construction are generally reused as roadbed material.
This is preferable, but it cannot be used because it turns soft rock into fine powder or clay. Attempts have been made to stabilize Okinawan mudstone by mixing slaked lime, but this has not been effective, and the current situation is that soil is being replaced unavoidably.

【発明が解決しようとする課題】[Problem to be solved by the invention]

本発明の目的は、上記した技術の現状を一歩進
めて、軟岩の崩壊を防止する方法を提供すること
にある。それによつて、トンネル掘進が容易にな
り、法面が安定化され、ズリを路床材として使用
することが可能になる。
An object of the present invention is to provide a method for preventing the collapse of soft rock by taking the current state of the art one step further. This makes tunneling easier, stabilizes the slope, and allows the waste to be used as roadbed material.

【課題を解決するための手段】[Means to solve the problem]

本発明の軟岩の破壊を防止する方法は、スメク
タイト系鉱物からなる軟岩に対して、岩塊の自由
表面にケイ酸アルカリ水溶液を適用し、ついでマ
グネシウムまたはアルミニウムの塩の水溶液を適
用し、風乾したのち、水不透過性の物質で被覆す
る処理を行なうことからなり、被覆材料として、
石炭系または石油系タール、ボイル油、乾性ない
し半乾性油、合成樹脂エマルジヨン(水性ペイン
ト)、アルキド樹脂ペイント、シリコーン撥水剤
および塩化ゴム系塗料などからえらんだものを使
用することを特徴とする。 問題の軟岩の主成分が、カオリナイト系、スメ
クタイト系のどちらの系統に属するかは、サンプ
ルを水中に投入してしばらくその挙動を観察すれ
ばわかることではあるが、よく知られているモン
モリロナイトの特性試験を利用すれば、直ちに明
らかになる。すなわち、サンプル表面にパラ−フ
エニレンジアミン飽和水溶液を滴下し、濃青色な
いし緑色に発色すれば、その鉱物はモンモリロナ
イトである。 被覆に使用する材料は、要求される機械的強
度、日光、風雨および氷雪に対する耐性、施工の
難易、入手の容易さなどのフアクターは使用条件
によつて一々異なるであろうから、それらと経済
性とをあわせ考えて決定することになる。 上記した中では、水性ペイントが、有機溶剤を
使用せず、多少湿潤した表面にも適用でき、所望
であれば顔料を加えて任意の色に着色でき、被覆
の完成を確認することが容易であるといつた点か
ら最も有用である。油脂の類は土中に埋設する場
合に適当であるが、長年月の経過につれて土中微
生物による分解のおそれがあるから、適当な防カ
ビ剤を混合使用すればよい。食用油の廃棄物のよ
うに、半乾性油が加熱により重合したものは、厚
く塗ることができて1回の処理で効果がある。コ
ストは安いはずであるから、集荷できさえすれば
有利な被覆材である。シリコーンの類やアルキド
樹脂系塗料は耐候性が高く効果的であるが、コス
トがかさむのが難点である。 従来、土木工事における法面被覆などはもつぱ
らセメントモルタルの類が使用されてきたが、モ
ルタルは透気性も透水性もあつて空気中の水分が
軟岩表面に出入することを防げないから、本発明
で用いる被覆材料としては役立たない。ただし、
上記したような材料と混合使用することは差し支
えない。 ケイ酸アルカリ水溶液は、市販の水ガラス(ケ
イ酸ナトリウム)の10〜90%(容量)の水溶液が
好適であつて、スプレー、刷毛塗りなどの手段で
塗布すればよい。施工部分の周辺に地下水が流出
して施工面を濡らすおそれがある場合は、あらか
じめケイ酸系の薬液を注入して止水を行なうとよ
い。その方法は、当業技術において知られてい
る。 マグネシウム、アルミニウムまたは第二鉄の塩
の水溶液は、塩化物や硫酸塩のような水によく溶
ける塩の濃厚な水溶液がよく、上記したケイ酸ア
ルカリ水溶液を塗布して数分以上経過したのち、
好ましくは2時間以内に、やはりスプレーや刷毛
塗りにより塗布する。 このように処理したものは、もはや水に触れて
も直ちには崩壊しなくなつているから、続いて軽
く水洗し、風乾状態になるのを待つて、前記した
被覆工程に移る。 処理の対象が岩片の場合、上記のケイ酸アルカ
リ水溶液および塩の水溶液の適用と水洗とは、浸
漬によるのが、効果が最も確実で好ましい。
The method of preventing the destruction of soft rocks of the present invention is to apply an aqueous alkaline silicate solution to the free surface of the rock mass, then apply an aqueous solution of magnesium or aluminum salt to the free surface of the rock mass, and then air-dry the soft rock. Afterwards, it is coated with a water-impermeable substance, and as a coating material,
