JPH0453206A - Ferromagnetic material - Google Patents

Ferromagnetic material

Info

Publication number
JPH0453206A
JPH0453206A JP2162282A JP16228290A JPH0453206A JP H0453206 A JPH0453206 A JP H0453206A JP 2162282 A JP2162282 A JP 2162282A JP 16228290 A JP16228290 A JP 16228290A JP H0453206 A JPH0453206 A JP H0453206A
Authority
JP
Japan
Prior art keywords
site
group
ferromagnetic material
occupying
crystal structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2162282A
Other languages
Japanese (ja)
Other versions
JP2929125B2 (en
Inventor
Hisao Onishi
久男 大西
Masamichi Ipponmatsu
正道 一本松
Hiroichi Sasaki
博一 佐々木
Masaji Otoshi
大歳 正司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2162282A priority Critical patent/JP2929125B2/en
Publication of JPH0453206A publication Critical patent/JPH0453206A/en
Application granted granted Critical
Publication of JP2929125B2 publication Critical patent/JP2929125B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/0302Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity characterised by unspecified or heterogeneous hardness or specially adapted for magnetic hardness transitions
    • H01F1/0311Compounds
    • H01F1/0313Oxidic compounds
    • H01F1/0317Manganites

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Hard Magnetic Materials (AREA)
  • Soft Magnetic Materials (AREA)
  • Compounds Of Iron (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To improve magnetic characteristics by a method wherein an A-site occupying element contains a 3-A group element, and a B-site occupying element contains the transition element other than the 3A group element, and a B-site occupying element contains the transition element other than the 3A group element. CONSTITUTION:An A-site contains a 3A group element, a B-site contains the transition element other than the 3A group element, and the A-site has a defect. The A-site contains Y and Lanthanides elements at least a 3A group element selected from the groups of Ca, Sr and Ba, and alkaline earth metal, and the B-site contains at least a transition element selected from the group of Cr, Mn, Fe and Co. Also, the above-mentioned elements have the perovskite-type crystal structure indicated by the formula LaxMnO3-delta (0.85<=x<=0.96, delta is a positive infinitesimal values), a formula (La1-yEy)xMnO3-delta (E is alkaline earth metal, 0.85<=x<=0.96, 0<=y<=1, delta is a positive infinitesimal value), a formula (La1-ySry)xMnO3-delta (0.85<=x<=0.96, 0.24<=y<=0.50, delta is a positive infinitesimal value). The average ion radius of the B-site is smaller than the allowable maximum value of crystal structure of this material.

Description

【発明の詳細な説明】 「産業上の利用分野コ 本発明は、強磁性体材料に関する。[Detailed description of the invention] “Industrial Application Area The present invention relates to ferromagnetic materials.

[従来の技術と発明が解決しよ・)とする課題]G、H
,Jonker等は、ペロブスカイト型結晶構造をもつ
次の複合酸化物材料が強磁性を示すことを報告している
(Physica。
[Problems to be solved by conventional technology and invention] G, H
, Jonker et al. reported that the following composite oxide material with a perovskite crystal structure exhibits ferromagnetism (Physica).

XX1.I、707−722.1.956)。XX1. I, 707-722.1.956).

L a Cr 03 L a M n 03 L a F e Oa (L a    Ca  ) M n、 Osl、−3
1y (0,50≦y≦0.95) (La   Sr  )MnO3 1、−Y   Y (0,30≦y≦0.90) (La   Ba  )MnO8 by     y (0,50≦y≦0. 95) La (M[l   C「 )03 z   Z (0,1,0≦ Z ≦ 0.50) (La    Ba  )  (Mn   Ti  )
031−y     y        1−y   
  y(0,10≦ y ≦0. 25) ただし、同報告中の以上の強磁性体材料は、いずれもペ
ロブスカイト型結晶構造のAサイトを占める元素とBザ
イI・を占める元素との原子数が等しいものであった。
L a Cr 03 L a M n 03 L a Fe Oa (L a Ca ) M n, Osl, -3
1y (0,50≦y≦0.95) (La Sr )MnO3 1, -Y Y (0,30≦y≦0.90) (La Ba )MnO8 by y (0,50≦y≦0.95 ) La (M[l C" )03 z Z (0,1,0≦Z≦0.50) (La Ba) (Mn Ti)
031-y y 1-y
y (0,10≦y≦0.25) However, in all of the above ferromagnetic materials in the same report, the number of atoms of the element occupying the A site and the element occupying the BziI of the perovskite crystal structure is were equal.

