JPH0453825A - Production of polyamide resin - Google Patents
Production of polyamide resinInfo
- Publication number
- JPH0453825A JPH0453825A JP16326390A JP16326390A JPH0453825A JP H0453825 A JPH0453825 A JP H0453825A JP 16326390 A JP16326390 A JP 16326390A JP 16326390 A JP16326390 A JP 16326390A JP H0453825 A JPH0453825 A JP H0453825A
- Authority
- JP
- Japan
- Prior art keywords
- condensate
- units
- low
- unit
- formula
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229920006122 polyamide resin Polymers 0.000 title claims description 8
- 238000004519 manufacturing process Methods 0.000 title claims description 5
- 239000000155 melt Substances 0.000 claims abstract description 14
- 150000003839 salts Chemical class 0.000 claims abstract description 13
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 claims abstract description 11
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims abstract description 8
- 239000000178 monomer Substances 0.000 claims abstract description 8
- 150000004985 diamines Chemical class 0.000 claims abstract description 7
- PGGROMGHWHXWJL-UHFFFAOYSA-N 4-(azepane-1-carbonyl)benzamide Chemical group C1=CC(C(=O)N)=CC=C1C(=O)N1CCCCCC1 PGGROMGHWHXWJL-UHFFFAOYSA-N 0.000 claims abstract description 3
- DJZKNOVUNYPPEE-UHFFFAOYSA-N tetradecane-1,4,11,14-tetracarboxamide Chemical group NC(=O)CCCC(C(N)=O)CCCCCCC(C(N)=O)CCCC(N)=O DJZKNOVUNYPPEE-UHFFFAOYSA-N 0.000 claims abstract description 3
- FQLAJSQGBDYBAL-UHFFFAOYSA-N 3-(azepane-1-carbonyl)benzamide Chemical group NC(=O)C1=CC=CC(C(=O)N2CCCCCC2)=C1 FQLAJSQGBDYBAL-UHFFFAOYSA-N 0.000 claims abstract 2
- 238000006116 polymerization reaction Methods 0.000 claims description 20
- ALBYIUDWACNRRB-UHFFFAOYSA-N hexanamide Chemical group CCCCCC(N)=O ALBYIUDWACNRRB-UHFFFAOYSA-N 0.000 claims description 3
- 239000000126 substance Substances 0.000 claims 3
- 229920000642 polymer Polymers 0.000 abstract description 15
- 229920005989 resin Polymers 0.000 abstract description 4
- 239000011347 resin Substances 0.000 abstract description 4
- 230000005494 condensation Effects 0.000 abstract 3
- 238000009833 condensation Methods 0.000 abstract 3
- TUTWLYPCGCUWQI-UHFFFAOYSA-N decanamide Chemical group CCCCCCCCCC(N)=O TUTWLYPCGCUWQI-UHFFFAOYSA-N 0.000 abstract 1
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 32
- 238000000034 method Methods 0.000 description 28
- NAQMVNRVTILPCV-UHFFFAOYSA-N hexane-1,6-diamine Chemical group NCCCCCCN NAQMVNRVTILPCV-UHFFFAOYSA-N 0.000 description 21
- 238000002844 melting Methods 0.000 description 21
- 230000008018 melting Effects 0.000 description 21
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 12
- 239000000047 product Substances 0.000 description 11
- 238000006243 chemical reaction Methods 0.000 description 10
- 239000007864 aqueous solution Substances 0.000 description 9
- 238000007334 copolymerization reaction Methods 0.000 description 8
- 239000000203 mixture Substances 0.000 description 8
- 239000008188 pellet Substances 0.000 description 8
- 239000003365 glass fiber Substances 0.000 description 7
- 239000000945 filler Substances 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 6
- QQVIHTHCMHWDBS-UHFFFAOYSA-N isophthalic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-N 0.000 description 6
- 239000002253 acid Substances 0.000 description 5
- -1 aliphatic dicarboxylic acids Chemical class 0.000 description 5
- 238000001125 extrusion Methods 0.000 description 5
- 238000003756 stirring Methods 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 4
- JBKVHLHDHHXQEQ-UHFFFAOYSA-N epsilon-caprolactam Chemical compound O=C1CCCCCN1 JBKVHLHDHHXQEQ-UHFFFAOYSA-N 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 229920002302 Nylon 6,6 Polymers 0.000 description 3
- 239000003054 catalyst Substances 0.000 description 3
- 239000000470 constituent Substances 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 125000004836 hexamethylene group Chemical group [H]C([H])([*:2])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[*:1] 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Substances N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 3
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 3
- 229910052698 phosphorus Inorganic materials 0.000 description 3
- 239000011574 phosphorus Substances 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 239000011342 resin composition Substances 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 238000006467 substitution reaction Methods 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 238000001291 vacuum drying Methods 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 239000004677 Nylon Substances 0.000 description 2