It is characterized by the use of materials selected from coal-based or petroleum-based tar, boiled oil, drying or semi-drying oil, synthetic resin emulsion (water-based paint), alkyd resin paint, silicone water repellent, and chlorinated rubber-based paint. . Although it is possible to determine whether the main component of the soft rock in question belongs to the kaolinite or smectite system by placing a sample in water and observing its behavior for a while, the well-known montmorillonite This becomes immediately clear using characteristic tests. That is, if a saturated aqueous solution of para-phenylenediamine is dropped onto the surface of a sample and a deep blue to green color develops, the mineral is montmorillonite. The materials used for the covering will vary depending on the conditions of use, such as the required mechanical strength, resistance to sunlight, wind, rain, and ice and snow, difficulty in construction, and ease of acquisition, so it is important to consider these factors and economic efficiency. This will be decided by considering both. Among the above, water-based paints do not use organic solvents, can be applied to slightly damp surfaces, can be colored to any color by adding pigments if desired, and are easy to check the completion of the coating. It is the most useful from the point that it is said that there is. Oils and fats are suitable when buried in the soil, but since there is a risk of decomposition by microorganisms in the soil over time, it is advisable to mix and use an appropriate anti-mold agent. Semi-drying oils that are polymerized by heating, such as cooking oil waste, can be applied thickly and are effective in one treatment. Since the cost is supposed to be low, it is an advantageous covering material as long as it can be collected. Silicone-based and alkyd resin-based paints have high weather resistance and are effective, but their disadvantage is that they are expensive. Traditionally, cement mortar has been used to cover slopes in civil engineering work, but mortar is both air permeable and water permeable and cannot prevent moisture in the air from entering and exiting soft rock surfaces. It is not useful as a coating material for use in the invention. however,
There is no problem in using it in combination with the above-mentioned materials. The aqueous alkali silicate solution is preferably an aqueous solution of 10 to 90% (by volume) of commercially available water glass (sodium silicate), and may be applied by spraying, brushing, or the like. If there is a risk that groundwater may leak around the construction area and wet the construction surface, it is best to inject a silicic acid-based chemical solution in advance to stop the water. The method is known in the art. The aqueous solution of magnesium, aluminum, or ferric salt is preferably a concentrated aqueous solution of salts that are highly soluble in water, such as chlorides or sulfates.
It is preferably applied within 2 hours, also by spraying or brushing. The thus treated material no longer disintegrates immediately when it comes in contact with water, so it is then lightly washed with water and allowed to air dry before proceeding to the above-mentioned coating step. When the object to be treated is a piece of rock, it is preferable to apply the alkali silicate aqueous solution and salt aqueous solution and wash it by immersion, since this is most effective.