さて、同報告によれば、磁気特性の−っである飽和磁化
の大きさは、上記強磁性体キイHのうち式(L a、 
  E  ) Mn Os  (EはCa、Sl、−y
y r又はBa)で表わされる材料の場合が最も大きく、約
屹 06 W b / m 2である。ただし、同報告
の飽和磁化測定は液体水素温度(20゜4K)で行われ
ており、室温下での値はこれより小さいものと推定され
る。しかも、約0.06 W b / m 2という飽
和磁化の大きさは、フェライト系強磁性体材料について
常温で得られている範囲的 32〜0 、34 W b
 / m 2に比べてはるかに小さく、実用的価値が低
かった。
Now, according to the same report, the magnitude of saturation magnetization, which is the magnetic property, is determined by the formula (L a,
E) MnOs (E is Ca, Sl, -y
The material represented by y r or Ba) has the largest value, which is approximately 06 W b /m 2 . However, the saturation magnetization measurement in the same report was carried out at liquid hydrogen temperature (20°4K), and the value at room temperature is estimated to be smaller than this. Moreover, the magnitude of saturation magnetization of approximately 0.06 W b / m 2 is within the range of 32 to 0,34 W b obtained for ferrite-based ferromagnetic materials at room temperature.
/ m 2 and had low practical value.

本発明の1」的は、ペロブスカイト型結晶(1η造をも
つ複合酸化物であってフェライト系材料に匹敵する優秀
な磁気特性をもった強磁性体)イ料を提1艮することに
ある。
One object of the present invention is to provide a perovskite crystal material (a composite oxide with a 1η structure and a ferromagnetic material with excellent magnetic properties comparable to ferrite materials).

[課題を解決するための手段とその作用]本発明に係る
強磁性体材料は、ペロブスカイ]・型結晶構造をもつ複
合酸化物であって、Aサイトを占める元素が3A族元素
を含み、Bサイトを占める元素が3A族元素以外の遷移
元素を含み、しかもAサイト欠陥を有する材料でありて
、飽和磁化が大きい等の優れた磁気特性をもつ0 ペロブスカイト型結晶構造をもつ複合酸化物の強磁性は
、一般にBサイトイオン−酸素−Bサイトイオンの超交
換相互作用により発現する。
[Means for Solving the Problems and Their Effects] The ferromagnetic material according to the present invention is a composite oxide having a perovskite type crystal structure, in which the elements occupying the A site include group 3A elements, and the B It is a material that contains transition elements other than group 3A elements and has A-site defects, and has excellent magnetic properties such as large saturation magnetization. Magnetism is generally expressed by superexchange interaction of B site ion-oxygen-B site ion.

そして、この相互作用の有無及びその大きさは、軌道の
重なり積分の大きさで決定されることか知られている。
It is known that the presence or absence of this interaction and its magnitude are determined by the magnitude of the orbital overlap integral.

本発明に係る」1記強磁性体材料ではAサイトの原FD
がBサイトに比べて小さく、Aサイト欠陥か生じている
。このAサイト欠陥の存在により結晶の格子定数が小さ
くなって、軌道の重なりが大きくなるものと考えられる
。Bサイトを占める原子に対してAサイトを占める原子
の数の比率が0.9Q以下になっていることが望ましい
In the ferromagnetic material 1 according to the present invention, the original FD of the A site
is smaller than the B site, indicating that the A site is defective. It is thought that the presence of this A-site defect reduces the lattice constant of the crystal and increases the overlap of orbits. It is desirable that the ratio of the number of atoms occupying the A site to the atoms occupying the B site is 0.9Q or less.

