JPH0453269B2 - - Google Patents

Info

Publication number
JPH0453269B2
JPH0453269B2 JP19256384A JP19256384A JPH0453269B2 JP H0453269 B2 JPH0453269 B2 JP H0453269B2 JP 19256384 A JP19256384 A JP 19256384A JP 19256384 A JP19256384 A JP 19256384A JP H0453269 B2 JPH0453269 B2 JP H0453269B2
Authority
JP
Japan
Prior art keywords
limiting amplifier
circuit
level
neutrons
amplitude
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP19256384A
Other languages
Japanese (ja)
Other versions
JPS6171381A (en
Inventor
Hiroshi Tominaga
Yoshihiro Sase
Shoichi Horiuchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP19256384A priority Critical patent/JPS6171381A/en
Publication of JPS6171381A publication Critical patent/JPS6171381A/en
Publication of JPH0453269B2 publication Critical patent/JPH0453269B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、中性子とガンマ線を弁別する波形弁
別回路に係り、特にパルスの幅の相違より中性子
とガンマ線を弁別するゼロクロス法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a waveform discrimination circuit that discriminates between neutrons and gamma rays, and more particularly to a zero-crossing method that discriminates between neutrons and gamma rays based on the difference in pulse width.

有機シンチレータに中性子あるいはγ線が入射
するとシンチレーシヨン発光が起こるが、その発
光の減衰時間はガンマ線の場合数十ナノ秒である
のに対し中性子の場合は数百ナノ秒かかる。
When neutrons or gamma rays are incident on an organic scintillator, scintillation light emission occurs, but the decay time of the light emission is several tens of nanoseconds for gamma rays, while it takes several hundred nanoseconds for neutrons.

この減衰時間の違いにより中性子とガンマ線を
弁別する波形弁別回路としてゼロクロス法があ
る。これは第1図に示すようにシンチレータ1の
発光は光電子増倍管2で電気パルスに変換され、
プリアンプ3で増幅されて波形成形回路4に入
る。
The zero-cross method is a waveform discrimination circuit that distinguishes between neutrons and gamma rays based on the difference in decay time. As shown in Fig. 1, the light emitted from the scintillator 1 is converted into an electric pulse by the photomultiplier tube 2.
The signal is amplified by the preamplifier 3 and enters the waveform shaping circuit 4.

この入力パルスは第2図aに示すように減衰時
間の違いにより中性子とガンマ線ではパルス幅が
異なつている。このパルスは波形成形回路4で第
2図bに示すような正負対象なバイポーラパルス
に成形され、さらに振幅制限増幅器5により第2
図cに示すように中性子とガンマ線ではゼロレベ
ルをクロスする時間が異なる正負対象な方形波パ
ルスになる。この時間は中性子、ガンマ線各々バ
ラツキをもつており、その分布は第2図dに示す
ようにガンマ線は鋭く中性子は比較的広がつてい
る。したがつてある時間幅をもつたタイムゲート
6,7を中性子とγ線に設定し、ゼロレベルをク
ロスするタイミングを検出することにより各々の
計数を得ることができる。この方式の問題点とし
ては振幅制限増幅器5のゲインがかなり大きいた
め出力の直流レベルが回路素子のドリフトや温度
影響などにより変動し、そのため中性子およびガ
ンマ線の計数変化が生じることである。理想的に
は振幅制限増幅器5のゲインが無限大であればゼ
ロレベルをクロスする立下り時間はゼロになつて
直流レベルの変動の影響は受けないが、現実には
数ナノ秒の立下り時間を持つので直流レベルの変
動は設定されたタイムゲートに対し中性子とガン
マ線の分布がずれることになり結果として計数変
化が生じる。特に温度影響が著しく波形成形回路
4の直流レベルが±0.5mV変動しても、振幅制
限増幅器5のゲインが1000倍程度あるので500m
Vの変動となりこのままでは使用できない。
As shown in FIG. 2a, this input pulse has different pulse widths for neutrons and gamma rays due to the difference in decay time. This pulse is shaped by the waveform shaping circuit 4 into a symmetrical bipolar pulse as shown in FIG.
As shown in Figure c, neutrons and gamma rays form symmetrical square wave pulses with different times to cross the zero level. This time varies for both neutrons and gamma rays, and as shown in Figure 2d, the distribution is sharp for gamma rays and relatively spread out for neutrons. Therefore, each count can be obtained by setting time gates 6 and 7 having a certain time width for neutrons and gamma rays, and detecting the timing at which they cross the zero level. The problem with this method is that since the gain of the amplitude limiting amplifier 5 is quite large, the DC level of the output fluctuates due to drift of circuit elements, temperature effects, etc., which causes changes in the counts of neutrons and gamma rays. Ideally, if the gain of the amplitude limiting amplifier 5 were infinite, the fall time for crossing the zero level would be zero and would not be affected by fluctuations in the DC level, but in reality the fall time is only a few nanoseconds. Therefore, fluctuations in the DC level cause the distribution of neutrons and gamma rays to shift with respect to the set time gate, resulting in a change in the count. In particular, even if the DC level of the waveform shaping circuit 4 fluctuates by ±0.5 mV, the influence of temperature is particularly significant, the gain of the amplitude limiting amplifier 5 is about 1000 times, so the 500 m
V will fluctuate and it cannot be used as is.