【作 用】[Effect]

軟岩は、水に対する挙動から、前記したよう
に、 イ スレーキングを起して細片になるもの、と ロ スウエリングを起して粘土化するもの の二つのグループに大別できる。これを構成する
鉱物をしらべたところ、イは粘土鉱物カオリナイ
ト系に属するハロイサイト、含水ハロイサイト等
であり、ロは粘土鉱物スメクタイト系の、主とし
てモンモリロナイトであることがわかつた。 イのカオリナイト系のハロイサイトの類では、
単結晶格子の層間域は自由水の出入を許す程度
(3Å弱)である。これに対しロのモンモリロナ
イトは、層間域に自由水とともにカチオン、アニ
オンが介在できるほど(6Å前後)であり、イオ
ン交換能力が大きい。しかも、水を大いに吸収し
て結晶粒子が分散しようとする傾向が強いから、
賦存状態から解放されると、岩石の状態から本来
の粘土状態すなわち平衡状態に戻ろうとするもの
と考えられる。 つまり、カオリナイト系の軟岩では、雰囲気中
の湿度の増減につれて結晶粒界の層間域の水分子
が増減し、それによつてひきおこされる微少亀裂
が発達して細片化が進むと考えられる。亀裂は当
然、外気にさらされた面から成長し、いつたん微
少亀裂が発生しても、風乾状態が続き湿度が上昇
しない限り、進行は微弱である。新鮮な岩の面が
直ちに水に囲まれた場合には、細片化の進行は空
気中に置いたときより遅いが、水中から取り出し
て風乾すれば急速に細片化するし、数日間水中に
浸漬しておいたものは、一見すると原形を維持し
ているようでも、僅かな外力で崩壊し細粉とな
る。 これらの事実を総合すると、カオリナイト系の
軟岩は、それを囲む環境にある水分の僅かな変化
で細片化して行くことがわかつた。従つて、軟岩
のスレーキングを防止するには、軟岩の塊の自由
表面を通して行なわれる水分の出入を抑制すべき
であり、岩塊の自由表面をすべて水不透過性の物
質で被覆することで、それが実現する。 ところが、スメクタイト系軟岩については、上
記したカオリナイト系軟岩に対する崩壊防止策で
は対処できないことが確認された。被覆を厚くし
ても、または複数回塗り重ねても、十分な効果は
得られない。その理由は、前記したような構造の
差異により、スメクタイト系鉱物は水分を激しく
吸収して自ら粘土化する傾向が強いからにほかな
らない。 そこで発明者は、水に対して敏感なスメクタイ
ト系鉱物であるモンモリロナイトを化学的に処理
して、同じ系列の鉱物であるが水に対して比較的
鈍感なバーミキユライトないし緑泥石に類似の鉱
物に変換させることができるならば、極端なスウ
エリング性を失なつて対処が容易になるであろう
と考え、その方策を求めて種々実験の結果、前記
したケイ酸アルカリ−マグネシウム(またはアル
ミニウム)塩水溶液の処理が効果的であることを
見出したのである。 上記の処理の機構は、モンモリロナイトの結晶
粒界の層間にまずケイ酸のアニオンが侵入し、モ
ンモリロナイトの特性である水に対する鋭敏さを
失なわせることにある。この変換は、前記したモ
ンモリロナイトの特性試験であるパラ−フエニレ
ンジアミン飽和水溶液の変色がなくなることか
ら、直ちに確認できる。ケイ酸イオンの侵入は迅
速であつて、軟岩の粗密によつても異なるが、表
面から数mmの深さまで行なわれるのに、数分間〜
数10分間あれば十分である。続いて、マグネシウ
ム、アルミニウムまたは第二鉄の塩の水溶液を適
用することによつて、Mg2、Al3やFe3のカチオ
ンがモンモリロナイト結晶粒子の層間域におい
て、既に侵入しているケイ酸アニオンSiO3 2と結
合して水不溶性の塩を形成し、それ以上の水分子
の侵入を妨げる。 このようにして、モンモリロナイトのようなス
メクタイト系軟岩も、その吸水崩壊傾向をカオリ
ナイト系軟岩のそれ以下に弱くすることができ
る。 しかし、それではなお崩壊のおそれが残つてい
るので、自由表面を不透水性の材料で被覆するこ
とにより、崩壊を完全に防止する。 軟岩が複雑な構成を有し、カオリナイト系とス
メクタイト系とが混在している場合や、変朽安山
岩、蛇紋岩系のものである場合にも本発明の方法
が適用できることはいうまでもない。
Soft rocks can be roughly divided into two groups based on their behavior with water: those that undergo slaking and become fragments, and those that undergo loss swelling and turn into clay. When the minerals constituting this were investigated, it was found that (a) is halloysite, hydrated halloysite, etc. belonging to the kaolinite clay mineral, and (b) is mainly montmorillonite, which is a clay mineral of the smectite series. Among the kaolinite halloysite types,
The interlayer region of the single crystal lattice is of a size (less than 3 Å) that allows free water to enter and exit. On the other hand, the montmorillonite (B) has a large ion exchange capacity (approximately 6 Å) that allows cations and anions to exist together with free water in the interlayer region. Moreover, since the crystal particles have a strong tendency to absorb a large amount of water and disperse,
When released from the endowment state, it is thought that the rock tries to return to the original clay state, that is, the equilibrium state. In other words, in kaolinite-based soft rocks, as the humidity in the atmosphere increases or decreases, the number of water molecules in the interlayer regions of grain boundaries increases or decreases, which causes microcracks to develop and fragmentation to progress. Naturally, cracks grow from surfaces exposed to the outside air, and even if microcracks occur, their progress will be minimal unless air-dry conditions continue and humidity increases. If a fresh rock face is immediately