Aサイトには、3A族元素であるY若しくはランタノイ
ド又はこれらの混合物を配置できる。
Y, which is a group 3A element, a lanthanoid, or a mixture thereof can be placed at the A site.

特にLaの採用が好ましい。3A族元素の他に7 /I
/ カリ上類金属を含んでもよい。添加アルカリ土類金
属としては、Ca、Sr若しくはBa又はこれらの混合
物を採用することができる。
In particular, it is preferable to employ La. In addition to group 3A elements, 7 /I
/ May contain potassium metals. As the added alkaline earth metal, Ca, Sr, Ba, or a mixture thereof can be employed.

L aとSrとの混合物がAサイトとじて特に好ましい
。一方、Bザイ]・には、遷移元素であるC r SM
 n SF e若しくはCo又はこれらの混合物を配置
できる。中でもMnが好ましい。
A mixture of La and Sr is particularly preferred as the A site. On the other hand, C r SM, which is a transition element, is included in
n SF e or Co or a mixture thereof can be placed. Among them, Mn is preferable.

ペロブスカイト型結晶構造をもつ次の強磁性体材料の組
成が特に好ましい。ただし、各式中のδは微小な酸素欠
陥を表わす。
The following composition of ferromagnetic material having a perovskite crystal structure is particularly preferred. However, δ in each formula represents a minute oxygen defect.

LaxMnO3−δ3。LaxMnO3-δ3.

(0,85≦x≦0.96、 δは正の微小値)・・・・・・・・・・・・・・・(I
)(L a    E  )   Mn Oa、、−6
1、−y  y  X (Eはアルカリ土類金属、 0.85≦x≦屹96. 0<y<1、 δは正の微小値)・・・・・・・・・・・・・・・(n
)(L a、    S r  )   M n Os
−δt−y   y  x (0,85≦x≦0.96. 0、24≦y ≦0.50、 δは正の微小値)・・・・・・・・・・・・・・・(I
II)式(I)、(II)又は(In)のようにAサイ
トを占める元素をLa又はLaとアルカリ土類金属との
混合物とし、Bサイトを占める元素をM nとする場合
には、Bサイトに対するAサイトの原子数比すなわちこ
れら3式中のXの値を上記のように0.85以上、01
96以ドとする。Xの値かこの範囲を外れると単一相の
材料か得られなくなる。アルカリ土類金属としてSrを
添加する場合には、その添加率すなわち式(III)中
のyの値を0.24以上、0.50以下とする。yの値
がこの範囲を外れると強磁性が得られなくなる。
(0,85≦x≦0.96, δ is a positive minute value)
)(L a E ) Mn Oa,, -6
1, -y y・(n
) (L a, S r ) M n Os
−δt−y y x (0,85≦x≦0.96. 0,24≦y≦0.50, δ is a positive minute value) I
II) When the element occupying the A site is La or a mixture of La and an alkaline earth metal as in formula (I), (II) or (In), and the element occupying the B site is Mn, The atomic ratio of the A site to the B site, that is, the value of X in these three formulas, is 0.85 or more as above, 01
96 or higher. If the value of X is outside this range, a single phase material cannot be obtained. When Sr is added as an alkaline earth metal, the addition rate, ie, the value of y in formula (III), is set to be 0.24 or more and 0.50 or less. If the value of y is outside this range, ferromagnetism cannot be obtained.

結晶構造上は、Bサイトを占める元素の平均イオン半径
か当該材料ての許容最大値より小さいことが望ましい。
In terms of the crystal structure, it is desirable that the average ionic radius of the element occupying the B site is smaller than the maximum allowable value for the material.