- 229920002292 Nylon 6 Polymers 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 2
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 2
- 239000004927 clay Substances 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000005187 foaming Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229920001778 nylon Polymers 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000005979 thermal decomposition reaction Methods 0.000 description 2
- 239000005995 Aluminium silicate Substances 0.000 description 1
- 239000001741 Ammonium adipate Substances 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 239000005909 Kieselgur Substances 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 239000001361 adipic acid Substances 0.000 description 1
- 235000011037 adipic acid Nutrition 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- 235000019293 ammonium adipate Nutrition 0.000 description 1
- UKFWSNCTAHXBQN-UHFFFAOYSA-N ammonium iodide Chemical compound [NH4+].[I-] UKFWSNCTAHXBQN-UHFFFAOYSA-N 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000015271 coagulation Effects 0.000 description 1
- 238000005345 coagulation Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 239000003484 crystal nucleating agent Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229920006351 engineering plastic Polymers 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000012760 heat stabilizer Substances 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 239000002932 luster Substances 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- 238000004377 microelectronic Methods 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 235000019799 monosodium phosphate Nutrition 0.000 description 1
- 238000005453 pelletization Methods 0.000 description 1
- 150000003018 phosphorus compounds Chemical class 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920005594 polymer fiber Polymers 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 239000012744 reinforcing agent Substances 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- AJPJDKMHJJGVTQ-UHFFFAOYSA-M sodium dihydrogen phosphate Chemical compound [Na+].OP(O)([O-])=O AJPJDKMHJJGVTQ-UHFFFAOYSA-M 0.000 description 1
- 229910000162 sodium phosphate Inorganic materials 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- 239000010456 wollastonite Substances 0.000 description 1
- 229910052882 wollastonite Inorganic materials 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Landscapes
- Polyamides (AREA)
Abstract
Description
〈産業上の利用分野〉
本発明は構成成分単位のモノマーまたは塩の水溶液から
低次縮合物をつくり、これを溶融押出機を用いて高重合
度化するポリアミド樹脂の製造方法に関し、特に高温T
!を囲気下で使用されるコネクター、コイルボピノ等の
薄肉成形品に適したポリアミド樹脂の!2遣方法に関す
るものである。
〈従来の技術〉
ボッアミドはエノジニアリングブラスチノクとしての優
れた特性を利用して、自動車分野、電気・電子分野等で
幅広く使用されてきており、コネクター、コイルヂビ/
等の薄肉成形品用の材料としても多く使われている。
従来、これらの成形品はガラス繊維で強化したナイロン
6、ナイロン66が使用されてきたが(特開昭59−1
61461)、近年の技術革新による自動車のエンジノ
ルームの温度上昇やマイクロエレクトロニクスの進展に
伴い、さらに高温雰囲気下での使用に耐え得る極薄肉成
形品の材料が要求されてきた。 しかしながら、ナイロ
ン6やナイロン66の融点(Tm)はそれぞれ220
’C1260°Cでありガラス繊維で強化した場合ても
熱変形温度の限界はそれぞれ融ル、どまりである。
最近、これらの高温雰囲気下での使用にitえI3るコ
ヂリアミド樹脂組成物として、テレフタル酸およびイソ
フタル酸含有フポリアミド樹脂組成物またはそれらのガ
ラス強化品が数多く提案されている(特開昭59−16
1428、特開昭59155426、特開昭59−53
536、特開昭62−156130)。製造法としては
、ナイロン塩よりm合物に至るまで固体状j3でm合反
応させる方法などが提案されている(特開昭62−20
527)。
〈発明が解決しようとする課題〉
しかしながら、これらのテレフタル酸、イノフタル酸含
aのコポリアニド′樹脂紹成物はテレフクル酸成分単位
が多くなると溶融粘度が高くなり通常の溶融重合法では
吐出不可能だったり、ポリマ融虐がポリマの熱分解温度
に近いため+8融m合時に分解や劣化を起こしたりして
いた。また、ナイロン塩よりm合物に至るまで固体状態
でm合反応させる方法は重合物の組成が安定しないなど
の問題がある。
〈課題をhq決するための手段〉
以上の状況に鑑み本発明者らは、高温雰囲気下での使用
に充分耐え得る高い剛性と高い熱変形温度を有し、安価
でかつ流動性の良いポリアミド樹脂組成物を製造する方
法について鋭意検討した結果、 [N112] リノ
ナの低次縮合物を作り、溶融押出し機で高重合度化する
際ジカルボン酸成分を添加することによって、効率よく
安定した高重合度化ポリマを得ることを見出し本発明に
到達した。すなわち、本発明は
(+) 反復単位
で表わされるヘキサメチレノテレフタルアミド単位およ
び下記反復単位<n>〜(IV)から選ばれるいずれか
の単位、で表わされるヘキサメチレンイノフタルアミ
ド単位、
で表わされるヘキサメチレンアジパミド単位、
(rV ) −NH−(CI+21S−C−で表わさ
れるカプロアミド単位、
からなり、共11 =比率がtm比で(I)/(II)
=55/45−80720または(+)/ (I[I)
=20/80〜80/20または(1)/ (rV)
=55/45〜90/10の範囲にある結晶性ツボリ
アミドを製造するに当たって、(+)〜(TV)のモノ
マーまたは塩のトータルモル数に対して0.3〜IQモ
ル%のジアミノ成分を過剰に仕込み、150”C−30
0”C520kg/cm2−G以下の条件下で、1%硫
酸溶液の25℃における相対粘度(ηr)が1.01〜
16を満足する[N112] リッチの低次縮合物を
つくり、次いで、不足のジカルボン酸成分を添加したの
ち該低次縮合物を溶融押出機で高m会度化することを特
徴とするポリアミド樹脂の5′)遣方法である。
本発明の結晶性コヂソアミドとは(1)へ牛すメチレノ
テレフタルアミド単位と([1)へキサメチレンイノフ
タルアミド単位、 (m)へキサメチレノジアミド単位
および(rV)カプロアミド単位からから遺ばれるいず
れかの単位とから形成される共m合ポリアミドであり、
(1)/(I+)の共重合比率が四m比で55/45
〜80/20、(以下、6T/61フボリ7ミドという
)または(+)/(m)の共重合比率がffi量比で2
0/80〜80/20(以下、 6T/66コボリアミ
ドという)。または(1)/(rV)の共重合比率がf
f1ffl比で55/45〜90/10(以下、6T/
6フボリアミドという)の範囲のものをいう。
本発明によれば、6T/61の共m合札率が55/45
〜80/20、好ましくは60/40〜80/20、よ
り好ましくは60/40〜70/30の範囲にあること
が必要である。また、6T/66の共重合比率が20/
go〜80/20、好ましくは35/65〜70 、/
