JPH0453627A - High precision electrolytic finishing method - Google Patents

High precision electrolytic finishing method

Info

Publication number
JPH0453627A
JPH0453627A JP15956790A JP15956790A JPH0453627A JP H0453627 A JPH0453627 A JP H0453627A JP 15956790 A JP15956790 A JP 15956790A JP 15956790 A JP15956790 A JP 15956790A JP H0453627 A JPH0453627 A JP H0453627A
Authority
JP
Japan
Prior art keywords
electrode
workpiece
electrolytic
machining
gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15956790A
Other languages
Japanese (ja)
Inventor
Yohei Kuwabara
桑原 陽平
Yoshiharu Suzuki
鈴木 好春
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shizuoka Seiki Co Ltd
Original Assignee
Shizuoka Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shizuoka Seiki Co Ltd filed Critical Shizuoka Seiki Co Ltd
Priority to JP15956790A priority Critical patent/JPH0453627A/en
Publication of JPH0453627A publication Critical patent/JPH0453627A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

PURPOSE:To minimize a corner R on an angled curved surface as well as to secure a mirrorlike lustrous surface and such by supplying a work pulse current to an interval between an electrode and a work and then separating them from each other, and supplying a fresh electrolyte to the interval between the electrode and the work, while shifting the electrode in an X-Y direction. CONSTITUTION:An electrode 2 is lowered and a clearance 19 in the Z-axis direction is kept in the specified value, while this electrode 2 is further shifted in the X-axis direction or Y-axis direction, and thereby a clearance between the electrode 2 and a work 4 in the Y-axis direction is set to the specified value. When a pulse current is supplied, the electrode 2 is once put back to the X-axis direction, and afterward, the electrode 2 is lifted up, and simultaneously an electrolyte is spouted out of an injection nozzle 18 and such operation as eliminating an electrolytic product is repeated. Thus, even in a work surface with an orthogonal or obtuse angular curved surface, such electrolytic machining that realizes an accurate form transcription can be performed, thus a highly accurate surface quality is obtainable.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、電解仕上げ加工方法に係り、特に三次元形
状の被加工面を短時間かつ高精度に仕上げる電解仕上げ
加工方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an electrolytic finishing method, and more particularly to an electrolytic finishing method for finishing a three-dimensionally shaped work surface in a short time and with high precision.

[従来の技術] 従来の電解加工方法としては、例えば特開昭64−78
722号公報により、電極とワークとの間隙に硝酸ナト
リウムや塩化ナトリウム等の溶液である電解液を満たし
、この電極とワークとの間にパルス電流を流すことによ
り、ワーク表面を鏡面状に仕上げるものが開示されてい
る。
[Prior art] As a conventional electrolytic processing method, for example, Japanese Patent Application Laid-Open No. 1986-1978
According to Publication No. 722, the gap between the electrode and the workpiece is filled with an electrolytic solution such as sodium nitrate or sodium chloride, and a pulsed current is passed between the electrode and the workpiece to give the surface of the workpiece a mirror-like finish. is disclosed.

[発明が解決しようとする課題] この電解加工方法にあっては、三次元形状の底付き加工
(凹窩状に形成された三次元構造の加工面を有するもの
に対する加工をいう)において、複雑な輪郭形状を有す
るワークと電極との間隙に電解液を満たし、仕上げ加工
の前期にはピーク電流密度を30〜50 A/ c m
2て、オン時間を2〜10msecとし、後期にはピー
ク電流密度を30〜50 / A c m 2て、オン
時間を20〜60m s e cとして加工を行ってい
る。その結果、前期の加工て面粗度を向上させ、又後期
の加工て面粗度を損なうことなく被加工面の鏡面状の光
沢面を得る。
[Problems to be Solved by the Invention] This electrolytic machining method is difficult to solve in complicated three-dimensional bottom machining (machining of a material having a machining surface with a three-dimensional structure formed in the shape of a concave hole). The gap between the workpiece and the electrode, which has a contoured shape, is filled with an electrolytic solution, and the peak current density is set at 30 to 50 A/cm in the early stage of finishing.
2, the on time is set to 2 to 10 msec, and in the latter stage, the peak current density is set to 30 to 50/A cm2, and the on time is set to 20 to 60 msec. As a result, the surface roughness in the first stage of processing is improved, and a mirror-like glossy surface is obtained on the processed surface without impairing the surface roughness in the second stage of processing.