surrounded by water, the fragmentation process will be slower than when it is placed in air, but if it is taken out of the water and air-dried, it will fragment rapidly, and if it is left in the water for several days, it will fragment rapidly. Even if it appears that it retains its original shape, it will collapse into fine powder with the slightest external force. Taking these facts together, it was found that kaolinite-based soft rocks fragment into small pieces due to slight changes in the moisture content in the surrounding environment. Therefore, to prevent slaking of soft rock, the ingress and egress of water through the free surface of the soft rock mass should be suppressed, and by covering all the free surfaces of the rock mass with water-impermeable material, That will come true. However, it has been confirmed that the above-mentioned collapse prevention measures for kaolinite soft rock cannot be used to deal with smectite soft rock. Even if the coating is thick or coated multiple times, the effect will not be sufficient. The reason for this is that, due to the above-mentioned structural differences, smectite minerals have a strong tendency to absorb water intensely and turn themselves into clay. Therefore, the inventor chemically treated montmorillonite, a smectite mineral that is sensitive to water, and created a mineral similar to vermiculite or chlorite, which is a mineral in the same series but is relatively insensitive to water. We thought that if it could be converted to silicate alkali-magnesium (or aluminum) salt aqueous solution, we thought that it would be easier to deal with it by losing the extreme swelling property, and as a result of various experiments to find a solution, we found that They found that this treatment was effective. The mechanism of the above treatment is that silicic acid anions first penetrate between the grain boundaries of montmorillonite, causing it to lose its sensitivity to water, which is a characteristic of montmorillonite. This conversion can be immediately confirmed by the absence of discoloration of a saturated aqueous solution of para-phenylenediamine, which is the characteristic test for montmorillonite described above. The penetration of silicate ions is rapid, and although it varies depending on the density of the soft rock, it takes several minutes to several millimeters from the surface.
A few 10 minutes is sufficient. Subsequently, by applying an aqueous solution of magnesium, aluminum or ferric salts, cations of Mg 2 , Al 3 and Fe 3 are removed from the silicate anions SiO which have already penetrated into the interlayer regions of the montmorillonite crystal grains. 3 Combines with 2 to form a water-insoluble salt, which prevents further entry of water molecules. In this way, the tendency of smectite-based soft rocks such as montmorillonite to collapse due to water absorption can be made weaker than that of kaolinite-based soft rocks. However, there is still a risk of collapse, so by coating the free surface with a water-impermeable material, collapse is completely prevented. It goes without saying that the method of the present invention can be applied to cases where the soft rock has a complex composition, including a mixture of kaolinite and smectite, or is composed of metamorphosed andesite or serpentinite. .