30 より好ましくは40/60〜60/40の範
囲にあることが必要である。また、6T/6の共重合比
率が55/45〜90/10、好ましくは60/40〜
85/15、より好ましくは60/’40〜80/20
の範囲にあることが必要である。ここでいう6T/61
.6T/66および6T/6コボリ了ミドの共重合比率
はポリマ融点がおおよそ270°C〜340℃の範囲に
ある結晶性コポリアミドに関するものである。6T/6
1.6T/66および6T/6の共重合比率がそれぞれ
40/60.20/80.55/45よりも少ないとポ
リマ融点が低下するために、熱変形温度などの耐熱性が
低下するので好ましくない。また、6T/61.6T/
66および6T/6の共重合比率がそれぞれ80/20
.80/20.90/10よりも多いとヂリマ融肖が高
くなり耐熱性は向上するが、加工温度が高くなりポリマ
が熟分肝を起こすので好ましくない。ここで用いられる
結晶性コポリアミドの正合度については特に制限がなく
、通n1%硫酸溶液の25℃における相対粘度(η「)
が1゜5〜5.0にあるものを任意に用いることができ
る。
本発明の150℃〜300℃、20 kg/c@2−G
以下の条件下でつくる低次縮合物とは、上記モノマーま
たは塩の水溶液をナイロン66などの重合に通常用いら
れる加圧重合釜に仕込み、攪拌条件下で150℃〜30
0℃に加熱する。反応湿度は150℃〜300℃にする
必要があり、好ましくは180℃〜280℃、さら1こ
一了ましくは190℃〜270℃である。反応温度が1
50℃よりも低いと反応時間が長くなり好ましくない、
また、反応温度が300℃よりも高いと低次縮合物の粘
度が高くなりすぎ、低次縮合物の吐出が困難になったり
、低次縮合物が析出し吐出ができなくなるので好ましく
ない。
本発明の低次縮合物をつくるときの圧力とは、その時の
低次縮合物と水の混合物による平衡圧力を意味し、内温
の上昇にしたがって圧力も上昇するので、系内は20
kg/am2−G以下、好ましくけlθ〜18kg/c
冒2−Gに保つように操作される。低次縮合物は少量の
水の存在により、顕著な凝固声、降下を与えるために、
150℃〜300℃の温間で溶融状態のまま重合釜から
吐出する事ができる。
本発明の[Nn2] リンチの低次縮合物とはノm常の
ポリアミド1合ではモノマーおよび塩中に含まれている
トータルC0OH基量とトータルN142基量がrPf
fiになるように原料仕込みするのが一般的であるが、
本発明では原t1仕込時にジアミノ成分を大過剰にして
、 [N112] リッチの低次縮合物を積極的に作る
ことに主眼を置いたものであり、構成成分のモノマーま
たは塩のジカルボノ酸成分単位およびジアミン成分単位
のトータルモル数にスjして0.3〜lOモル%過剰に
ジアミノ成分を仕込むことを意味する。ここでいうジア
ミン成分とは灰素数1〜18の脂肪族アルキレンジアミ
ノであり、具体的にはへキサメチレノジアミン、l、
8−ジアミノオクタン、 1.10−ジアミノデカ7
などを挙げることができる。好ましくは本ヂリアミドの
構成成分であるヘキサメチレンジアミンである。
ノアミノ成分の添加mは03〜lOモル%、好ましくは
0.5〜8モル%、さらに好ましくは0゜5〜7モル%
の範囲にあることが必要である。添加mが0.3モル%
より少ないと溶融押出しによる高重合度化条件が狭くな
り、安定した運転が不可能になるので好ましくない。ま
た、10モル%よりも多くなると溶融押出機での高重合
度化が難しくなるので好ましくない。
本発明の低次縮合物の相対粘度(ηr)はl。
O1〜1. 6であることが必要であり、好ましくは1
.01〜】、5、より好ましくは1.01〜1、 4の
範囲であることが必要である。相対粘度が1.01より
も低いと溶融押出し高重合度化工程で組成比が変動する
原因になったり、高重合度化が不充分となり好ましくな
い。また、相対粘度が1. 6よりも大きいと低次縮合
物の溶融粘度が高くなりすぎ吐出不良を起こしたり、あ
るいは低次縮合物が析出したりして吐出不良を起こすの
で好ましくない。
本発明の低次縮合物を作る装置については特に制限がな
く、バッチ反応釜、または1〜3槽式の連続反応装置な
ど公知のものを使用できる。
本発明の該低次縮合物を溶融押出機で高重合度化する方
法とは、溶融押出機を用いて低次縮合物を溶融押出しす
ることによって高重合度化する方法である。溶融押出し
温度は低次縮合物の融点よりも10〜30℃高い範囲が
好ましい。また、6T金含有が多く融点の高い低次縮合
物を用いる場合、ポリマの熱分解や熱劣化を防ぐため上
限温度を345℃に以下にする必要がある。溶融押出機
は単軸スクリューまたは二軸スクリュー押出機を使用で
きるが二輪スクリュー押出機が好ましい。
本発明によれば、 [NI+2] リッチの低次縮合物
にンカルボン酸成分を添加して溶融押出しすることよっ
て、非常に効率よく安定した高重合度化ポリマを得るこ
とが出来る。ンカルボ/酸成分としては特に画定されな
いが、アジピア酸、セパ/ノ酸等の脂肪族ジカルボン酸
またはテレフタル酸、イソフタル酸等の芳香族ジカルボ
ン酸等を挙げることができる。好ましくはイノフタル酸
、テレフタル酸であり、特に好ましくはテレフタル酸で
ある。
ジカルボン酸の添加量は低次縮合物の過剰[1182]
に相当するモル数−[NI+2] −20X I O−
’wh。
7gの範囲にするのが好ましい。ジカルボン酸の添加量
が低次縮合物の[NH2]よりも多くなったり、[N1
12] −20X I O−5mol/gよりも少なく
なると良好な高重合度化ペレットが得られなくなるので
好ましくない。
本発明の低次縮合物にジカルボン酸を添加する方法につ
いては特に制限がな(、公知のいずれの方法も使用する
ことができる。添加方法の具体例としては、低次縮合物
にジヵルヂ/IIIをドライブレッドする方法、あるい
は2個のオートフィーダを用いて低次縮合物とジカルボ
ン酸を別々に押出機に供給する方法などが簡便で適して
いる。
また、本発明によれば、78融押出し工程で良好な高重
合度化ベレットを得るにはリン系触媒の存在が効果的で
あり、添加mは低次縮合物に対して0゜02〜2wL%
hi 好ましく、より好ましくは005〜1.2wt%
である。リン系化合物の具体例としてはl13POa、
113 +’ 03、If 3 P 02、II a
l’ 20v、N a 112 PO2・21120、
Na211POa ・121120、Na5POa12
H20、NaH2PO4・N20、 NaaPa07
101120、 Na2HaPaOv・6H20、N
a5P30+i+ C6HbP(01112、CeHs
PO(ONa)z、 CeHgPO(011)2、
Ml(H2PO2)2、(CeHsO)zI’などを
挙げルコトカテキル。
好ましくはH3P0a、1I4P20vである。リン化
合物の添加方法については特に制限がなく、低次縮合物
をつくるとき、あるいは低次縮合物に予めブレンドし溶
融押出しする方法などが簡便で適している。
本発明で得られるポリアミド樹脂には充填剤を添加する
ことが好ましい。充填剤とは、ガラス製の繊維あるいは
ビーズ、タルク、カオリン、ウオラストナイト、マイカ
1、/リカ、 アルミナ、ケイノウ土、 クレー、セノ
コウ、イノガラ、グラファイト、二酸化チタン、酸化亜
鉛、銅、ステンレスなどの粉状または板状の無機系化合
物、他のポリマー繊維(炭素繊維)などであり、好まし
くはガラス繊維である。ガラス繊維としては熱可塑性樹
脂やハ硬化性樹脂などの#i強剤として一般にガラス繊
維が用いられるが、特に好ましいのは直径3〜20 )
Jm程度の連も°、長繊維のストラッドから作られたガ
ラスロービッグ、ガラスチコブドストラ7ド、ガラス糸
などである。かかる充填剤の配合割合は該ボッアミド1
00重量部に対してO〜200四量部の範囲にあること
が必要であり、好ましくは0を越えて150重回部の範
囲、とくに好ましくはlO〜100illtl1部であ
る。充填剤の配合割合が200重量部を越えると溶融時
の流動性が悪くなり、薄肉成形品を割出成形する事が困
難となるばかりでなく、成形品外観が悪くなるので好ま
しくない。
本発明の結晶性コポリアミドに充填剤を配合する方法に
ついては特に制限がなく、公知のいずれの方法も使用す
ることができる。配合方法の具体的例としては結晶性コ
ポリアミドのペレットに充填剤をドライブレッドし、こ
れを単軸スクリューまたは二軸スクリュー押用機で溶融
混練する方法などが挙げられる。
本発明で得られる結晶性コポリアミド杓脂組成物には、
低次縮合物を作るとき、溶融押出し高■合11f化、フ
ンバウンドあるいは成形工程など、必要に応じて触媒、
耐熱安定剤、耐候性安定剤、可塑剤、雌形剤、滑剤、結
晶核剤、顔料、染料、他の重合体などを添加することが
できる。
〈実施例〉
以下に実施例を示し本発明をさらに詳しく説明する。な
お、実施例および比較例中の諸特性は次の方法で測定し
た。
1)融f!5.(1”m)
D S C(PERKIN−ELMER7塁)を用い、
サンプル8〜I Omgを昇温速度20℃/minで測
定して得られた融解曲線の最大値を示す温度を(T)と
する。サンプル8〜l0mgを昇温速度20℃/min
で加熱しT+20°Cで5分間保持し、次に、20℃/
m i nの降温速度で30℃まで冷却し、30℃で
5分間保持した後、再び20℃/ m I nの昇温速
度でT+20°Cまで加熱する。この時の融解曲線の最
大値を融I!3.(Tm)とした。
2)コポリアミドの末端基濃度[N112]コポリアミ
ド1gを100m+のフェノール/エタノール(50/
50 w を比)混合溶媒に溶かし、l15ONの塩
酸水溶液で滴定して求めた。
3〉コポリアミドの末端基濃度[COO1+]フボリア
ミド0.5gを50m1の熟イノジルアルコールに溶か
し、l75ON−KOHのメタノール溶液で滴定して求
めた。
4)成形品外観
成形品の表面の肌荒れ、気泡、色調、光沢等を見た。
○: 光沢があり表面が平滑である。
△: 光沢は落ちるが表面が平滑である。
×: 光沢もなく表面がザラザラである。
5)引張り強度
ASTM−D638に準じて測定した。
6)曲げ強度
ASTM−D790に準じて測定した。
7)曲げ弾性率
ASTM−D790に!lF、して測定した。
8)Izod衝撃強度
ASTM−D256に準じて測定した。
9)熱変形温度(II D T )
ASTM−D648、荷@4,6kgr/cm2と荷重
18.6kgf/cm’に準じて測定した。
〈実施例1〉
ヘキサメチレンアンモニウムアジペート(66塩)9.