しかしながら、この方法によると、滑らかな表面形状で
は問題とならなかったが、第6図に示すような直角もし
くは鋭角の部分形状を有する物を加工する場合に、前工
程での放電加工で如何に鋭利な隅Rを形成したとしても
後工程での電解仕上げ加工では、隅Rが最小でも0.2
mmR程度にしか仕上がらないという不都合が生じた。
However, according to this method, there was no problem with smooth surface shapes, but when machining objects with right-angled or acute-angled partial shapes as shown in Fig. Even if a sharp corner R is formed, the minimum corner R is 0.2 in the electrolytic finishing process in the subsequent process.
There was an inconvenience that the finish was only about mmR.

これに対して特開昭54−1495号公報によれば、電
極とワークとの対向する面全体における等クリアランス
化加工を行うために、電極とワークとを相対的に移動さ
せて通電を行うことが開示されている。しかし、この方
法を取り入れての実験においても結果は変わらなかった
On the other hand, according to Japanese Unexamined Patent Publication No. 54-1495, in order to perform equal clearance machining on the entire opposing surfaces of the electrode and the workpiece, energization is performed by moving the electrode and the workpiece relative to each other. is disclosed. However, the results did not change even in experiments using this method.

その理由としては、電解加工においては、電極とワーク
との加工時の間隙が50〜300μm程度を必要とする
ことと、対向する加工面に対し一様に加工をしてしまう
性質があることとが考えられる。即ち、電解加工におい
て電極とワークとを対向させてパルス電流を供給した場
合、高電流密度条件(例えば、10〜25■)のときは
、間隙を110μmとして所定の加工エネルギを供給し
たとき40μmの加工量が得られるに対し、間隙を10
μmとして同じ条件の加工エネルギを供給したときは、
約20μmの加工量しか得られないで、かつその加工表
面も荒れて形状を損なっている。その原因は加工中の間
隙には電解生成物や水素ガスが生じて適正な電解作用を
阻害するためである。したがって、第6図の場合でも単
位面積当りの加工エネルギ(電流密度Xパルス輻×連発
パルス数)が大きい標準の加工条件では、ワークの被加
工面4aと電極面2aとの間隙を100μm以下にして
の加工は完全なものではなかった。
The reason for this is that electrolytic machining requires a gap of about 50 to 300 μm between the electrode and the workpiece, and the process tends to uniformly process opposing machining surfaces. is possible. That is, in electrolytic machining, when a pulse current is supplied with the electrode facing the workpiece, under high current density conditions (for example, 10 to 25 cm), when the gap is 110 μm and the predetermined machining energy is supplied, the gap is 40 μm. While the amount of machining can be obtained, the gap is 10
When machining energy is supplied under the same conditions as μm,
A processing amount of only about 20 μm can be obtained, and the processed surface is also rough and loses its shape. The reason for this is that electrolytic products and hydrogen gas are generated in the gaps during processing, inhibiting proper electrolytic action. Therefore, even in the case of Fig. 6, under standard machining conditions where the machining energy per unit area (current density The processing was not perfect.

[発明の目的] そこでこの発明は、上記不都合を除去し、特に角度を有
する曲面における隅Rを極小とすべく改良した、三次元
形状の被加工面を短時間かつ高精度に仕上げて、鏡面状
の光沢面等を得ることができる高精度電解仕上げ加工方
法を実現することを目的とする。
[Purpose of the Invention] Therefore, the present invention eliminates the above-mentioned disadvantages, and in particular improves the corner radius of curved surfaces with angles to a minimum, and finishes a three-dimensionally shaped work surface in a short time and with high precision to create a mirror finish. The purpose of this invention is to realize a high-precision electrolytic finishing method that can obtain a glossy surface with a similar shape.

[課題を解決するための手段] この目的を達成するために、この出願の第1発明は、電
解液中で電極とワークとを所定間隙をもって対向設置す
る工程と、前記電極とワークとの間に、微弱なパルス電
流を供給する工程と、前記電極とワークとの間隙を拡げ
るべく、両者を引き離す工程と、前記電極とワークとの
間に新たな電解液を供給して電解生成物を除去する工程
と、前記電極を前記ワークに対して相対的にX−Y方向
に移動させる工程とを有することを特徴とする。
[Means for Solving the Problem] In order to achieve this object, the first invention of this application includes a step of disposing an electrode and a workpiece facing each other with a predetermined gap in an electrolytic solution, and a step of disposing an electrode and a workpiece facing each other with a predetermined gap between them. , a step of supplying a weak pulse current, a step of separating the electrode and the workpiece in order to widen the gap between them, and a step of supplying a new electrolyte solution between the electrode and the workpiece to remove electrolytic products. and a step of moving the electrode in the X-Y direction relative to the workpiece.

又、第2発明は、上記第1発明におけるパルス電流を、
電圧が5.3〜6.5Vで30msec以下のオン時間
としたことを特徴とする。
Further, a second invention provides a pulse current in the first invention,
It is characterized in that the voltage is 5.3 to 6.5V and the on time is 30 msec or less.