このため従来は振幅制限増幅器5の出力を波形
成形回路4に直流負帰還をかけて安定化してい
る。第1図に示すようにRC回路で信号パルスす
なわち交流成分を除去して直流成分のみを負帰還
させて振幅制限回路5の出力直流レベルを安定化
している。しかしRC回路で完全に交流成分を除
去することは不可能で、また除去できる程度も計
数率に依存している。その上直流の比例的な負帰
還では設定値に対する平均的な偏差が必ず残存す
る。結果としては温度影響として振幅制限増幅器
5の出力直流レベルの変動は15mV/℃となり、
中性子およびガンマ線の計数値は約1%/℃の変
化が生じる。このため第1図に示すように直流レ
ベルの調整用可変抵抗器8を設けて、使用の都度
直流レベルを調整しなければならない。また通常
の室温程度の温度変化でも数%の誤差が出るの
で、連続測定を行なう場合は回路を恒温槽に入れ
て温度制御をしなければならない。
For this reason, conventionally, the output of the amplitude limiting amplifier 5 is stabilized by applying direct current negative feedback to the waveform shaping circuit 4. As shown in FIG. 1, the output DC level of the amplitude limiting circuit 5 is stabilized by removing the signal pulse, that is, the AC component, and negative feedback of only the DC component using the RC circuit. However, it is impossible to completely remove the alternating current component with an RC circuit, and the extent to which it can be removed also depends on the counting rate. Moreover, in direct current proportional negative feedback, an average deviation from the set value always remains. As a result, the fluctuation in the output DC level of the amplitude limiting amplifier 5 due to the temperature effect is 15 mV/℃,
The neutron and gamma ray counts change by about 1%/°C. Therefore, as shown in FIG. 1, a variable resistor 8 for adjusting the DC level must be provided to adjust the DC level each time it is used. Furthermore, even temperature changes of the order of normal room temperature can cause an error of several percent, so if continuous measurements are to be made, the circuit must be placed in a thermostatic oven to control the temperature.

本発明の目的は、回路素子の経時変化や周囲混
度の影響を受けることのない波形弁別回路を提供
することにある。
An object of the present invention is to provide a waveform discrimination circuit that is not affected by changes in circuit elements over time or ambient mixing.

本発明は、交流成分を完全に除去して直流成分
のみを負帰還させ、直流レベルを安定化し中性子
とガンマ線の計数の安定化を計り回路素子の経時
変化や周囲温度の影響を受けないようにしようと
いうものである。さらに詳述すると、本発明は、
振幅制限増幅器の出力信号パルスが正負対称にな
るように波形成形回路4を調整して、この出力を
積分すれば信号パルスは正負打ち消し合つて零に
なり直流成分のみが残つて積分されることから、
積分器を導入することにより直流負帰還を可能に
したものである。さらに積分動作による負帰還で
あるため直流レベルの設定値からの偏りがゼロに
なるように働く。
The present invention completely removes the AC component and negatively feeds only the DC component, stabilizes the DC level, stabilizes the count of neutrons and gamma rays, and prevents circuit elements from changing over time or being affected by ambient temperature. This is what we are trying to do. More specifically, the present invention includes:
If the waveform shaping circuit 4 is adjusted so that the output signal pulse of the amplitude limiting amplifier is symmetrical in positive and negative, and this output is integrated, the signal pulse will cancel out the positive and negative components and become zero, leaving only the DC component to be integrated. ,
By introducing an integrator, negative DC feedback is made possible. Furthermore, since it is a negative feedback based on an integral operation, it works so that deviation from the set value of the DC level becomes zero.

第3図に本発明の実施例を示す。演算増幅器9
と積分コンデンサ10で積分動作を行なう。演算
増幅器の一方の入力にはバイアス電流を流し込
み、演算増幅器9の出力を調整することにより振
幅制限増幅器5の直流レベルを可変できるように
してある。
FIG. 3 shows an embodiment of the present invention. operational amplifier 9
The integral capacitor 10 performs an integral operation. By flowing a bias current into one input of the operational amplifier and adjusting the output of the operational amplifier 9, the DC level of the amplitude limiting amplifier 5 can be varied.

したがつて、本実施例によれば、温度変化0〜
40℃に対し直流レベルの変動は±1mVになり、
中性子およびガンマ線の計数変化は無視できるほ
ど小さくなり、計数率依存性は数百kcpsまで現
れない。
Therefore, according to this embodiment, the temperature change is 0 to
The DC level fluctuation is ±1mV at 40℃.
Changes in neutron and gamma ray counts become negligible, and count rate dependence does not appear until several hundred kcps.