00kg、 テレフタル酸5.47kg。
ヘキサメチレンジアミンの64、5wt%水溶液8.4
1kgおよびイオン交換水6.40kgを0.05m’
のイノチ式加圧重合釜に仕込み(ジアミン成分単位およ
びジカルボン酸成分単位のトタルモル数に対して5モル
%へキサメチレノノアミノを過剰仕込み)、窒素置換を
充分行った後水蒸気圧17. 5 kg/cm21;の
加圧下で加熱を続けた。
攪拌下3.5hrかけて240℃に昇温した後、さらに
30m1n間240℃〜245℃で維持し反応を完結さ
せた後、重合釜低部から差圧17゜5 kg/Cm2−
Gで低次縮合物を水中に吐出した。この低次縮合物の粘
度はηr=1.+5、融点は299℃、 [C00II
] −52x I O−5mol/g、 [NH4I
−105 X I O−5++ol/gであり、
53 x l O−5so1/g [NI+2] リッ
チの低次縮合物であった。得られた低次縮合物を100
℃で24hrJi空乾燥した後、低次縮合物1kgに対
して43gのテレフタル酸をトライブレンドし、30m
mφのベント式二軸押出機で260℃〜335℃の温度
条件で溶融押出しした。ポリマ粘度ηr=2.90、ポ
リマ融点300℃の白色ベレットを得た。このベレット
100ffiffi部に対して長さ3mm、直径13μ
mのガラス繊維チ1ブトストランド65ffiffi部
をドライブレッドし、30mmφ単軸押出機でポリマ融
点+20°Cの温度で溶融混合した。この混合物を射出
成形機により成形し、テストピースを作成した。
得られたテストピースを31価した結果を表1に示す。
〈実施例2〉
テレフタル酸7.2]kji、 ヘキサメチレンジア
ミンの64.5wL%水溶ys、 51kg。
カプロラクタム5.25klBおよびイオン交換水6.
66kgを0.05m3のバッチ式加圧重合釜に住込み
(ジアミン成分11位およびジノJJしf)酸成分単位
のトータルモル数に対して3モル%へキサメチレンジア
ミンを過剰仕込み)、窒素置換を充分行った後、水蒸気
圧15. 0 kg/c++2−Gの加圧下で加熱を続
けた。攪拌下5hrかけて225℃に昇温した後、さら
に225℃〜232°Cで30m1n間反応を進行させ
た後、攪拌を止めm合缶低部から差圧15. 0 kg
/cm2−Gで低次縮合物を抜きだした。得られた低次
縮合物の融点は302℃、ηrは1.10、[C0OH
] =1 +4XI。
mol/g、 [NI+2] = I 43 x I
O−5mol/g、 であり、29XIO−’曹of
/g [NH2F リッチの低次縮合物であった。この
低次縮合物1kgに対してテレフタル酸24gをドライ
ブレッドし、実施例】の方法で溶融押出し、コンパウン
ドおよび成形をし評価した。結果を表1に示した。
〈実施例3〉
テレフタル[6,70kg、 イソフタル酸361
k L へキサメチレンジアミンの645W<Industrial Application Field> The present invention relates to a method for producing a polyamide resin, in which a low-order condensate is prepared from an aqueous solution of monomers or salts as constituent units, and this is made to have a high degree of polymerization using a melt extruder.
! Polyamide resin suitable for thin-walled molded products such as connectors and coil boppinos that are used in an enclosed environment! This is related to the 2-way method. <Prior art> Boramide has been widely used in the automobile field, electric/electronic field, etc. by taking advantage of its excellent properties as an engineering plastic.
It is also widely used as a material for thin-walled molded products such as. Conventionally, nylon 6 and nylon 66 reinforced with glass fibers have been used for these molded products (Japanese Patent Laid-Open No. 59-1
61461), and with the rise in temperature in automobile engine rooms due to recent technological innovations and advances in microelectronics, there has been a demand for materials for ultra-thin molded products that can withstand use in even higher temperature environments. However, the melting point (Tm) of nylon 6 and nylon 66 is 220, respectively.
'C1260°C, and even when reinforced with glass fiber, the limits of heat distortion temperature are melting and stopping, respectively. Recently, many polyamide resin compositions containing terephthalic acid and isophthalic acid, or glass-reinforced products thereof, have been proposed as codylyamide resin compositions suitable for use in these high-temperature atmospheres (Japanese Patent Application Laid-Open No. 1986-1993). 16
1428, JP 59155426, JP 59-53
536, Japanese Unexamined Patent Publication No. 62-156130). As a manufacturing method, a method has been proposed in which a nylon salt is subjected to an m-compound reaction in a solid state (Japanese Patent Application Laid-open No. 62-20
527). <Problems to be Solved by the Invention> However, the melt viscosity of these terephthalic acid and inophthalic acid-containing copolyanid resin introduction products increases as the number of terephthalic acid component units increases, making it impossible to discharge them using normal melt polymerization methods. In addition, since the polymer melting temperature is close to the thermal decomposition temperature of the polymer, decomposition and deterioration occurred during +8 melting. Furthermore, the method of carrying out m-composition reaction in a solid state from a nylon salt to m-compounds has problems such as the composition of the polymer being unstable. <Means for solving the problem> In view of the above circumstances, the present inventors have developed a polyamide resin that is inexpensive and has good fluidity, has high rigidity and high heat distortion temperature that can sufficiently withstand use in high-temperature atmospheres. As a result of intensive study on the method for producing the composition, we found that [N112] By making a low-order condensate of linona and adding a dicarboxylic acid component when increasing the degree of polymerization using a melt extruder, we were able to efficiently and stably achieve a high degree of polymerization. The present invention was achieved by discovering that it is possible to obtain a chemically modified polymer. That is, the present invention provides hexamethylene inophthalamide units represented by (+) repeating units and any unit selected from the following repeating units <n> to (IV).
A hexamethyleneadipamide unit represented by (rV) -NH-(CI+21S-C-), and a caproamide unit represented by (rV) -NH-(CI+21S-C-), where the ratio is (I)/(II) in tm ratio.