[作 用] この出願の発明によると、パルス電流を供給する一回当
りの電解生成物の発生量や水素ガスの発生量も少ないた
めに、電極とワークとの間隙もより小さくすることがで
き、例えば間隙を10μmとしたとき、間隙が110μ
mの場合に2μmの加工量しか得られない加工エネルギ
条件てあっても、20μmの加工量を得ることができる
。このことから、電極とワークとの間隙を従来よりも小
さくして電極形状に沿った精密な曲面転写が可能となる
[Function] According to the invention of this application, the amount of electrolytic products generated and the amount of hydrogen gas generated per pulse current supply are small, so the gap between the electrode and the workpiece can be made smaller. , for example, when the gap is 10μm, the gap is 110μm.
Even if the machining energy conditions are such that a machining amount of only 2 μm can be obtained in the case of m, a machining amount of 20 μm can be obtained. As a result, the gap between the electrode and the workpiece can be made smaller than before, allowing precise curved surface transfer along the shape of the electrode.

[実施例] 以下、図面を参照してこの発明の実施例を詳細かつ具体
的に説明する。
[Embodiments] Hereinafter, embodiments of the present invention will be described in detail and specifically with reference to the drawings.

第1〜2図は、この発明の一実施例を示すものである。1 and 2 show one embodiment of this invention.

第1図において、この発明を実施し得る電解仕上げ加工
装置1は、電極2を固定する電極固定装置3、ワーク4
を固定するワーク固定装置5、パルスモータからなるZ
軸モータ6の回転運動を往復運動に変換する駆動変換部
7、エアー供給装置8からのエアーの供給により前記電
極固定装置3を上下動するビックユニット9、直流電源
部10と充放電部11からなり加工パルスを発生する電
源装置12、モータ駆動制御部13と加工条件制御部1
4と電解液流制御部15等からなる制御装置16、ワー
ク4に間する各種データ等を入力する入力装置17、電
解液を濾過するとともに、この濾過した電解液を噴出ノ
ズル18を介して噴出することにより、電極2とワーク
4の間隙19に電解液の噴流を供給する電解液濾過装置
20、加工槽21等からなる。
In FIG. 1, an electrolytic finishing device 1 capable of carrying out the present invention includes an electrode fixing device 3 for fixing an electrode 2, a workpiece 4, and an electrode fixing device 3 for fixing an electrode 2.
A workpiece fixing device 5 that fixes the
A drive conversion section 7 that converts the rotational motion of the shaft motor 6 into reciprocating motion, a big unit 9 that moves the electrode fixing device 3 up and down by supplying air from an air supply device 8, a DC power supply section 10, and a charging/discharging section 11. A power supply device 12 that generates machining pulses, a motor drive control section 13, and a machining condition control section 1
4 and an electrolytic solution flow control section 15, an input device 17 for inputting various data etc. to the workpiece 4, filters the electrolytic solution, and jets out the filtered electrolytic solution through a jetting nozzle 18. As a result, the electrolytic solution filtration device 20 supplies a jet of electrolytic solution to the gap 19 between the electrode 2 and the workpiece 4, a processing tank 21, etc. are included.

前記電極固定装置3は、その下部に設けたロッド22の
下端に、例えば純銅もしくはグラファイトからなる電極
2を、その電極面2aとワーク4の被加工面4aとが三
次元方向に−様な間隙19を保つように固定する。この
電極固定装置3は、前記モータ駆動制御部13の制御信
号によりZ軸モータ6が回転し、この回転が駆動変換部
7によって上下方向の運動に変換されて上下動するとと
もに、モータ駆動制御部13の制御信号によりエアー供
給装置8が作動して、ピックユニット9内にエアーが供
給されて上下動する。なお、電極固定装置3の駆動方法
は、加工条件等に応じて、Z軸モータ6及びエアー供給
装置8の一方もしくはこれらの両者を同時に使用して行
う。
The electrode fixing device 3 has an electrode 2 made of, for example, pure copper or graphite attached to the lower end of a rod 22 provided at its lower part, with a gap such that the electrode surface 2a and the processed surface 4a of the workpiece 4 are spaced in a three-dimensional direction. Fix it so that it stays at 19. In this electrode fixing device 3, the Z-axis motor 6 rotates in response to a control signal from the motor drive control section 13, and this rotation is converted into vertical movement by the drive conversion section 7 to move up and down. The air supply device 8 is activated by the control signal 13, and air is supplied into the pick unit 9 to move it up and down. Note that the electrode fixing device 3 is driven by using one or both of the Z-axis motor 6 and the air supply device 8 at the same time, depending on processing conditions and the like.