また本実施例によれば使用している回路素子の
経時変化にも有効であり、長期に渡つて無調整で
連続使用のできる波形弁別回路を可能にするもの
である。
Furthermore, this embodiment is effective against changes over time in the circuit elements used, and enables a waveform discrimination circuit that can be used continuously over a long period of time without adjustment.

以上説明したように、本発明によれば、回路素
子の経時変化や周囲温度の影響を受けることがな
い。
As explained above, according to the present invention, the circuit elements are not affected by aging or ambient temperature.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の波形弁別回路図、第2図は変換
されたパルス波形図、第3図は本発明の実施例を
示す回路図である。 4……波形成形回路、5……振幅制限増幅器、
9……演算増幅器。
FIG. 1 is a conventional waveform discrimination circuit diagram, FIG. 2 is a converted pulse waveform diagram, and FIG. 3 is a circuit diagram showing an embodiment of the present invention. 4... Waveform shaping circuit, 5... Amplitude limiting amplifier,
9...Operation amplifier.

Claims (1)

【特許請求の範囲】[Claims] 1 入力パルスをバイポーラパルスに成形する波
形成形回路と、前記バイポーラパルスを増幅して
正負対象な方形波にする振幅制限増幅器と、該振
幅制限増幅器の出力を前記波形成形回路へ負帰還
させる負帰還ループとを備える波形弁別回路にお
いて、上記振幅制限増幅器と上記負帰還ループと
の間に前記振幅制限増幅器の出力を積分して直流
分を取り出す積分器を挿入接続したことを特徴と
する波形弁別回路。
1. A waveform shaping circuit that shapes an input pulse into a bipolar pulse, an amplitude limiting amplifier that amplifies the bipolar pulse into a square wave with positive and negative symmetry, and negative feedback that negatively feeds back the output of the amplitude limiting amplifier to the waveform shaping circuit. A waveform discriminator circuit comprising: an integrator that integrates the output of the amplitude-limiting amplifier and extracts a DC component is inserted between the amplitude-limiting amplifier and the negative feedback loop. .
JP19256384A 1984-09-17 1984-09-17 Waveform identifying circuit Granted JPS6171381A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19256384A JPS6171381A (en) 1984-09-17 1984-09-17 Waveform identifying circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19256384A JPS6171381A (en) 1984-09-17 1984-09-17 Waveform identifying circuit

Publications (2)

Publication Number Publication Date
JPS6171381A JPS6171381A (en) 1986-04-12
JPH0453269B2 true JPH0453269B2 (en) 1992-08-26

Family

ID=16293360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19256384A Granted JPS6171381A (en) 1984-09-17 1984-09-17 Waveform identifying circuit

Country Status (1)

Country Link
JP (1) JPS6171381A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5753551B2 (en) * 2013-04-25 2015-07-22 日立アロカメディカル株式会社 Radiation measurement equipment
WO2014192321A1 (en) 2013-05-27 2014-12-04 住友重機械工業株式会社 Neutron radiation detection device and neutron capture therapy device
CN104931996B (en) * 2015-06-12 2018-06-19 西北核技术研究所 The signal condition system of Larger Dynamic fast pulse in radiation detection

Also Published As

Publication number Publication date
JPS6171381A (en) 1986-04-12

Similar Documents

Publication Publication Date Title
Alexander et al. An amplitude-insensitive system that distinguishes pulses of different shapes
US4482808A (en) Apparatus for measuring neutrons and gamma rays
DE3242784C2 (en)
US4031367A (en) Methods and apparatus for pulse height analyzer offset control
Reinhardt et al. Improvements in the threshold detector method of fast neutron dosimetry
JPH0453269B2 (en)
US3183353A (en) Gain-stabilized scintiliation detection system
RU2445648C2 (en) Method of stabilising and correcting transfer constant of scintillation detector and apparatus for realising said method
GB1450712A (en) Method and apparatus for particle length measurement
US5204631A (en) System and method for automatic thresholding of signals in the presence of Gaussian noise
US3344277A (en) Radiation monitor with background compensation
Rodda et al. A transistorized time-amplitude converter for sub-nanosecond lifetime measurements
JPH033198B2 (en)
RU2130624C1 (en) Process stabilizing energy scale of spectrometer and device for its realization
JPH0375833B2 (en)
US4001590A (en) Radiation flux measuring device
JPH03218489A (en) Pulse waveform discriminator
Petrick et al. First photoelectron timing error evaluation of a new scintillation detector model
Gupta et al. A circuit for preventing accumulation of experimental data when the nuclear reaction rate exceeds a preset value
US4224519A (en) Method of improving BeO as a thermoluminescent detector
Patzelt Improved base-line stabilization for pulse amplifiers
JPH0377473B2 (en)
JPS6125105B2 (en)
JPH0274891A (en) Scintillation detector
US5324943A (en) Method for scintillation counting and a scintillation counter with adjustable coincidence resolving time