=55/45-80720 or (+)/ (I[I)
=20/80~80/20 or (1)/(rV)
= In producing crystalline tubolyamide in the range of 55/45 to 90/10, an excess of 0.3 to IQ mol% of the diamino component to the total number of moles of monomers or salts of (+) to (TV) Prepared in 150"C-30
0"C520kg/cm2-G or less, the relative viscosity (ηr) of 1% sulfuric acid solution at 25°C is 1.01~
16 [N112] A polyamide resin characterized in that a rich low-order condensate is prepared, the insufficient dicarboxylic acid component is added thereto, and then the low-order condensate is made to have a high m content using a melt extruder. 5') method. The crystalline codisoamide of the present invention is composed of (1) a hexamethylene terephthalamide unit, ([1) a hexamethylene inophthalamide unit, (m) a hexamethylene diamide unit, and (rV) a caproamide unit. A copolyamide formed from any of the following units,
The copolymerization ratio of (1)/(I+) is 55/45 in 4 m ratio.
~80/20, (hereinafter referred to as 6T/61 fubori7mide) or (+)/(m) copolymerization ratio is 2 in terms of ffi amount ratio
0/80 to 80/20 (hereinafter referred to as 6T/66 cobolyamide). Or the copolymerization ratio of (1)/(rV) is f
The f1ffl ratio is 55/45 to 90/10 (hereinafter, 6T/
6 fubolyamide). According to the present invention, the joint bid ratio of 6T/61 is 55/45.
-80/20, preferably 60/40 - 80/20, more preferably 60/40 - 70/30. In addition, the copolymerization ratio of 6T/66 is 20/
go~80/20, preferably 35/65~70,/
30, more preferably in the range of 40/60 to 60/40. Further, the copolymerization ratio of 6T/6 is 55/45 to 90/10, preferably 60/40 to
85/15, more preferably 60/'40 to 80/20
It is necessary to be within the range of . 6T/61 here
.. The copolymerization ratios of 6T/66 and 6T/6 copolyamides are for crystalline copolyamides with polymer melting points in the approximate range of 270°C to 340°C. 6T/6
If the copolymerization ratio of 1.6T/66 and 6T/6 is less than 40/60.20/80.55/45, respectively, the polymer melting point will decrease, so heat resistance such as heat distortion temperature will decrease, so it is preferable. do not have. Also, 6T/61.6T/
The copolymerization ratio of 66 and 6T/6 is 80/20, respectively.
.. If the amount is more than 80/20.90/10, the heat resistance will be improved due to the high degree of melting, but it is not preferable because the processing temperature will become high and the polymer will undergo premature splitting. There is no particular restriction on the degree of alignment of the crystalline copolyamide used here, and the relative viscosity (η'') of a 1% sulfuric acid solution at 25°C
1°5 to 5.0 can be arbitrarily used. 150°C to 300°C, 20 kg/c@2-G of the present invention
The lower-order condensate prepared under the following conditions refers to the aqueous solution of the above monomers or salts placed in a pressure polymerization kettle commonly used for the polymerization of nylon 66, etc., under stirring conditions at 150°C to 30°C.
Heat to 0°C. The reaction humidity must be 150°C to 300°C, preferably 180°C to 280°C, and even more preferably 190°C to 270°C. reaction temperature is 1
If it is lower than 50°C, the reaction time will be longer, which is not preferable.
Furthermore, if the reaction temperature is higher than 300° C., the viscosity of the low-order condensate becomes too high, making it difficult to discharge the low-order condensate, or the low-order condensate precipitates and becomes impossible to discharge, which is not preferable. The pressure when producing the low-order condensate of the present invention means the equilibrium pressure due to the mixture of the low-order condensate and water at that time, and since the pressure increases as the internal temperature rises, the pressure inside the system is 20
kg/am2-G or less, preferably lθ~18kg/c
It is operated to keep it at 2-G. The presence of a small amount of water in the lower-order condensates gives a noticeable coagulation voice, a drop.
It can be discharged from the polymerization vessel in a molten state at a warm temperature of 150°C to 300°C. What is the [Nn2] Lynch's low-order condensate of the present invention? In a conventional polyamide 1, the total amount of C0OH groups and the total amount of N142 groups contained in the monomer and salt are rPf.
It is common to prepare raw materials to achieve fi,
The present invention focuses on actively producing a [N112]-rich low-order condensate by adding a large excess of the diamino component when preparing the raw material t1, and the dicarbono acid component unit of the constituent monomer or salt is This means that the diamino component is added in an excess of 0.3 to 10 mol % based on the total number of moles of diamine component units. The diamine component here refers to aliphatic alkylene diamino having an ash number of 1 to 18, specifically hexamethylene diamine, l,
8-diaminooctane, 1.10-diaminodeca7
etc. can be mentioned. Preferred is hexamethylene diamine, which is a constituent of this dilyamide. The addition m of the noamino component is 0.3 to 10 mol%, preferably 0.5 to 8 mol%, more preferably 0.5 to 7 mol%.
It is necessary to be within the range of . Addition m is 0.3 mol%
If the amount is less, the conditions for increasing the degree of polymerization by melt extrusion will become narrower, making stable operation impossible, which is not preferable. Moreover, if it exceeds 10 mol%, it becomes difficult to achieve a high degree of polymerization in a melt extruder, which is not preferable. The relative viscosity (ηr) of the low-order condensate of the present invention is 1. O1~1. 6, preferably 1
.. 01 to 5, more preferably 1.01 to 1.4. If the relative viscosity is lower than 1.01, the composition ratio may fluctuate during the melt extrusion step to increase the degree of polymerization, or the degree of polymerization may become insufficient, which is not preferable. Also, the relative viscosity is 1. If it is larger than 6, the melt viscosity of the low-order condensate becomes too high, causing discharge failure, or the low-order condensate precipitates, causing discharge failure, which is not preferable. There are no particular restrictions on the apparatus for producing the low-order condensate of the present invention, and known apparatus such as a batch reaction vessel or a 1-3 tank type continuous reaction apparatus can be used. The method of increasing the degree of polymerization of the low-order condensate of the present invention using a melt extruder is a method of increasing the degree of polymerization by melt-extruding the low-order condensate using a melt extruder. The melt extrusion temperature is preferably in the range of 10 to 30°C higher than the melting point of the lower condensate. Further, when using a low-order condensate containing a large amount of 6T gold and having a high melting point, the upper limit temperature must be set to 345° C. or lower in order to prevent thermal decomposition and thermal deterioration of the polymer. As the melt extruder, a single screw extruder or a twin screw extruder can be used, but a two-wheel screw extruder is preferred. According to the present invention, by adding a carboxylic acid component to a [NI+2]-rich low-order condensate and melt-extruding it, a stable highly polymerized polymer can be obtained very efficiently. The carboxylic acid component is not particularly defined, but includes aliphatic dicarboxylic acids such as adipic acid and sepa/noic acid, and aromatic dicarboxylic acids such as terephthalic acid and isophthalic acid. Inophthalic acid and terephthalic acid are preferred, and terephthalic acid is particularly preferred. The amount of dicarboxylic acid added is in excess of the lower condensate [1182]
Number of moles corresponding to −[NI+2] −20X I O−
'wh. A range of 7g is preferred. The amount of dicarboxylic acid added may be greater than [NH2] of the lower condensate, or
12] -20X IO-5 mol/g is not preferable because good pellets with a high degree of polymerization cannot be obtained. There is no particular restriction on the method of adding dicarboxylic acid to the lower condensate of the present invention (any known method can be used. A method of dry breading or a method of separately feeding a lower condensate and a dicarboxylic acid to an extruder using two auto feeders is simple and suitable. The presence of a phosphorus catalyst is effective in obtaining a pellet with a good degree of polymerization in the process, and the addition m is 0.02 to 2 wL% based on the lower condensate.