前記ワーク固定装置5は、絶縁性の高いグラナイトもし
くはセラミックス製のテーブルで、その上面には例えば
型彫放電加工されたワーク4を図示しないセット治具、
ネジ等により固定する。
The workpiece fixing device 5 is a table made of highly insulating granite or ceramics, and on its upper surface, for example, a setting jig (not shown) is used to hold the workpiece 4 subjected to die-carving electric discharge machining.
Secure with screws, etc.

前記電極2とワーク4との相対的位置間係を制御して加
工を行う仕組は、例えば第2図に示す如く構成する。
A mechanism for controlling the relative positional relationship between the electrode 2 and the workpiece 4 to perform processing is configured as shown in FIG. 2, for example.

即ち、制御装置16は、入力装置17及び各種センサ2
3からの信号を受けて所定のプログラムによる制御を行
う。このセンサ23は概念的なもので実際には複数のセ
ンサからなり、液面検出、電極とワークとの接触検出、
電解液のPH検出、加工深さ検出、パルス供給回数検出
等の機能を果たすものを総称する。
That is, the control device 16 includes an input device 17 and various sensors 2.
3 and performs control according to a predetermined program. This sensor 23 is conceptual and actually consists of multiple sensors, including liquid level detection, contact detection between the electrode and workpiece,
A general term for devices that perform functions such as electrolyte pH detection, machining depth detection, and pulse supply frequency detection.

前記モータ駆動制御部13は、電極2を支持するテーブ
ル(図示せず)をX軸モータ24、Y軸モータ25を駆
動することによってX−Y平面(前後左右方向)で所定
の位置に自由に移動させてワーク4との相対的位置関係
を変更し保持する。又、前記Z軸モータ6及びエアー供
給装置8を駆動して電極2を上下動させて、ワーク4と
の間隙19を所定値に保つ位置と両者を引き離した位置
とを交互に得るようにしている。
The motor drive control unit 13 freely moves a table (not shown) supporting the electrode 2 to a predetermined position on the X-Y plane (front, rear, left and right directions) by driving an X-axis motor 24 and a Y-axis motor 25. It is moved to change and maintain the relative positional relationship with the workpiece 4. Further, the Z-axis motor 6 and the air supply device 8 are driven to move the electrode 2 up and down, so that a position where the gap 19 with the workpiece 4 is maintained at a predetermined value and a position where the two are separated are alternately obtained. There is.

さらに前記制御装置16は、入力された加工条件を記憶
装置26に記憶するとともに、表示装置27によりその
内容を表示して操作者の便宜を図っている。そして、電
解加工が所定量に達したことをセンサ23が検出したな
らば、その旨を表示すると同時に、加工条件制御部14
は、電源装置12に新たな加工条件に基づくパルス電流
を供給するよう信号を発して加工を継続する。かかるプ
ログラム化された工程を自動的に切り換えて加工を継続
し、最後に所定の工程が完了したことをセンサ23が検
出して加工を終了する。
Furthermore, the control device 16 stores the input machining conditions in a storage device 26, and displays the contents on a display device 27 for the operator's convenience. When the sensor 23 detects that the electrolytic machining has reached a predetermined amount, the machining condition control unit 14 displays a message to that effect.
The processing continues by issuing a signal to the power supply device 12 to supply a pulse current based on the new processing conditions. Processing is continued by automatically switching between the programmed processes, and finally, when the sensor 23 detects that a predetermined process has been completed, processing is terminated.

その間、電極2が上昇して電極2とワーク4との間隙1
9が拡がったときには電解液が噴出ノズル18から噴き
出され、間隙19に発生している電解生成物を排除する
。この作用をなす前記電解液濾過装置20は、前記セン
サ23の電解液の淑面検出信号に基づく電解液の供給や
電極2の上昇に伴う電解液の噴出に加えて、加工槽21
内の電解液の汚れを防止すべく、電解液を循環させなが
ら、電解生成物を濾過する。
During that time, the electrode 2 rises and the gap 1 between the electrode 2 and the workpiece 4
When the gap 9 expands, the electrolytic solution is ejected from the ejection nozzle 18, and the electrolytic products generated in the gap 19 are removed. The electrolyte filtration device 20 that performs this function not only supplies the electrolyte based on the surface detection signal of the electrolyte from the sensor 23, but also sprays the electrolyte as the electrode 2 rises.
In order to prevent the electrolytic solution from becoming contaminated, the electrolytic product is filtered while the electrolytic solution is being circulated.

このような加工中の制御内容は逐一記憶装置26に記憶
し、必要に応じて表示装置27に表示させ、あるいは図
示しないプリンタにて印字出力して再確認できるように
構成しである。
The control contents during processing are stored one by one in the storage device 26, and can be displayed on the display device 27 or printed out using a printer (not shown) for reconfirmation if necessary.