Bサイトの平均イオン半径が小さくなると、立方晶から
の結晶歪が減って上記超交換相互作用に係るBサイトイ
オン−酸素−Bサイトイオンの角度の歪みが減少し、こ
の結果上記型なり積分の値が大きくなるものと思われる
。このことは、当該材料を大気中室温から1200℃ま
で昇温しても酸素が脱離しないことを通して確認するこ
とができる。特にAサイトを占める元素が3A族元素の
他にアルカリ土類金属を含む場合には、Bサイトを占め
る元素のイオン平均酸化数がAサイトとBサイトとの原
子数比及びアルカリ土類金属の添加量のみによ−)て決
定される材料であることが望ましい。
When the average ionic radius of the B site becomes smaller, the crystal distortion from the cubic crystal decreases, and the distortion of the angle of the B site ion-oxygen-B site ion involved in the above superexchange interaction decreases, resulting in the above-mentioned shape of the integral. It is expected that the value will increase. This can be confirmed by the fact that oxygen is not desorbed even when the material is heated from room temperature to 1200° C. in the atmosphere. In particular, when the element occupying the A site contains an alkaline earth metal in addition to the 3A group element, the ion average oxidation number of the element occupying the B site is determined by the atomic ratio between the A site and the B site and the alkaline earth metal. It is desirable that the material be determined only by the amount added.

例えばBサイトを占める元素としてMnを採3+ 用する場合には、Mn  とこれよりイオン半4+ 径の小さいMn   との2種類のイオンが同−材料中
に混在する。Aサイトを占めるLa 3+2十 の一部を例えばSr   に置換すると、材料全体の電
気的中性を保持するためにBサイトにお3+     
         4+いてMn   の数が減る一方
、Mn   が増え2+ る。つまり、Sr  の添加により、Bサイトの平均イ
オン半径が結晶構造上許容される最大の値よりも小さく
なっていくのである。さて、一 〇  イオンの脱離が生じるためには、材料全3+ 体の電気的中性を保持するようにMn   が増4+ え、Mn   が減る必要がある。ところが、前記のよ
うにSrの添加量に基づいてBサイト中3+     
4+ のM r+   とMn   とのイオン数比が決定さ
3+ れる場合には、Mn   が増え得ない。したがって、
当該材料の温度を上げても酸素脱離が生しない。
For example, when Mn is used as the element occupying the B site, two types of ions, Mn and Mn, which has an ion half radius smaller than Mn, coexist in the same material. When a part of La 3+20 occupying the A site is replaced with, for example, Sr, 3+ is added to the B site in order to maintain the electrical neutrality of the entire material.
At 4+, the number of Mn decreases, while Mn increases at 2+. In other words, the addition of Sr 2 causes the average ionic radius of the B site to become smaller than the maximum value allowed by the crystal structure. Now, in order for the desorption of 10 ions to occur, Mn must increase and Mn must decrease so as to maintain the electrical neutrality of the entire material. However, as mentioned above, based on the amount of Sr added, 3+
If the ion number ratio between M r+ and Mn of 4+ is determined, Mn cannot increase. therefore,
Oxygen desorption does not occur even if the temperature of the material is increased.

[実施例] 以下、式(La   Sr  )  Mn03−δ1−
y   y  X (0,85≦x≦0.96.0.24≦y≦O150%
 δは正の微小値)で表わされるペロブスカイト型結晶
構造をもつ強磁性体材料に関する実施例を説明する。
[Example] Hereinafter, the formula (La Sr ) Mn03-δ1-
y y X (0,85≦x≦0.96.0.24≦y≦O150%
An example of a ferromagnetic material having a perovskite crystal structure represented by δ (a positive infinitesimal value) will be described.

(実施例1) x=0.94、yxQ、31の場合。すなわち、(L 
a   S r   )   M n 00.69  
0.310.94   3−δ0まず、製造方法につい
て説明する。
(Example 1) When x=0.94, yxQ, 31. That is, (L
a S r ) M n 00.69
0.310.94 3-δ0 First, the manufacturing method will be explained.

L a  OSS r Co−M n Coa  (純
度99.99%)を出発原料とし、これらの原料を所定
の割合に配合した。ただし、含水量をプラズマ発光分析
(ICP)により補正した。めのう乳鉢中でこれを十分
に混合した後、空気中1、273 Kで15時間仮焼し
た。これを粉砕し、更に1.573 Kで48時間焼成
して上記組成の粉末を得た。この仮焼温度とその時間は
炭酸ガスをとばすのに十分であり、焼成温度とその時]
0 間は反応促進に十分であった。
L a OSS r Co-M n Coa (purity 99.99%) was used as a starting material, and these raw materials were blended at a predetermined ratio. However, the water content was corrected by plasma emission spectrometry (ICP). After thoroughly mixing the mixture in an agate mortar, it was calcined in air at 1,273 K for 15 hours. This was pulverized and further calcined at 1.573 K for 48 hours to obtain a powder having the above composition. This calcination temperature and time are sufficient to evaporate carbon dioxide gas, and the calcination temperature and time]
0 was sufficient to promote the reaction.

