JPH0453616A - End mill - Google Patents

End mill

Info

Publication number
JPH0453616A
JPH0453616A JP16066190A JP16066190A JPH0453616A JP H0453616 A JPH0453616 A JP H0453616A JP 16066190 A JP16066190 A JP 16066190A JP 16066190 A JP16066190 A JP 16066190A JP H0453616 A JPH0453616 A JP H0453616A
Authority
JP
Japan
Prior art keywords
cutting
cutting edge
polygon
end mill
ridge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16066190A
Other languages
Japanese (ja)
Inventor
Kiyoshi Kishimoto
岸本 潔
Shigeyasu Yoshitoshi
吉年 成恭
Ryosuke Okanishi
良祐 岡西
Hideaki Inoue
井上 秀顕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Moldino Tool Engineering Ltd
Original Assignee
Hitachi Tool Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Tool Engineering Ltd filed Critical Hitachi Tool Engineering Ltd
Priority to JP16066190A priority Critical patent/JPH0453616A/en
Publication of JPH0453616A publication Critical patent/JPH0453616A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C5/00Milling-cutters
    • B23C5/02Milling-cutters characterised by the shape of the cutter
    • B23C5/10Shank-type cutters, i.e. with an integral shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2210/00Details of milling cutters
    • B23C2210/20Number of cutting edges
    • B23C2210/205Number of cutting edges six
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2210/00Details of milling cutters
    • B23C2210/20Number of cutting edges
    • B23C2210/207Number of cutting edges eight

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Milling Processes (AREA)

Abstract

PURPOSE:To secure an end mill suitable for finish-cutting of high hardness materials in addition to ease of manufacture by curving each of polygonal sides of the end mill, whose axial perpendicular section is formed into a polygon of more than a triangle, and a ridge, made by each of the apexes in the axial direction, forming a cutting edge being inscribed to a virtual cylinder, into a recess form. CONSTITUTION:A cutting edge twisted by a ridge 12 being produced in the axial direction by each apex of a polygon of more than a triangle in an axial perpendicular section, for example, a regular hexagon, is formed in the peripheral surface of a tool body 11, and each side is curved into a recess or projection form. Then, a land, forming a circular form concentric with the center of the polygon or a flank slightly in the rotational direction, is installed in the cutting edge part that each ridge of the section polygons produces, and a sintered hard alloy that applied coating to a tool material is used. Thus, wear of the cutting edge and reduction in chipping both are lessened and, what is more, even in case of a high hardness workpiece, cutting is made possible at a feed rate of several times over the conventional end mill, thus an excellent finished surface can be secured.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、外周にねじれを有する複数の切れ刃が形成
された高硬度材切削用のエンドミルに関するものである
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an end mill for cutting high-hardness materials having a plurality of twisted cutting edges formed on the outer periphery.

〔従来の技術〕[Conventional technology]

従来の、フライス盤などの工作機械を用いて、鋼材をは
じめ一般材料を切削するこの種の転削工具としては、第
2図に示すエンドミルがある。これらは一般には仮想円
筒上に配置するねじれ角と正のすくい角をもつシャープ
な切れ刃と、それに続く大きな刃溝14を有し、そのた
め被剛材への切り込みが容易で、かつ切り屑の排出性が
よく、きわめて作業性の優れるものである。ここで、切
れ刃の方形は被剛材の性質に合わせて角度を適宜設定し
て最適形状で使用することができる。たとえば硬さが高
くて被切削性が劣る材料に対しては、シャープな切れ刃
では損耗が激しいうえ、切削中のチッピングが生じやす
い。そのため、すくい角や逃げ角を小さくして切れ刃の
強度を上げ、また刃溝を洩くして工具剛性を高めて切れ
刃の損耗を軽減しチッピングを防止するなど、切れ刃諸
元を改善して用いていた。
An end mill shown in FIG. 2 is an example of this type of cutting tool for cutting general materials such as steel using a conventional machine tool such as a milling machine. These generally have a sharp cutting edge with a helix angle and a positive rake angle arranged on a virtual cylinder, followed by a large cutting groove 14, which makes it easy to cut into the rigid material and to reduce the amount of chips. It has good discharge properties and is extremely easy to work with. Here, the rectangular shape of the cutting edge can be used in an optimal shape by appropriately setting the angle according to the properties of the material to be stiffened. For example, for materials with high hardness and poor machinability, a sharp cutting edge will cause severe wear and tear and will likely cause chipping during cutting. Therefore, we have improved the cutting edge specifications by reducing the rake angle and clearance angle to increase the strength of the cutting edge, and by making the cutting groove leaky to increase tool rigidity, reducing wear and tear on the cutting edge and preventing chipping. I was using it.