次にこの出願の発明の原理を示す実験について第3図に
より説明する。
Next, an experiment showing the principle of the invention of this application will be explained with reference to FIG.

電極2は、はぼ直角をなす凸条E1、E2、E3、E4
を有する形状とし、ワーク4はその上面が傾斜した構成
として、両者を対向させたとき一例にては両者の間隙が
10μmで、反対側では、110μmとなるように設定
した。このような電極2とワーク4との関係において、
両者間にパルス電流を供給したところ第4図の如き結果
を得た。
The electrode 2 has protrusions E1, E2, E3, and E4 that are approximately perpendicular to each other.
The workpiece 4 had a configuration with an inclined upper surface, and the gap between the two was set to be 10 μm in one example when the two were opposed to each other, and 110 μm on the opposite side. In such a relationship between the electrode 2 and the workpiece 4,
When a pulse current was supplied between the two, the results shown in FIG. 4 were obtained.

即ち、第4図イは従来の加工方法に習った加工条件での
通電を行った結果を示し、同アはこの出願にかかる発明
となった加工条件での通電を行った結果を示すものであ
る。
That is, Figure 4A shows the result of energization under the machining conditions learned from the conventional machining method, and Figure 4A shows the result of energization under the machining conditions of the invention of this application. be.

第4図ア及びイのWl、W2、W3、W4はワーク4に
おいて、第3図に示す電極2の凸条El、E2、E3、
E4に対応する部位に加工の結果生じた深さTの加工量
を示す凹溝である。
Wl, W2, W3, and W4 in FIGS. 4A and 4B are the ridges El, E2, E3 of the electrode 2 shown in FIG.
This is a concave groove indicating the amount of machining of depth T produced as a result of machining in the portion corresponding to E4.

第4図イでは従来の、いわゆる高電流密度の加工条件で
のパルス電流を供給した。その結果、加工間隙が110
μmとなるW1部分ではきわめて正確に加工がなされて
いるに対し、間隙が小さくなるに連れて電極の形状転写
が崩れて、w4部分では加工表面の荒さも加わって、実
用にならないことが判明した。これより従来の加工条件
では、電極2とワーク4との間隙を10011m以下に
縮小することが余り好ましくないと判断される。
In FIG. 4A, a pulse current was supplied under conventional machining conditions of so-called high current density. As a result, the machining gap is 110
Although the W1 part, which is μm, was processed extremely accurately, as the gap became smaller, the electrode shape transfer deteriorated, and in the W4 part, the roughness of the machined surface was added, making it impossible to put it into practical use. . From this, it is determined that it is not very desirable to reduce the gap between the electrode 2 and the workpiece 4 to 10011 m or less under the conventional machining conditions.

これとは反対に、第4図アではパルス電流の電流値を小
さくして行き、かつパルスのオン時間も変えて短くした
場合の加工結果を表わし、間隙が10μmとなるW4部
分で電極形状が正確に転写されているに対し、間隙が大
きくなるに連れて形状転写がなされていない状況が明ら
かである。この場合の電流条件は、おおよそ電圧が5.
3〜6゜5vで、パルス幅(印加時間)が30msec
以下であった。このことから、電流値を下げていけば電
流2とワーク4との加工時の間隙19を小さくしても、
加工形状を損なわない電解加工ができることが判明した
On the contrary, Figure 4A shows the machining results when the current value of the pulse current is decreased and the pulse ON time is also changed to shorten the electrode shape at the W4 portion where the gap is 10 μm. It is clear that while the shape is accurately transferred, as the gap becomes larger, the shape is not transferred. The current conditions in this case are approximately voltage 5.
3~6°5V, pulse width (application time) is 30msec
It was below. From this, if the current value is lowered, even if the gap 19 between the current 2 and the workpiece 4 is made smaller,
It has been found that electrolytic processing can be performed without damaging the processed shape.

なお、この場合パルス電流のオン時間は、実用の段階に
おけるワークの大きさやその形状に基づいて、形状精度
追求との関係で限りなくゼロに近い値で実施することに
なるが、従来の通常範囲の形状及び精度の型加工におい
ては1〜30msecの範囲で十分である。
In this case, the on-time of the pulse current will be set to a value as close to zero as possible in relation to the pursuit of shape accuracy, based on the size and shape of the workpiece at the practical stage, but it will be kept within the conventional normal range. For mold processing with a shape and precision of 1 to 30 msec is sufficient.