得られた粉末は、塩酸に溶解したうえでICPによって
各組成元素を定量し、」1記組成となっていることを確
認した。また、粉末X線回折法を用いて結晶構造の解析
を行なった。第1図に示すように、ペロブスカイト型結
晶構造のピークのみが表われており、均一相になってい
ることがわかる。
The obtained powder was dissolved in hydrochloric acid, and each compositional element was determined by ICP, and it was confirmed that the powder had the composition described in 1. In addition, the crystal structure was analyzed using powder X-ray diffraction. As shown in FIG. 1, only the peak of the perovskite crystal structure appears, indicating that it is a homogeneous phase.

振動試料法(VSM法)で測定した第2図のB−H曲線
は、磁気履歴を有する典型的な強磁性を示している。主
な磁気特性値は次のとおりである。
The B-H curve in FIG. 2 measured by the vibrating sample method (VSM method) shows typical ferromagnetism with a magnetic history. The main magnetic property values are as follows.

飽和磁化Bs=屹4707Wb/m2 残留磁化Br−屹 1.604 W b / m 2保
磁力Hc−1,79X104A/m 飽和磁化Bsの値は代表的なフェライト系強磁性体材料
であるM n −Z nフェライトの場合の約0.34
Wb/m2や、Ni−Znフェライトの場合の約0.3
2Wb/m2をしのぐ大きさである。また、残留磁化B
rが大きい。し1ま たがって、十分実用的な強磁性体材料である。
Saturation magnetization Bs = 4707 Wb/m2 Residual magnetization Br - 1.604 W b / m 2 Coercive force Hc - 1,79 x 104 A/m The value of saturation magnetization Bs is M n - which is a typical ferrite-based ferromagnetic material. Approximately 0.34 for Z n ferrite
Wb/m2 or approximately 0.3 in the case of Ni-Zn ferrite
The size exceeds 2 Wb/m2. Also, residual magnetization B
r is large. However, it is a fully practical ferromagnetic material.

熱天秤を用いて熱重量測定を行なった結果を第3図に示
す。室温から1400℃までの昇温において有意な重量
減少はなく、成分中の酸素原子の脱離が起っていないこ
とがわかる。
The results of thermogravimetric measurement using a thermobalance are shown in FIG. There was no significant weight loss when the temperature was raised from room temperature to 1400°C, indicating that no desorption of oxygen atoms in the components occurred.

上記強磁性体材料からなる粉末を永久磁石材料として用
いる場合には、磁界中で粉末成形を行なった後、この成
形体を焼結して利用に(jtすることができる。焼結後
に磁界を印加してもよい。ゴムや合成樹脂をバインダと
して粉末成形してもよい。
When using the powder made of the above-mentioned ferromagnetic material as a permanent magnet material, the powder can be compacted in a magnetic field, and then the compact can be sintered for use. Powder molding may be performed using rubber or synthetic resin as a binder.

(実施例2) x−0,94、Y=0.21の場合。すなわち、(La
   Sr   )    Mn0O,790,210
,943−60 実施例1と同様の方法で上記組成の粉末を作成した。B
−H曲線を第4図に示す。強磁性は示しているものの、
±I X 1.07A/m(7)磁界強度範囲では磁気
飽和しない。主な磁気特性値は次のとおりである。
(Example 2) When x-0.94 and Y=0.21. That is, (La
Sr) Mn0O,790,210
, 943-60 A powder having the above composition was prepared in the same manner as in Example 1. B
-H curve is shown in FIG. Although it shows ferromagnetism,
±I X 1.07A/m (7) No magnetic saturation within the magnetic field strength range. The main magnetic property values are as follows.