hi preferably, more preferably 005 to 1.2 wt%
It is. Specific examples of phosphorus compounds include l13POa,
113 +' 03, If 3 P 02, II a
l' 20v, Na 112 PO2・21120,
Na211POa ・121120, Na5POa12
H20, NaH2PO4・N20, NaaPa07
101120, Na2HaPaOv・6H20, N
a5P30+i+ C6HbP (01112, CeHs
PO(ONa)z, CeHgPO(011)2,
Examples include Ml(H2PO2)2, (CeHsO)zI', etc. Preferred are H3P0a and 1I4P20v. There are no particular restrictions on the method of adding the phosphorus compound, and methods such as when preparing a low-order condensate, or a method in which it is blended in advance with a low-order condensate and melt-extruded are convenient and suitable. It is preferable to add a filler to the polyamide resin obtained in the present invention. Fillers include glass fibers or beads, talc, kaolin, wollastonite, mica 1/lica, alumina, diatomaceous earth, clay, clay, inogara, graphite, titanium dioxide, zinc oxide, copper, stainless steel, etc. Examples include powder-like or plate-like inorganic compounds, other polymer fibers (carbon fibers), and glass fibers are preferable. Glass fibers are generally used as #i reinforcing agents for thermoplastic resins, curing resins, etc., but particularly preferred are those with a diameter of 3 to 20 mm).
Jm-sized reams are also available, such as glass row big made from long fiber struts, glass thin struts, and glass threads. The blending ratio of the filler is 1
It is necessary to range from O to 200 parts by weight per 00 parts by weight, preferably from more than 0 to 150 parts by weight, and particularly preferably from 10 to 100 parts by weight. If the blending ratio of the filler exceeds 200 parts by weight, the fluidity during melting will deteriorate, making it difficult to index-mold a thin-walled molded product, as well as deteriorating the appearance of the molded product, which is not preferable. There is no particular restriction on the method of blending the filler into the crystalline copolyamide of the present invention, and any known method can be used. A specific example of the blending method is a method in which filler is dry-blended into crystalline copolyamide pellets and then melt-kneaded using a single-screw or twin-screw extrusion machine. The crystalline copolyamide resin composition obtained in the present invention includes:
When making low-order condensates, catalysts,
Heat stabilizers, weather stabilizers, plasticizers, female shaping agents, lubricants, crystal nucleating agents, pigments, dyes, other polymers, etc. can be added. <Example> The present invention will be explained in more detail by showing examples below. In addition, various properties in Examples and Comparative Examples were measured by the following methods. 1) Melt f! 5. (1”m) Using DSC (PERKIN-ELMER 7th base),
The temperature at which the maximum value of the melting curve obtained by measuring Omg of samples 8 to I at a heating rate of 20° C./min is defined as (T). Sample 8-10mg at heating rate 20℃/min
heated at T+20°C for 5 minutes, then heated at 20°C/
After cooling down to 30°C at a temperature decreasing rate of min, holding at 30°C for 5 minutes, heating again to T+20°C at a temperature increasing rate of 20°C/min. The maximum value of the melting curve at this time is melting I! 3. (Tm). 2) Terminal group concentration of copolyamide [N112] 1 g of copolyamide was mixed with 100 m+ of phenol/ethanol (50/
It was determined by dissolving 50 w in a mixed solvent and titrating with an aqueous solution of 115ON hydrochloric acid. 3> End group concentration of copolyamide [COO1+] It was determined by dissolving 0.5 g of fubolyamide in 50 ml of mature inodyl alcohol and titrating with a methanol solution of 175ON-KOH. 4) Appearance of molded product The surface roughness, air bubbles, color tone, gloss, etc. of the molded product were observed. ○: Glossy and smooth surface. △: The gloss is reduced, but the surface is smooth. ×: The surface is rough and has no luster. 5) Tensile strength Measured according to ASTM-D638. 6) Bending strength Measured according to ASTM-D790. 7) Flexural modulus is ASTM-D790! It was measured at IF. 8) Izod impact strength Measured according to ASTM-D256. 9) Heat distortion temperature (II DT) Measured according to ASTM-D648, load @ 4.6 kgr/cm2 and load 18.6 kgf/cm'. <Example 1> Hexamethylene ammonium adipate (66 salt)9.
00kg, terephthalic acid 5.47kg. 64.5 wt% aqueous solution of hexamethylene diamine 8.4
1kg and 6.40kg of ion-exchanged water to 0.05m'
(excess amount of hexamethylenenonoamino was charged by 5 mol % based on the total number of moles of diamine component units and dicarboxylic acid component units), and after sufficient nitrogen substitution, the water vapor pressure was reduced to 17. Heating was continued under a pressure of 5 kg/cm21; After raising the temperature to 240°C over 3.5 hours with stirring, and maintaining the temperature at 240°C to 245°C for an additional 30ml to complete the reaction, a differential pressure of 17°5 kg/Cm2- was applied from the bottom of the polymerization vessel.
The lower condensate was discharged into water at G. The viscosity of this low-order condensate is ηr=1. +5, melting point 299℃, [C00II
]-52x I O-5mol/g, [NH4I
-105 X I O-5++ ol/g,
It was a low-order condensate rich in 53 x l O-5so1/g [NI+2]. The obtained lower condensate was 100
After drying in the air for 24 hours at
Melt extrusion was performed using a mφ vented twin-screw extruder at a temperature of 260°C to 335°C. A white pellet having a polymer viscosity ηr=2.90 and a polymer melting point of 300°C was obtained. The length is 3mm and the diameter is 13μ for the 100ffiffi part of this pellet.
65 ffiffi portions of glass fiber strands were dry-blended and melt-mixed in a 30 mmφ single-screw extruder at a temperature of the polymer melting point +20°C. This mixture was molded using an injection molding machine to create a test piece. Table 1 shows the results of 31-valent testing of the obtained test piece. <Example 2> Terephthalic acid 7.2] kji, 64.5 wL% aqueous solution of hexamethylene diamine ys, 51 kg. 5.25klB of caprolactam and ion exchange water6.