以上の知見に基づいて、この出願の発明者は、高精度に
電極形状を転写しうる電解仕上げ加工方法を完成させた
。即ち、放電加工により形成された3次元形状の加工面
を有するワークを仕上げ加工するに、 先ず第1段階は比較的大きなエネルギ条件でのパルス電
流を供給する。(ピーク電流密度が30〜50A/Cm
2で、オン時間を2〜10m5eCとする。)その結果
として、面粗度を向上させる。
Based on the above findings, the inventor of this application has completed an electrolytic finishing method that can transfer the electrode shape with high precision. That is, when finishing a workpiece having a three-dimensional machined surface formed by electrical discharge machining, the first step is to supply a pulsed current under a relatively large energy condition. (Peak current density is 30-50A/Cm
2, the on time is set to 2 to 10 m5eC. ) As a result, the surface roughness is improved.

次いで第2段階は第1段階よりも一層大きいエネルギ条
件でのパルス電流を供給する。(ピーク電流密度を30
〜50A/cm2で、オン時間を20〜60msecと
する。)その結果、面粗度を損なうことなく被加工面を
鏡面状の光沢面とする。
The second stage then provides pulsed current at higher energy conditions than the first stage. (The peak current density is 30
~50 A/cm2 and on time of 20 to 60 msec. ) As a result, the processed surface becomes a mirror-like glossy surface without impairing the surface roughness.

なお、この第2段階の電流値設定での加工は、次の第3
段階の加工を行った場合には、その後工程としての第4
段階の加工にも適用されるものである。
Note that machining at this second stage of current value setting is performed in the following third stage.
If a step of processing is performed, the fourth step is the subsequent process.
This also applies to stage processing.

そして、形状が屈曲部分を有するために必要な場合には
、さらに第3段階として、第1段階より小さいエネルギ
条件でのパルス電流を供給する。
If it is necessary because the shape has a bent portion, a pulse current is supplied in a third step with an energy smaller than that in the first step.

(電極2とワーク4との間にかける電圧を第1段階の場
合より低い5.3〜6,5Vに設定し、オン時間を30
msec以下とする。)この場合、被加工面の面積を変
わらないものと想定すれば、単位面積当りの電流密度は
第1段階と比べてもはるかに小さい値となるが、実際に
は、加工結果から推定すると、局部的に電流が集中して
流れることになり、加工面積を特定できないため平均電
流密度として把握することができない。
(The voltage applied between the electrode 2 and the workpiece 4 is set to 5.3 to 6.5V, lower than in the first stage, and the on time is 30V.
It should be less than msec. ) In this case, assuming that the area of the processed surface remains unchanged, the current density per unit area will be a much smaller value than in the first stage, but in reality, when estimated from the processing results, The current flows in a concentrated manner locally, and the machining area cannot be specified, so it cannot be determined as an average current density.

この第3段階では、電極をワークに対してX−Y平面で
相対的に移動せしめて加工の際の間隙を小さくするよう
制御することとした。
In this third stage, the electrode was moved relative to the workpiece in the XY plane to control the gap during machining to be reduced.

そして、各段階における動作はそれぞれ従来通りとし、
第3段階のみ次の様にflE正した。つまり、電極2を
下降させてX軸方向での間隙19を所定値に保つととも
に、さらに電極2をX軸方向あるいはY軸方向に移動さ
せて、X軸方向あるいはY軸方向における電極2とワー
ク4との間隙を所定値にする工程を加える。そして、パ
ルス電流を供給したら、−旦電極2をX軸あるいはY軸
方向に戻して、その後電極2を上昇させ、同時に噴出ノ
ズル18から電解液を噴出して間隙19の電解生成物を
排除する。そうして前記の動作を繰り返す。
The operations at each stage are the same as before.
Only the third stage was corrected as follows. In other words, while lowering the electrode 2 to maintain the gap 19 in the X-axis direction at a predetermined value, the electrode 2 is further moved in the X-axis direction or the Y-axis direction, and the electrode 2 and the workpiece in the 4 is added to set the gap to a predetermined value. After the pulse current is supplied, the electrode 2 is returned to the X-axis or Y-axis direction, and then the electrode 2 is raised, and at the same time, the electrolytic solution is jetted from the jet nozzle 18 to eliminate the electrolytic products in the gap 19. . Then repeat the above operation.