エンドミルにおいては、とくに高硬度材を切削する場合
は刃数の多いほど工具寿命が長くなることが知られてい
る。したがって刃数を増すことも改善策の一つであった
。さらに被削材の硬さが高くなって切れ味が低下すると
、刃数や切れ刃諸元の改善と同時に切り込み量やその他
の切削条件を下げる方法がとられていた。
In end mills, it is known that the greater the number of teeth, the longer the tool life, especially when cutting high-hardness materials. Therefore, increasing the number of blades was one of the improvement measures. Furthermore, when the hardness of the workpiece material increases and the sharpness deteriorates, methods have been used to improve the number of teeth and cutting edge specifications while simultaneously lowering the depth of cut and other cutting conditions.

高硬度材の切削に際しては工具材料として被削材に対し
て十分な硬さと強度をもつ材料が要求されている。エン
ドミル用工具材料としてはハイス、超硬合金が一般的で
あるが高硬度材用としてはTiNなとの硬質物質をコー
ティングした超硬合金がよく用いられる。しかしこの場
合でも従来方形のエンドミルに適用すると被削材硬さH
RC55が切削できる限度があった。
When cutting high-hardness materials, tool materials are required to have sufficient hardness and strength for the workpiece material. High speed steel and cemented carbide are commonly used as tool materials for end mills, but cemented carbide coated with a hard substance such as TiN is often used for high-hardness materials. However, even in this case, when applied to a conventional rectangular end mill, the work material hardness H
There was a limit to what RC55 could cut.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

高硬度材の切削加工に対する期待は多岐の分野で高まり
つつある。しかしながら、たとえば焼き入れした工具鋼
のようにHRC60にも達する高硬度材になると、すく
い角、逃げ角あるいは刃数などの切れ刃諸元を工夫しよ
うとしても、従来形状のエンドミルでは実用にそぐわぬ
値となり、また切削条件を変化させてももはや対応出来
ない。
Expectations for cutting high-hardness materials are increasing in a wide variety of fields. However, when it comes to high-hardness materials that reach HRC60, such as hardened tool steel, even if we try to improve cutting edge specifications such as rake angle, relief angle, or number of teeth, end mills with conventional shapes are not suitable for practical use. value, and it is no longer possible to respond even if the cutting conditions are changed.

そのため多くの場合は研削加工または放電加工が用いら
れたが、これらは加工速度が遅く加工能率に問題があっ
た。
For this reason, grinding or electric discharge machining is often used, but these have slow machining speeds and problems with machining efficiency.

また切削加工で用いる工具材料について言えば、超高硬
度材用としてセラミックス、CBN、ダイヤモンドなど
があるが、これらはきわめて高い硬さをもつものの比較
的もろい性質を示し、断続切削となるエンドミル加工で
は切削中にチッピングを生じやすいうえ、被加工性が悪
くて工具形状を自由に得られないため、微小な切削など
限られた用途しか利用できないという問題があった。
Regarding tool materials used in cutting, there are ceramics, CBN, diamond, etc. for ultra-hard materials, but although these have extremely high hardness, they are relatively brittle, and are not suitable for end milling, which requires interrupted cutting. In addition to being prone to chipping during cutting, the processability is poor and the tool shape cannot be obtained freely, so there is a problem that it can only be used for limited applications such as micro-cutting.

〔本発明の目的〕[Object of the present invention]

本発明は以上の欠点をなくシ、製作が容易で焼き入れ材
などの高硬度材用の仕上げ切削に適当なエンドミルを提
供しようとするものである。
The present invention aims to eliminate the above-mentioned drawbacks and provide an end mill that is easy to manufacture and suitable for finishing cutting of high hardness materials such as hardened materials.