66 kg was placed in a 0.05 m3 batch type pressurized polymerization pot (excess charge of 3 mol% hexamethylenediamine based on the total number of moles of the diamine component 11th position and the acid component unit), and nitrogen substitution was carried out. After a sufficient amount of water vapor pressure 15. Heating was continued under pressure of 0 kg/c++2-G. After the temperature was raised to 225°C over 5 hours with stirring, and the reaction was further allowed to proceed for 30ml at 225°C to 232°C, stirring was stopped and the pressure difference from the bottom of the m container was 15mm. 0 kg
/cm2-G to extract the lower condensate. The melting point of the obtained low-order condensate was 302°C, ηr was 1.10, [C0OH
] =1 +4XI. mol/g, [NI+2] = I43 x I
O-5 mol/g, and 29XIO-'sao of
/g [It was a low-order condensate rich in NH2F. 24 g of terephthalic acid was dry-breaded to 1 kg of this low-order condensate, and the mixture was melt-extruded, compounded, and molded according to the method described in Example 1, and then evaluated. The results are shown in Table 1. <Example 3> Terephthal [6,70 kg, isophthalic acid 361
k L 645W of hexamethylene diamine
【%水溶
液12.26kgおよびイオン交換水550kl(を0
.05m3のバッチ式加圧11合釜に仕込ミ(シアミノ
成分単位およびジカルボン酸成分単位のトータルモル数
に対して5モル%へキサメチレンジアミンを過剰仕込み
)、窒素置換を充分行った後水蒸気圧17. 5 kg
/e■2−Gの加圧下で加熱を続けた。攪拌下5hrか
けて230 ”Cに昇温した後、さらに30m1n間2
35℃−240”Cで維持し反応を完結させた後、重合
釜低部から差圧17. 5 kg/am”−Gで低次縮
合物を水中に吐出した。この低次縮合物の粘度はηr−
1,15、融点は318℃であった。得られた低次縮合
物を1゜0℃で24hr真空乾燥した後、低次縮合物1
1<gに対して43gのテレフタル酸をトライブレンド
し、実施例1の方法で溶融押出し、コンパウンドおよび
成形をし評価した。結果を表1に示した。
〈実施例4〜7〉
実施例1の方法に従って原料仕込量、テレフタル酸、
リン系触媒およびガラス繊維添加mなどを変えて評価し
た結果を表1に示す。
く比較例1〉
テレフタル酸5.89kg、66塩1000kg1 ヘ
キサメチレンジアミンの64.5wt%水溶液6゜ 3
7kgおよびイオン交換水6.36kgを用いて、実施
例1の方法で低次縮合物を作った。この低次縮合物の粘
度はηr−1,16、融点は296℃、 [C0OH]
= 78 x 10−’mol/g、 [Nlh]
=69 X ] O−’■of/gであり、 9X
IO−5−〇+/g [C00III リッチの低次縮
合物であった。得られた低次縮合物を100℃で24h
「真空乾燥した後、30mmφのベント式二軸押出機で
260°C〜325℃の温度条件で溶融押出しをした。
発泡が著しくベレット化できなかった。
く比較例2〉
テレフタル酸5.15kg、 ヘキサメチレンジアミ
ンの64.5wt%水溶液5.58 k g。
カプロラクタム8.75kgおよびイオ/交換水5.5
0kgを0.05m”のバッチ式加圧重合釜に仕込み(
ジアミン成分ll1位およびジカルボン酸成分単位のト
ータルモル数に対して3モル%へキサメチレンジアミン
を過剰仕込み)、実施例Iの方法で低次縮合物をflっ
だ。この低次縮合物の融点は250℃、ηr=1.31
、 [C00)l] = 27x I O−5sol
/g、 [NI+2] = 59 x 10−’mo
l/gであり、32XIO−5島o1/g [NH2F
リッチの低次縮合物であった。この低次縮合物を10
0”Cで24hr真空乾燥した後、100重量部に対し
て24gのテレフタル酸をトライブレンドし実施例1の
方法に従って溶融押出しした。得られたベレットの融点
は252℃、ηr=3.35であった。
このベレットを用い実施例1の方法で評価した結果を表
】に示した。剛性および熱変形温度が低かった。
く比較例3〉
テレフタル酸8.76kg、 ヘキサメチレフジアミ
ノの64.5wt%水溶液10.15g、66塩2.6
3kgおよびイオン交換水345kgを0.05m3の
バッチ式加圧m合釜に仕込み(ジアミン成分単位および
ジカルボン酸成分単位のトータルモル数に対して3モル
%へキサメチレ7ノアミンを過剰仕込み)、実施例1の
方法で低次w1合物を作った。この0(次縮合物の融f
1は343℃、ηr−1,07であった。この低次縮合
物を100℃で24hr真空乾燥した後、+ooffi
ffi部に対して20gのテレフタル酸をドライブレッ
ドし、260〜350℃の温度で溶融押出しをした。
熱分角qによる発泡のため良好なベレットが得られなか
った。
〈発明の効果〉
本発明で得られる結晶性コポリアミドは剛性及び熱変形
温度が高いばかりでなく、成形性も良好であることから
、特に高温雰囲気下で使用されるコネクター、コイルボ
ビ7等の薄肉成形品キイ月として遺している。[12.26 kg of % aqueous solution and 550 kl of ion-exchanged water (0%
.. 05 m3 batch type pressurized 11 pot (excess charge of 5 mol% hexamethylene diamine with respect to the total number of moles of cyamino component units and dicarboxylic acid component units), and after sufficient nitrogen substitution, water vapor pressure 17 .. 5 kg
Heating was continued under a pressure of /e■2-G. After raising the temperature to 230"C for 5 hours with stirring,
After the reaction was completed while maintaining the temperature at 35° C.-240”C, the lower condensate was discharged into water from the lower part of the polymerization reactor at a differential pressure of 17.5 kg/am”-G. The viscosity of this lower-order condensate is ηr-
1,15, the melting point was 318°C. The obtained low-order condensate was vacuum-dried at 1°0°C for 24 hours, and then the low-order condensate 1
43 g of terephthalic acid was triblended for 1<g, and the mixture was melt extruded, compounded and molded using the method of Example 1, and evaluated. The results are shown in Table 1. <Examples 4 to 7> According to the method of Example 1, the amount of raw materials charged, terephthalic acid,
Table 1 shows the results of evaluations with different phosphorus catalysts, glass fiber addition m, etc. Comparative Example 1> Terephthalic acid 5.89 kg, 66 salt 1000 kg 1 64.5 wt% aqueous solution of hexamethylene diamine 6° 3
A lower condensate was prepared by the method of Example 1 using 7 kg of ion-exchanged water and 6.36 kg of ion-exchanged water. The viscosity of this low-order condensate is ηr-1,16, the melting point is 296°C, [C0OH]
= 78 x 10-'mol/g, [Nlh]
=69X ] O-'■of/g, 9X
IO-5-〇+/g [C00III-rich low-order condensate. The obtained lower condensate was heated at 100°C for 24 hours.
"After vacuum drying, it was melt-extruded using a 30 mmφ vented twin-screw extruder at a temperature of 260°C to 325°C. The foaming was so great that pelletization could not be achieved. Comparative Example 2> Terephthalic acid 5.15 kg, 5.58 kg of a 64.5 wt% aqueous solution of hexamethylene diamine. 8.75 kg of caprolactam and 5.5 kg of io/exchanged water.