この点についてさらに第5図に基づいて説明すると、前
述の原理で電極2の電極面2aをワーク4の被加工面4
aに対して、間隙19を10umとなるまで接近させて
加工することができるようになったが、その場合、すて
に前段階(上記第1段階及び第2段階)の加工を経てい
るので、電極2の横幅は、ワーク4の内面幅に対して相
対的に小さくなっているため、電極2を横方向に移動さ
せないと電極面2aとワーク4の被加工面4aとは接近
し得ない。そこで、前記第3段階では、少なくとも電極
2をワーク4に対してX−Y方向(前後左右方向)に位
置を移動させて、電極面2−aとワーク4の被加工面4
aとの間隙を調整する必要が生ずる。これを前記モータ
駆動制御部13によってX軸モータ24及びY軸モータ
25を運転させることで実現したのである。
To further explain this point based on FIG.
It is now possible to process a by making the gap 19 as close as 10 um, but in that case, the process has already been completed in the previous stage (the first stage and the second stage above). Since the width of the electrode 2 is relatively small with respect to the inner width of the workpiece 4, the electrode surface 2a and the processed surface 4a of the workpiece 4 cannot come close to each other unless the electrode 2 is moved laterally. . Therefore, in the third step, at least the electrode 2 is moved in the X-Y direction (front, rear, left, and right directions) with respect to the work 4, and the electrode surface 2-a and the workpiece surface of the work 4 are
It becomes necessary to adjust the gap between a and a. This is achieved by operating the X-axis motor 24 and Y-axis motor 25 using the motor drive control section 13.

この結果、第6図に示す従来との比較から明らかなよう
に、従来では放電加工面(−点鎖線で示す)との間隙を
縮小できなかったために、電解加工による加工面もほぼ
放電加工面に倣う形の曲面であったのに対し、この出願
の発明では、第5図に示すように放電加工面を修正した
形の電解加工面を得ることができた。
As a result, as is clear from the comparison with the conventional method shown in Fig. 6, since the gap between the conventional method and the electrical discharge machined surface (indicated by the - dotted chain line) could not be reduced, the surface machined by electrolytic machining is almost the same as the electrical discharge machined surface. However, in the invention of this application, it was possible to obtain an electrolytic machined surface that was a modified electrical discharge machined surface, as shown in FIG.

なお、上記の説明においては、電極とワークとを上下方
向に対向位置させたが、これを水平方向に位置させて、
両者間の電解生成物を排除しやすくすることもできる。
In addition, in the above explanation, the electrode and the workpiece are positioned facing each other in the vertical direction, but if they are positioned horizontally,
It is also possible to easily eliminate electrolysis products between the two.

その場合、Z軸が水平方向となるので、X−Y平面は、
Z軸に直交する(上下前後方向に延びる)平面と読み替
える。
In that case, the Z-axis is horizontal, so the X-Y plane is
It is read as a plane perpendicular to the Z-axis (extending in the vertical and front-back directions).

[発明の効果] この発明は上述の通りに構成したので、次に記す効果を
奏する。
[Effects of the Invention] Since the present invention is configured as described above, it has the following effects.

■直角もしくは鋭角の屈曲した曲面を有する被加工面で
あっても、正確な形状転写を実現した電解加工ができて
、高精度な表面品質を得ることができる。
■Even if the surface to be machined has a curved surface at a right angle or an acute angle, electrolytic processing can be performed that achieves accurate shape transfer, and high-precision surface quality can be obtained.

■電極を消耗しない電解加工でもって、表面荒さを取り
除く面粗度向上加工(第1段階)から光沢面を得る仕上
げ加工(第2段階)、及び精度の高い型彫り加工(第3
段階)が可能となり、放電加工を経ないでも3次元形状
の曲面を有する金型の製作加工ができるようになった。
■Using electrolytic processing that does not consume electrodes, the process includes surface roughness improvement processing to remove surface roughness (first stage), finishing processing to obtain a glossy surface (second stage), and high-precision die engraving (third stage).
step), and it has become possible to manufacture molds with three-dimensional curved surfaces without going through electric discharge machining.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明に係る電解仕上げ加工方法を実施し
得る電解仕上げ加工装置のブロック図、第2図は、制御
内容を示すブロック図、第3図は、この出願の原理を示
す実験の説明図、第4図は、同じく実験の結果を示すワ
ーク表面の拡大説明図、第5図は、この発明による電解
加工の状況を示す説明図、第6図は従来の電解加工の状
況を示す説明図である。 l・・・電解仕上げ加工装置、2・・・電極、4・・・
ワーク、12・・・電源装置、13・・・モータ駆動制
御部、14・・・加工条件制御部、15・・・電解液流
制御部、16・・・制御装置、17・・−・入力装置、
23・・・センサ、26・・・記憶装置、27・・・表
示装置 である。 第1図 特許出願人  静岡製機株式会社 代表者  銘木 重夫 第2嗟 第a図
FIG. 1 is a block diagram of an electrolytic finishing apparatus that can carry out the electrolytic finishing method according to the present invention, FIG. 2 is a block diagram showing control details, and FIG. 3 is an experimental diagram showing the principle of this application. An explanatory diagram, FIG. 4 is an enlarged explanatory diagram of the work surface showing the results of the experiment, FIG. 5 is an explanatory diagram showing the situation of electrolytic machining according to the present invention, and FIG. 6 is an explanatory diagram showing the situation of conventional electrolytic machining. It is an explanatory diagram. l... Electrolytic finishing processing device, 2... Electrode, 4...
Workpiece, 12... Power supply device, 13... Motor drive control section, 14... Machining condition control section, 15... Electrolyte flow control section, 16... Control device, 17... Input Device,
23...Sensor, 26...Storage device, 27...Display device. Figure 1 Patent applicant Shizuoka Seiki Co., Ltd. Representative Shigeo Meiki Figure 2