〔問題を解決するための手段〕[Means to solve the problem]

本発明は上記の目的を達成するために、切れ刃部の軸直
角断面形状が3角形以上の多角形をなし、各頂点が軸線
方向に作る稜がねじれた切れ刃を形成したものである。
In order to achieve the above object, the present invention forms a cutting edge in which the cross-sectional shape perpendicular to the axis of the cutting edge part is a polygon of trigon or more, and the edges formed by each vertex in the axial direction are twisted.

各校が作る切れ刃の刃物角を軸直角断面内で90°〜1
30°に設定することが、この用途に合致するが、この
目的のため断面多角形の各辺は凹状に湾曲にしたもので
ある。
The cutting edge angle made by each school is 90° to 1 in the cross section perpendicular to the axis.
A setting of 30° is suitable for this purpose, and for this purpose each side of the cross-sectional polygon is curved concavely.

また切れ刃に逃げ角をなすランドを有してもよく、これ
によってもこの目的を達成できる。
Further, the cutting edge may have a land forming a relief angle, which also achieves this purpose.

なお、さらに工具材料にTiNなどの硬質物質をコーテ
ィングした超硬質合金を用いて上記の方形との相乗効果
により高硬度材の切削を可能にするという技術的手段を
講じたものである。
In addition, technical measures have been taken to use a super hard alloy coated with a hard substance such as TiN as the tool material to enable the cutting of highly hard materials due to the synergistic effect with the above-mentioned rectangular shape.

〔作  用〕[For production]

本発明と同一目的の考案として同一出願人の出願になる
実願平1−9582および特願平1−157499があ
るが本発明はこれの要部をさらに明確にしたものである
0例えば第1図で説明すると、ここでは底刃の方向で自
明のように右回転で用いる場合を例示しているが、軸直
角断面形状が8角形であって、かつ右方向のねじれ角を
有している。8角形断面の場合は外周刃の刃数は8枚刃
に相当し、第4図に示す断面図のように軸直角方向のす
くい角θr、逃げ角θCはそれぞれ−60,30″′で
あり、したがって刃物角θtは120°となる。すなわ
ちHRC60にも及ぶ高硬度材の切削に向く切れ刃強度
と工具剛性を得ることができる。さらに従来のエンドミ
ルにくらべると直径が小さい場合でも比較的刃数を多く
できる効果がある。エンドミルに不可欠のチップポケッ
トは、切れ刃を形成する稜に外接する円筒と、多角形の
各辺がなす面とで囲まれた部分で表せられるが、このよ
うに凹状に湾曲させることで切れ味の改善と、切り屑処
理の改良が可能となる。
There are U.S. Pat. To explain with a diagram, the case where the bottom blade is rotated clockwise as is self-evident is illustrated here, but the cross-sectional shape perpendicular to the axis is octagonal and has a rightward twist angle. . In the case of an octagonal cross section, the number of peripheral cutting edges corresponds to 8 teeth, and as shown in the cross-sectional view in Fig. 4, the rake angle θr and clearance angle θC in the direction perpendicular to the axis are -60 and 30'', respectively. Therefore, the cutting edge angle θt is 120°.In other words, it is possible to obtain cutting edge strength and tool rigidity suitable for cutting high-hardness materials as high as HRC 60.Furthermore, compared to conventional end mills, even when the diameter is small, the cutting edge is relatively small. This has the effect of increasing the number of chip pockets.The chip pocket, which is essential for end mills, is represented by the part surrounded by the cylinder circumscribing the edge that forms the cutting edge and the faces formed by each side of the polygon. By curving it into a concave shape, it is possible to improve sharpness and chip disposal.

高硬度材に対しては刃数を、すなわち多角形の角数を多
くするのが適当であるが、とくにエンドミルの直径が大
きくなると必然的に多くすべきである。しかし8角形を
超える多角形になると各辺が作る頂角が刃物角として作
用するには大きくなり過ぎるため、第4図に示すように
、各辺を凹状に湾曲させることが効果を顕す、また6角
形以内の多角形になると各辺を湾曲することにより、刃
物角が小さくなり過ぎるため、第5図に示すように逃げ
角をなすランド15を設けることで所要の刃物角90°
〜130°を得ることができ、さらにランドを有してい
ることにより、再研摩が容易である。
For high-hardness materials, it is appropriate to increase the number of blades, that is, the number of corners of the polygon, but it is necessary to increase the number of teeth, especially when the diameter of the end mill becomes large. However, when the polygon exceeds an octagon, the apex angle formed by each side becomes too large to act as a knife angle, so it is effective to curve each side concavely, as shown in Figure 4. If the polygon is less than a hexagon, each side will be curved and the blade angle will become too small. Therefore, by providing a land 15 that forms a relief angle as shown in Fig. 5, the required blade angle of 90° can be achieved.
~130° can be obtained, and further, by having a land, repolishing is easy.