【参考例】[Reference example]

沖縄県那覇市に産出する島尻泥岩(カオリナイ
ト系)を3〜10cm大に破砕し、その岩片に対して
下記の被覆材料を全面塗布し、日射乾燥する処理
を、1回または2回行なつた。 被覆した岩片を水中に12時間浸漬し、とり出し
て大気中に12時間放置するサイクルを繰り返し
た。 岩片の崩壊、またはそれをひきおこす亀裂の発
生や脆化が認められるまでのサイクルを記録し、
下記の結果を得た。 イ タールピツチ 塗布1回では3サイクルで被膜に小亀裂が生じ
て拡大し、脆化した。塗布2回で、10サイクルを
超えて耐えることができた。 ロ 半乾性油(食用油の廃油) 1回の塗布で10サイクル以上に耐えるが、臭気
があるので露出面には適さず、土中埋設の場合に
向く。 ハ 乾性油 同上。ただし効果を確実に得るには2回塗布が
好ましい。 ニ 合成樹脂エマルジヨン 日本ペイント(株)製の、日曜大工用に市販されて
いる水性ペイントを使用した。このペイントは、
アクリル樹脂の水性エマルジヨンに顔料を加えた
製品であつて、刷毛塗り1回の塗膜は、温度20
℃、RH73%の環境で2時間ほどで乾燥する。 1回の塗布では亀裂が生じたが、2回塗布した
ときは10サイクル以上で何の変化もみられず、崩
壊防止は完全であつた。 ホ アルキド樹脂ペイント アサヒペン(株)製の市販の油性ペイントを使用し
た。このペイントは、アルキド樹脂を有機溶剤に
溶解して顔料を加えた製品であり、ラツカーシン
ナーでうすめることができるが、原液のまま使用
した。成績は、ほぼ同上。有機溶剤の使用に伴う
安全性、臭気およびコストの問題がある。 ヘ シリコーン撥水剤 1回の塗布では被覆にピンホールが残り、スレ
ーキングが起つた。2回の塗布で崩壊防止が完全
になつた。
Shimajiri mudstone (kaolinite type) produced in Naha City, Okinawa Prefecture is crushed into pieces of 3 to 10 cm in size, and the following coating material is applied to the entire surface of the rock pieces, followed by solar drying once or twice. Ta. The coated rock pieces were immersed in water for 12 hours, then removed and left in the atmosphere for 12 hours, a cycle repeated. Recording the cycle through which rock fragments disintegrate, or the cracks and embrittlement that lead to it, are observed;
The following results were obtained. After one application of Ital Pitch, small cracks formed in the film, which expanded and became brittle after three cycles. With two applications, it was able to withstand more than 10 cycles. B. Semi-drying oil (waste cooking oil) It can withstand more than 10 cycles after one application, but it has an odor so it is not suitable for exposed surfaces and is suitable for buried underground. C Drying oil Same as above. However, to ensure the desired effect, it is preferable to apply it twice. D. Synthetic resin emulsion A commercially available water-based paint for DIY use manufactured by Nippon Paint Co., Ltd. was used. This paint is
The product is a water-based emulsion of acrylic resin with pigment added, and the coating film after one brush application is maintained at a temperature of 20°C.
It dries in about 2 hours in an environment of ℃ and 73% RH. Cracks occurred after one application, but no change was observed after 10 cycles or more when two applications were applied, and collapse was completely prevented. Alkyd resin paint A commercially available oil-based paint manufactured by Asahipen Co., Ltd. was used. This paint is a product made by dissolving alkyd resin in an organic solvent and adding pigment to it, and although it can be thinned with Lutzker thinner, it was used as is. The results are almost the same. There are safety, odor and cost issues associated with the use of organic solvents. Silicone water repellent One application left pinholes in the coating and caused slaking. After two applications, the prevention of disintegration was completely achieved.

【実施例】【Example】

北陸北線の鍋立山にある椎谷層泥岩は、p−フ
エニレンジアミン呈色試験でモンモリロナイトと
判別される軟岩であつて、水中に投入すると1分
以内に膨潤をはじめ、粘土化して原形を失うに至
る。 この岩片を30%(容量)水ガラス水溶液に浸漬
して20分間置き、引き揚げて水切り後、塩化アル
ミニウムの50%水溶液に浸漬してやはり20分間放
置し、引き揚げて軽く水洗した。 風乾して5〜8時間後に、若干のサンプルで亀
裂が生じて内部から少量の粘土がしみ出し、わず
かな外力でも数片に砕けることが観察された。た
だし、スウエリングといえる現象は、ほとんど起
らなかつた。水に投入したサンプルは水中では崩
壊せず、いつたんとり出して風乾し再び水に浸漬
したところ、亀裂が生じて粘土の発生がみられた
が、全体としてシルト状であつて、スウエリング
により原形を失うような崩壊はしなかつた。どち
らのサンプルも、パラ−フエニレンジアミン試験
で、弱い呈色が認められた。 前記の処理をし風乾に近くなつたものに、参考
例で使用したものと同じ合成樹脂エマルジヨン
を、1回塗布して乾燥した。このサンプルは、水
中に浸漬しても、スウエリングは全く起らなかつ
た。 亀裂が発生した岩片もあつたが、そこからスウ
エリングが進むこともなく、自然にできた砕片も
それ以上は変化せず、粘土やシルトの生成は認め
られなかつた。パラ−フエニレンジアミン呈色試
験には、全く反応なかつた。比較のため、前記し
た塩の水溶液による処理をせず直接合成樹脂エマ
ルジヨンを塗布して乾燥したサンプルは、水中に
浸漬すると、数時間後に被覆の数カ所で亀裂が発
生し、内部から粘土状のものが流出をはじめた。
長時間経過すると、被膜だけ残してもとの岩片は
崩壊してしまつた。
The Shiiya layer mudstone at Nabetateyama on the Hokuriku-Hokusen Line is a soft rock that is identified as montmorillonite by the p-phenylenediamine color test.When placed in water, it begins to swell within one minute, turns into clay, and loses its original shape. leading to. This piece of rock was immersed in a 30% (volume) water glass aqueous solution for 20 minutes, then pulled out and drained, then immersed in a 50% aluminum chloride aqueous solution and left for 20 minutes, then pulled out and lightly washed with water. After 5-8 hours of air-drying, some samples were observed to crack and a small amount of clay oozed out from within, breaking into several pieces even with the slightest external force. However, almost no phenomenon that could be called swelling occurred. The sample that was put in water did not disintegrate in the water, and when it was taken out, air-dried, and immersed in water again, cracks appeared and clay was observed, but it was silt-like as a whole, and the original shape was formed by swelling. It didn't collapse to the point where I lost it. Both samples showed weak color development in the para-phenylenediamine test. The same synthetic resin emulsion as used in the reference example was applied once to the material that had been almost air-dried after the above treatment and was dried. This sample did not exhibit any swelling even when immersed in water. There were some rock fragments with cracks, but no further swelling occurred, the naturally formed fragments did not change any further, and no formation of clay or silt was observed. There was no reaction at all in the para-phenylenediamine color test. For comparison, a sample that was directly coated with a synthetic resin emulsion and dried without being treated with the aqueous salt solution was immersed in water. After a few hours, cracks appeared in several places on the coating, and clay-like particles appeared from inside. started to leak.
After a long period of time, the original rock fragments disintegrated, leaving only the coating behind.