Claims (2)

【特許請求の範囲】[Claims] (1)次のA〜Eの要件を具備したことを特徴とする高
精度電解仕上げ加工方法。 A、電解液中で電極とワークとを所定間隙をもって対向
設置する工程、 B、前記電極とワークとの間に、微弱なパルス電流を供
給する工程、 C、前記電極とワークとの間隙を拡げるべく、両者を引
き離す工程、 D、前記電極とワークとの間に新たな電解液を供給して
電解生成物を除去する工程、 E、前記電極を前記ワークに対して相対的にX−Y方向
に移動させる工程。
(1) A high-precision electrolytic finishing method characterized by meeting the following requirements A to E. A. Placing the electrode and the workpiece facing each other with a predetermined gap in the electrolytic solution; B. Supplying a weak pulse current between the electrode and the workpiece; C. Enlarging the gap between the electrode and the workpiece. D. Supplying a new electrolytic solution between the electrode and the workpiece to remove electrolytic products; E. Positioning the electrode in the X-Y direction relative to the workpiece. The process of moving to.
(2)次の要件を具備してなる請求項(1)記載の高精
度電解仕上げ加工方法。 F、前記パルス電流は、電圧が5.3〜6.5Vで30
msec以下のオン時間であること。
(2) The high-precision electrolytic finishing method according to claim (1), which satisfies the following requirements. F, the pulse current is 30V at a voltage of 5.3 to 6.5V.
The on time must be less than msec.
JP15956790A 1990-06-18 1990-06-18 High precision electrolytic finishing method Pending JPH0453627A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15956790A JPH0453627A (en) 1990-06-18 1990-06-18 High precision electrolytic finishing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15956790A JPH0453627A (en) 1990-06-18 1990-06-18 High precision electrolytic finishing method

Publications (1)

Publication Number Publication Date
JPH0453627A true JPH0453627A (en) 1992-02-21

Family

ID=15696547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15956790A Pending JPH0453627A (en) 1990-06-18 1990-06-18 High precision electrolytic finishing method

Country Status (1)

Country Link
JP (1) JPH0453627A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6532662B2 (en) * 2000-03-13 2003-03-18 Koyo Seiko Co., Ltd. Method for processing dynamic pressure groove of fluid dynamic bearing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6532662B2 (en) * 2000-03-13 2003-03-18 Koyo Seiko Co., Ltd. Method for processing dynamic pressure groove of fluid dynamic bearing

Similar Documents

Publication Publication Date Title
RU2264894C2 (en) Electrochemical working process
US4504721A (en) 3D EDM method and apparatus utilizing a magnetic field
JP2006110697A (en) Method for machining arbitrary shape on workpiece made of electrically conductive material, and composite machining apparatus
US4439660A (en) Electroerosive contour-machining method and apparatus with a rotary tool electrode
EP0131367B1 (en) Method of and apparatus for machining ceramic materials
US5951884A (en) Electric discharge machining method and apparatus
JPS62255013A (en) Electro-chemical machining device
GB2127851A (en) Producing electroformed articles
JPH0453627A (en) High precision electrolytic finishing method
KR910000511B1 (en) Electrolytic finishing system
GB2115335A (en) Electrical discharge machining liquid contamination maintenance
WO2002102538A1 (en) Wire electric-discharge machining method and device
EP0636443A1 (en) Die sinking electrical discharge apparatus
KR930004833B1 (en) Electrolytic finishing method
CA2067097A1 (en) Electrolytic finishing method of finishing a bevel gear and a method of machining an electrode used for the electrolytic finishing method
JPH1043948A (en) Method of finish working by electrochemical machining
JPS5993247A (en) Numerically controlled mold machining device
JPH03251315A (en) Control method for electrode position in electrolytic finishing
US5773781A (en) Profiling electrical discharge machining apparatus
JPH02139124A (en) Electolytic finishing method
WO2005018858A1 (en) Electric discharge machining method
JPH01205918A (en) Finishing work through electrolytic working
JPS63318213A (en) Three dimensional electrolytic finishing device
JPS6125728A (en) Electric discharge processing equipment
CN112296457A (en) Vibrating type electrolytic forming processing device for blisk