0 kg into a 0.05 m” batch type pressure polymerization pot (
Hexamethylene diamine was charged in an excess of 3 mol % based on the total number of moles of the diamine component 11-position and the dicarboxylic acid component unit), and the lower condensate was prepared by the method of Example I. The melting point of this low-order condensate is 250°C, ηr=1.31
, [C00)l] = 27x I O-5sol
/g, [NI+2] = 59 x 10-'mo
l/g, and 32XIO-5 islands o1/g [NH2F
It was a rich, low-order condensate. This lower condensate is 10
After vacuum drying at 0''C for 24 hours, 24g of terephthalic acid was triblended per 100 parts by weight and melt extruded according to the method of Example 1.The melting point of the obtained pellet was 252°C, ηr = 3.35. The results of evaluating this pellet using the method of Example 1 are shown in Table 1.The rigidity and heat distortion temperature were low. Comparative Example 3> Terephthalic acid 8.76 kg, hexamethylene refdiamino 64 kg. 5wt% aqueous solution 10.15g, 66 salt 2.6
Examples A low-order w1 compound was made using method 1. This 0(fusion f of the condensate
1 was 343°C and ηr-1,07. After vacuum drying this low-order condensate at 100°C for 24 hours, +ooffi
The ffi part was dry breaded with 20 g of terephthalic acid and melt extruded at a temperature of 260 to 350°C. A good pellet could not be obtained due to foaming due to the thermal angle q. <Effects of the Invention> The crystalline copolyamide obtained by the present invention not only has high rigidity and high heat distortion temperature, but also has good formability, so it can be used particularly for thin-walled connectors, coil bobbies 7, etc. used in high-temperature atmospheres. It remains as a molded product key month.
Claims (1)
び下記反復単位(II)〜 (IV)から選ばれるいずれかの単位、 (II)▲数式、化学式、表等があります▼ で表わされるヘキサメチレンイソフタルアミド単位、 (III)▲数式、化学式、表等があります▼ で表わされるヘキサメチレンアジパミド単位、 (IV)▲数式、化学式、表等があります▼ で表わされるカプロアミド単位、 からなり、共重合比率が重量比で( I )/ (II)=55/45〜80/20または( I )/(II
I)=20/80〜80/20または( I )/(IV)=
55/45〜90/10の範囲にある結晶性コポリアミ
ドを製造するに当たって、( I )〜(IV)のモノマー
または塩のトータルモル数に対して0.3〜10モル%
のジアミン成分を過剰に仕込み、150℃〜300℃、
20kg/cm^2−G以下の条件下で、1%硫酸溶液
の25℃における相対粘度(ηγ)が1.01〜1.6
を満足する[NH_2]リッチの低次縮合物をつくり、
次いで、不足のジカルボン酸成分を添加したのち該低次
縮合物を溶融押出機で高重合度化することを特徴とする
ポリアミド樹脂の製造方法。(1) Repeating unit (I) ▲There are mathematical formulas, chemical formulas, tables, etc.▼ The hexamethylene terephthalamide unit represented by and any unit selected from the following repeating units (II) to (IV), (II) ▲Mathematical formula , chemical formulas, tables, etc. ▼ Hexamethylene isophthalamide units represented by (III) ▲ Numerical formulas, chemical formulas, tables, etc. ▼ Hexamethylene adipamide units represented by (IV) It consists of a caproamide unit represented by
I) = 20/80 to 80/20 or (I)/(IV) =
In producing a crystalline copolyamide in the range of 55/45 to 90/10, 0.3 to 10 mol% based on the total number of moles of monomers or salts (I) to (IV).
Prepare an excess of diamine component, and heat at 150°C to 300°C.
Under conditions of 20 kg/cm^2-G or less, the relative viscosity (ηγ) of 1% sulfuric acid solution at 25°C is 1.01 to 1.6.
Create a [NH_2]-rich low-order condensate that satisfies
A method for producing a polyamide resin, which comprises adding the insufficient dicarboxylic acid component and then increasing the degree of polymerization of the low-order condensate using a melt extruder.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2163263A JP2641788B2 (en) | 1990-06-20 | 1990-06-20 | Method for producing polyamide resin |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2163263A JP2641788B2 (en) | 1990-06-20 | 1990-06-20 | Method for producing polyamide resin |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0453825A true JPH0453825A (en) | 1992-02-21 |
JP2641788B2 JP2641788B2 (en) | 1997-08-20 |
Family
ID=15770484
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2163263A Expired - Fee Related JP2641788B2 (en) | 1990-06-20 | 1990-06-20 | Method for producing polyamide resin |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2641788B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1273628B1 (en) | 2000-02-21 | 2009-01-07 | Mitsui Chemicals, Inc. | Molding material for electrical and electronic parts |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4836957A (en) * | 1971-09-08 | 1973-05-31 | ||
JPS61283621A (en) * | 1985-06-11 | 1986-12-13 | Sumitomo Chem Co Ltd | Polymerization of aromatic polyamide |
JPH02163270A (en) * | 1988-12-19 | 1990-06-22 | Murata Mach Ltd | Leading yarn end processing device |
-
1990
- 1990-06-20 JP JP2163263A patent/JP2641788B2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4836957A (en) * | 1971-09-08 | 1973-05-31 | ||
JPS61283621A (en) * | 1985-06-11 | 1986-12-13 | Sumitomo Chem Co Ltd | Polymerization of aromatic polyamide |
JPH02163270A (en) * | 1988-12-19 | 1990-06-22 | Murata Mach Ltd | Leading yarn end processing device |
Also Published As
Publication number | Publication date |
---|---|
JP2641788B2 (en) | 1997-08-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4595668B2 (en) | Polyamide resin | |
US9023975B2 (en) | Polyamide and polyamide composition | |
TW570957B (en) | Polyamide moulding compositions having improved properties | |
KR101606606B1 (en) | Polyamide resin | |
US20030050376A1 (en) | Polyamide composition | |
JP2011530639A (en) | Batch process for producing polyamides | |
JPH07228776A (en) | Polyamide composition for molding material | |
JP7195850B2 (en) | Polyamide compositions, moldings and semi-aromatic polyamides | |
JP4595883B2 (en) | Manufacturing method of hinged molded article | |
JP2006504833A (en) | Polyamide molding material, molded product that can be produced therefrom, and use thereof | |
KR101969176B1 (en) | Semi-aromatic polyamide | |
JP2000336167A (en) | Polyamide with excellent orientation tendency | |
JP5357548B2 (en) | High melting point polyamide | |
US8952122B2 (en) | Modified polyamide, preparation method thereof and article obtained from said polyamide | |
JP7440996B2 (en) | Polyamide compositions and molded products | |
JPH0453825A (en) | Production of polyamide resin | |
JP2003138012A (en) | Polyamide having excellent drawability | |
JP4282808B2 (en) | Thermoplastic resin composition and molded article comprising the same | |
JP3106658B2 (en) | Method for producing polyamide resin | |
JP2001106906A (en) | Polyamide resin composition | |
JPH0655887B2 (en) | Reinforced polyamide composition | |
JPH0710914B2 (en) | Amorphous high Tg polyamide | |
JPH0453826A (en) | Production of polyamide resin | |
JPH0453827A (en) | Production of polyamide resin | |
JPH07126380A (en) | Production of polyamide resin |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080502 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090502 Year of fee payment: 12 |
|
LAPS | Cancellation because of no payment of annual fees |