【発明の効果】【Effect of the invention】

本発明の方法に従つてスメクタイト系鉱物から
なる軟岩を処理することにより、軟岩の崩壊が適
確に防止できる。 従つて、トンネル掘削においては岩層の膨脹を
抑えて効率よく掘進でき、切通しにおいては法面
を安定化して剥落の心配をなくすことができる。
工事により発生したズリは、本発明に従つて崩壊
防止の処理をすることにより、路床材として使用
できるようになる。 このように、本発明は土木工事に対して安全か
つ経済的な工法を提供するものであつて、建設技
術に貢献するところ大である。
By treating soft rock made of smectite minerals according to the method of the present invention, collapse of soft rock can be appropriately prevented. Therefore, when excavating a tunnel, the expansion of the rock layer can be suppressed and the tunnel can be dug efficiently, and when cutting through, the slope can be stabilized and there is no need to worry about falling off.
By treating the sludge caused by construction to prevent collapse according to the present invention, it can be used as roadbed material. As described above, the present invention provides a safe and economical construction method for civil engineering work, and greatly contributes to construction technology.

Claims (1)

【特許請求の範囲】 1 スメクタイト系の鉱物からなる軟岩に対し
て、岩塊の自由表面にケイ酸アルカリ水溶液を適
用し、ついでマグネシウム、アルミニウムまたは
第二鉄の塩の水溶液を適用し、風乾したのち、水
不透過性の材料で被覆する処理を行なうことから
なり、被覆材料として、石炭系または石油系ター
ル、ボイル油、乾性油ないし半乾性油、合成樹脂
エマルジヨン、アルキド樹脂ペイント、シリコー
ン撥水剤および塩化ゴム系塗料からえらんだもの
を使用することを特徴とする軟岩の崩壊防止方
法。 2 軟岩の表面にパラ−フエニレンジアミン飽和
水溶液を滴下し、濃青色ないし緑色に変色したと
きはスメクタイト系鉱物と判定する手法を採用し
た特許請求の範囲第1項の軟岩の崩壊防止方法。
[Claims] 1. For soft rocks made of smectite minerals, an aqueous alkali silicate solution is applied to the free surface of the rock mass, followed by an aqueous solution of magnesium, aluminum or ferric salts, and the mixture is air-dried. Afterwards, it is coated with a water-impermeable material, and coating materials include coal-based or petroleum-based tar, boiled oil, drying oil or semi-drying oil, synthetic resin emulsion, alkyd resin paint, silicone water repellent. A method for preventing collapse of soft rock, characterized by using a material selected from chlorinated rubber-based paints. 2. The method for preventing collapse of soft rock according to claim 1, which employs a method of dropping a saturated aqueous solution of para-phenylenediamine onto the surface of the soft rock and determining that it is a smectite mineral when the color changes to deep blue or green.
JP62282677A 1987-11-09 1987-11-09 Method of preventing breaking of soft rock Granted JPH01123889A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62282677A JPH01123889A (en) 1987-11-09 1987-11-09 Method of preventing breaking of soft rock