なお湾曲形状する研削方法としては砥石形状を曲面にす
ることで容易にでき、また各辺の凹面をトロコイド型曲
線のような形状にすることも可能である。
Note that the grinding method for forming a curved shape can be easily achieved by making the grinding wheel have a curved surface, and it is also possible to make the concave surface on each side into a shape like a trochoidal curve.

工具材料に関してはコーティングを施した超硬台金を用
いて方形との相乗効果により高硬度材の切削を可能にし
た。大きな負のすくい角をもつ方形のため、切削時に生
じるコーティングにとって最も好ましくない現象である
剥離を防止する作用がある。
As for the tool material, a coated carbide base metal was used, and the synergistic effect with the square shape made it possible to cut high-hardness materials. Due to its rectangular shape with a large negative rake angle, it has the effect of preventing peeling, which is the most undesirable phenomenon for coatings that occurs during cutting.

〔実施例〕〔Example〕

第1図は正8角形の各辺を凹状にした本発明の一実施例
である。ここでは右回転で用いる場合を示しているが、
工具本体11の外周部には、軸直角断面が正8角形の各
頂点が軸線方向に作る稜12が右ねじれ角30″で切れ
刃を形成している。
FIG. 1 shows an embodiment of the present invention in which each side of a regular octagon is concave. Here, the case where it is used with clockwise rotation is shown,
On the outer periphery of the tool body 11, a ridge 12 formed in the axial direction by each vertex of a regular octagon with a cross section perpendicular to the axis forms a cutting edge with a right-handed helix angle of 30''.

工具本体の端面に配置した2枚の底刃13はラジアル方
向に一20°、アキシャル方向には−5゜のすくい角を
有している。工具寸法は直径8閣、刃長20m、全長6
0閣、工具材料は超硬合金とTiNコーティングを施し
た超硬合金である。この本発明品を同じ寸法の第2図に
示す超硬合金製およびコーティング超硬合金製ソリッド
エンドミルと、硬さHRC62に調質した冷間金型用合
金鋼の切削により比較した。ここで切り込みはラジアル
方向にO,1mとし乾式切削を行った。その結果を第6
図〜第7図に示すが、耐久性において従来のエンドミル
の3倍以上、切削仕上げ面粗さにおいても明かに本発明
のエンドミルが優れた成績を示している。すなわち、従
来の超硬合金製ソリッドエンドミルでは、わずか0.2
5mの切削で切れ刃のチッピングが激しくなり、1mで
切削を中止せざるを得なかった0本発明品は従来のエン
ドミルの3倍の送り速度でもチッピングを生じることな
く6mを切削してまだ使用可能であった。
The two bottom blades 13 disposed on the end face of the tool body have a rake angle of -20° in the radial direction and -5° in the axial direction. Tool dimensions: diameter 8, blade length 20m, total length 6
The tool material is cemented carbide and TiN coated cemented carbide. This product of the present invention was compared with solid end mills made of cemented carbide and coated cemented carbide shown in FIG. 2 having the same dimensions, by cutting alloy steel for cold work molds tempered to a hardness of HRC62. Here, the depth of cut was 0.1 m in the radial direction, and dry cutting was performed. The result is the 6th
As shown in Figures 7 to 7, the end mill of the present invention clearly shows superior results in terms of durability, which is more than three times that of the conventional end mill, and also in terms of finished cut surface roughness. In other words, with conventional cemented carbide solid end mills, only 0.2
The chipping of the cutting edge became severe after 5 m of cutting, and cutting had to be stopped after 1 m. The product of this invention can cut 6 m without chipping even at three times the feed speed of conventional end mills and is still in use. It was possible.