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62282677A JPH01123889A (en) 1987-11-09 1987-11-09 Method of preventing breaking of soft rock

Publications (2)

Publication Number Publication Date
JPH01123889A JPH01123889A (en) 1989-05-16
JPH0453915B2 true JPH0453915B2 (en) 1992-08-27

Family

ID=17655619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62282677A Granted JPH01123889A (en) 1987-11-09 1987-11-09 Method of preventing breaking of soft rock

Country Status (1)

Country Link
JP (1) JPH01123889A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6368252B2 (en) * 2014-01-22 2018-08-01 鹿島建設株式会社 Method for constructing structure and method for protecting bedrock
JP2016068061A (en) * 2014-10-01 2016-05-09 清水建設株式会社 Elution prevention method of harmful substance
JP6433808B2 (en) * 2015-02-18 2018-12-05 鹿島建設株式会社 Method for constructing structure and method for protecting bedrock

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5249611A (en) * 1975-10-20 1977-04-20 Nippon Musical Instruments Mfg Method of stabilizing and reinforcing sandstone soil
JPS5252415A (en) * 1975-10-24 1977-04-27 Mitsui Toatsu Chemicals Composition for protecting bedrock
JPS5879083A (en) * 1981-10-03 1983-05-12 ベルクヴエルクスフエルバント・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Ground former and method of enhancing and sealing artificial ground of rocks, soil and coal

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5249611A (en) * 1975-10-20 1977-04-20 Nippon Musical Instruments Mfg Method of stabilizing and reinforcing sandstone soil
JPS5252415A (en) * 1975-10-24 1977-04-27 Mitsui Toatsu Chemicals Composition for protecting bedrock
JPS5879083A (en) * 1981-10-03 1983-05-12 ベルクヴエルクスフエルバント・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Ground former and method of enhancing and sealing artificial ground of rocks, soil and coal

Also Published As

Publication number Publication date
JPH01123889A (en) 1989-05-16

Similar Documents

Publication Publication Date Title
US4696699A (en) Flexible grout composition and method
CN101891432A (en) Permeable crystalline waterproof coating
Massalimov et al. Protection of building constructions with sulfur impregnating solution
CN113621380A (en) Expansive soil ecological modifier
KR20060065629A (en) Hydrophobic composites and particulates and application thereof
JPH0453915B2 (en)
JP2016188156A (en) Method for enhancing strength and extending life of existing concrete structure
Carretero et al. Application of sepiolite–cellulose pastes for the removal of salts from building stones
Ibrahim et al. Analytical study and conservation of new kingdom period pottery jars from Saqqara excavation, Egypt
Korneeva et al. Operational characteristics of limestone and methods to increase its strength
CA1188498A (en) Hydroxy-aluminum/lignin sulfonate compositions
CA1269569A (en) Process for subsurface reconstruction of buildings reinforced with constructional steel
James et al. An appraisal on the parameters influencing lime stabilization of soils
EP0495108A1 (en) Water-swelling polymer-mineral composite and method of obtaining it
JPH07106955B2 (en) Deterioration prevention method for concrete structures
CN107366276B (en) Water glass restoration method for preventing soft rock disintegration
EA026671B1 (en) Method of producing a modified smectite or smectite-containing substance capable of taking up and releasing water in a reversible manner
Cody et al. Concrete deterioration by deicing salts: an experimental study
JPS5996186A (en) Improved stabilization for high water content clay soil
RU2459036C2 (en) Road mix
Sivakumar et al. Importance of bottom ash in preventing soil failure
US3577244A (en) Preservation of limestone structures
Massalimov et al. Long-term protection of building structures with sulfur-based nanoscale coatings
Rovnaníková Environmental pollution effects on other building materials
Massalimov et al. Improving the performance characteristics of gas concrete impregnated with calcium polysulfide