また、切削加工面の粗さにおいても超硬合金製ソリッド
エンドミルはチッピングを生じたために約20μ■Rm
axに対し、本発明品ではコーティング超硬をもちいた
ものにおいて3μmRsax前後と良好であった。すな
わち、この方形がコーティングとよく適合することを示
している。さらに高仕上面が要求される場合には、被削
材の硬さに応じてサーメット、セラミックス等の応用が
好ましい。
In addition, regarding the roughness of the cutting surface, the cemented carbide solid end mill has a roughness of approximately 20μ■Rm due to chipping.
ax, the product of the present invention using coated carbide had a good value of around 3 μmRsax. That is, this square shape is shown to be well compatible with the coating. Furthermore, when a highly finished surface is required, it is preferable to use cermet, ceramics, etc. depending on the hardness of the workpiece material.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、軸直角断面形状が多角形
であるために切れ刃の数が多くなり、かつ切れ刃強度と
工具剛性が優れるため、切れ刃の損耗とチッピングが減
少する。さらに工具回転方向と同一のねじれ角を与える
ことにより切削時の衝撃を緩和し、その効果として高硬
度被削材においても従来のエンドミルの数倍の送り速度
でも切削が可能となったばかりでなく、優れた仕上げ面
を得ることができるようになった。
As described above, according to the present invention, since the cross-sectional shape perpendicular to the axis is polygonal, the number of cutting edges is increased, and the cutting edge strength and tool rigidity are excellent, thereby reducing wear and chipping of the cutting edges. Furthermore, by providing a helix angle that is the same as the tool rotation direction, the impact during cutting is alleviated, and as a result, it is not only possible to cut high-hardness workpieces at several times the feed rate of conventional end mills. It is now possible to obtain an excellent finished surface.

このように、従来からの工具材料であるコーティング超
硬を用いた切削加工により、高硬度被削材の一般的加工
方法である研削加工や放電加工と比肩できるようになっ
たのである。
In this way, cutting using coated carbide, a conventional tool material, has become comparable to grinding and electrical discharge machining, which are common machining methods for high-hardness workpieces.

なおこの効果は、多角形の角度が多い場合は各辺を湾曲
させ、角数が少ない場合でも逃げ角をなすランドを設け
ることで刃物角が適切になり、得ることができるのであ
る。
This effect can be achieved by curving each side when the polygon has many angles, and by providing a land that forms a clearance angle even when the polygon has a small number of angles, the blade angle becomes appropriate.

【図面の簡単な説明】[Brief explanation of drawings]

第1図A、Bは本発明の一実施例を示し、A図はその正
面図、B図は側面図、第2図A、Bは従来のエンドミル
の一例を示す、A図はその正面図、B図は側面図である
。第3図A、Bは本発明の他の実施例を示す、A図はそ
の正面図、B図は側面図である。第4図は本発明になる
軸直角断面形状が各辺を凹状に湾曲させた正8角形の場
合の外周刃のすくい角と、逃げ角の説明図、第5図は正
6角形の各辺を凹状に湾曲させ、逃げ角をなすランドを
有する場合の説明図、第6図および第7図は本発明のエ
ンドミルと従来のエンドミルとの比較結果を示す説明図
である。 11・・・・・・本体   12・・・・・・切れ刃稜
13・・・・・・底刃   14・・・・・・刃溝15
・・・・・・ランド θa・・・・・・ねじれ角θr・・・・・・すくい角θ
C・・・・・・逃げ角  θt・・・・・・刃物角(A
) (A) (A)
Figures 1A and B show an embodiment of the present invention, Figure A is a front view thereof, Figure B is a side view, Figure 2A and B are an example of a conventional end mill, and Figure A is a front view thereof. , B is a side view. FIGS. 3A and 3B show another embodiment of the present invention, with FIG. 3A being a front view and FIG. 3B being a side view. Fig. 4 is an explanatory diagram of the rake angle and relief angle of the peripheral cutting edge when the cross-sectional shape perpendicular to the axis of the present invention is a regular octagon with concavely curved sides, and Fig. 5 is an explanatory diagram of each side of the regular hexagon. FIGS. 6 and 7 are explanatory diagrams showing a comparison result between the end mill of the present invention and a conventional end mill. 11... Body 12... Cutting edge ridge 13... Bottom blade 14... Blade groove 15
... Land θa ... Helix angle θr ... Rake angle θ
C... Relief angle θt... Blade angle (A
) (A) (A)

Claims (4)

【特許請求の範囲】[Claims] (1)工具本体の外周にねじれを有する複数の切れ刃が
形成され、該切れ刃部の軸直角断面形状が3角形以上の
多角形をなし、各頂点が軸線方向に作る稜が仮想円筒に
内接する切れ刃を形成する高硬度材切削用のエンドミル
であって、上記断面のの多角形の各辺が凹状に湾曲した
ことを特徴とするエンドミル。
(1) A plurality of twisted cutting edges are formed on the outer periphery of the tool body, the cross-sectional shape perpendicular to the axis of the cutting edge portion is a polygon of triangle or more, and the ridge formed by each vertex in the axial direction forms a virtual cylinder. An end mill for cutting high-hardness materials forming an inscribed cutting edge, characterized in that each side of the polygon in the cross section is curved in a concave shape.
(2)断面多角形の各辺を凸状に湾曲させたことを特徴
とする特許請求の範囲第1項記載のエンドミル。
(2) The end mill according to claim 1, wherein each side of the cross-sectional polygon is curved in a convex shape.
(3)断面多角形の各稜が作る切れ刃部分に多角形の中
心と同心の円弧状またはわずかに回転方向に対して逃げ
角をなすランドを設けたことを特徴とする特許請求の範
囲第1項ないし第2項記載のエンドミル。
(3) The cutting edge portion formed by each edge of the polygon in cross section is provided with a land having an arc shape concentric with the center of the polygon or having a slight relief angle with respect to the rotation direction. The end mill according to Items 1 and 2.
(4)工具材料にコーティングを施した超硬質合金を用
いたことを特徴とする特許請求の範囲第1項ないし第3
項記載のエンドミル。
(4) Claims 1 to 3, characterized in that the tool material is a coated cemented carbide.
End mill described in section.
JP16066190A 1990-06-19 1990-06-19 End mill Pending JPH0453616A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16066190A JPH0453616A (en) 1990-06-19 1990-06-19 End mill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16066190A JPH0453616A (en) 1990-06-19 1990-06-19 End mill

Publications (1)

Publication Number Publication Date
JPH0453616A true JPH0453616A (en) 1992-02-21

Family

ID=15719761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16066190A Pending JPH0453616A (en) 1990-06-19 1990-06-19 End mill

Country Status (1)

Country Link
JP (1) JPH0453616A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6220797B1 (en) 1998-06-18 2001-04-24 Sumitomo Metal Minning Co. Surface treated steel cutting tool
JP2012236242A (en) * 2011-05-10 2012-12-06 Nisshin Kogu Kk End mill

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6220797B1 (en) 1998-06-18 2001-04-24 Sumitomo Metal Minning Co. Surface treated steel cutting tool
JP2012236242A (en) * 2011-05-10 2012-12-06 Nisshin Kogu Kk End mill

Similar Documents

Publication Publication Date Title
US5190420A (en) Solid end mill for finishing the face or side of hard work
CN207239251U (en) A kind of slotting cutter of processing high-hardness material
EP0404298B1 (en) End mill for finishing the face or side of hard work
JP3288780B2 (en) Ball end mill
JPH10263915A (en) Cemented carbide end mill
JPH04159010A (en) End mill
JP2002273612A (en) Roughing end mill
JPH0453616A (en) End mill
JPH04289012A (en) End mill
JPH0314249Y2 (en)
JPH0453615A (en) End mill
JPH06335816A (en) Minimum diameter end mill
JP4035184B2 (en) Polygonal end mill
JP2005066701A (en) Ball end mill
JP2588580Y2 (en) Ball end mill
JPH05345212A (en) End mill
JPH04310309A (en) End mill
JPH06315817A (en) Roughing end mill
JPH0513451Y2 (en)
JPH0487718A (en) Reamer
JPH04146015A (en) Throw-away tip and end mill
JPH06277926A (en) Taper ball end mill
JPH04102715U (en) end mill
JPH0487719A (en) Drill
JP2510011Y2 (en) End mill