残留磁化Br=屹 0642 W b / m 2保磁
力He−1,77X10’ A/m実施例1に比べて残
留磁化Brが大きく減少している。また、熱重量測定の
結果、第5図に示すように若干の重量減少がみられた。
Residual magnetization Br = 屹 0642 W b / m 2 Coercive force He - 1, 77 x 10' A/m Compared to Example 1, the residual magnetization Br is greatly reduced. Further, as a result of thermogravimetric measurement, a slight decrease in weight was observed as shown in FIG.

(比較例1) x−0,94、y−0,11の場合。すなイっぢ、(L
a   Sr O,890,11)0.94Mn03−6 ’実施例]
と同様の方法で上記組成の粉末を作成した。B−H曲線
を第6図に示す。常磁性を示しており、もはや強磁性は
示さない。また、熱重量測定の結果、第7図に示すよう
に大幅な重量減少がみられた。したがって、強磁性体材
料として用いることはできない。
(Comparative Example 1) In the case of x-0,94, y-0,11. Sunai, (L
a Sr O, 890, 11) 0.94Mn03-6'Example]
A powder having the above composition was prepared in the same manner as above. The B-H curve is shown in FIG. It exhibits paramagnetism and no longer exhibits ferromagnetism. Further, as a result of thermogravimetric measurement, a significant weight reduction was observed as shown in FIG. Therefore, it cannot be used as a ferromagnetic material.

(比較例2) x−0,99、y−0,31の場合。すなイっち、(L
a   Sr   )   Mn0O,[i9  0.
31 0.99   3−60X線回折図を第8図に示
す。符号■で指し示すようにLa2O3が析出しており
、単一相にならない。したがって、強磁性体材料として
不適当である。
(Comparative Example 2) In the case of x-0,99, y-0,31. Sunaichi, (L
a Sr ) Mn0O, [i9 0.
31 0.99 3-60 The X-ray diffraction diagram is shown in FIG. As indicated by the symbol ■, La2O3 is precipitated and does not form a single phase. Therefore, it is unsuitable as a ferromagnetic material.

(比較例3) x=0.84、y=0.31の場合。すなわち、(La
   Sr   )   Mn00.6!1  0.3
1 0.84   3〜60X線回折図を第8図に示す
。符号■で指し示ずようにMn2O3がtli出してお
り、ip、−相にならない。したがって、強磁性体材料
として不適当である。
(Comparative Example 3) When x=0.84 and y=0.31. That is, (La
Sr) Mn00.6!1 0.3
1 0.84 3-60 X-ray diffraction pattern is shown in FIG. As indicated by the symbol ■, Mn2O3 emits tli and does not become ip, - phase. Therefore, it is unsuitable as a ferromagnetic material.

[発明の効果] 以上に説明したように、本発明に係る強磁性体材料は、
ペロブスカイト型結晶構造をもつ複合酸化物であって、
Aサイトを占める元素が3A族元素を含み、Bサイトを
占める元素が3A族元素以外の遷移元素を含み、しかも
Aサイト欠陥を有する材料であって、フェライト系材料
に匹敵する優秀な磁気特性をもつ。したがって、本発明
に係る強磁性体材料は、例えば磁石材料や磁気記録のた
めの材料として利用可能である。
[Effect of the invention] As explained above, the ferromagnetic material according to the present invention has the following effects:
A complex oxide with a perovskite crystal structure,
The material that occupies the A site contains a group 3A element, the element that occupies the B site contains a transition element other than the group 3A element, and has an A site defect, and has excellent magnetic properties comparable to ferrite-based materials. Motsu. Therefore, the ferromagnetic material according to the present invention can be used, for example, as a magnet material or a material for magnetic recording.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の実施例に係る強磁性体材料(La 
  Sr   )   MnOのX線0.69    
0.31  0.94     3−6回折図、 第2図は、同材料のB−H曲線を示すグラフ、第3図は
、同材料の熱重量測定結果を示すチャート、 第4図は、本発明の他の実施例に係る強磁性体材料(L
a   Sr   )   MnOの0.79  0.
21 0.94   3−δB−H曲線を示すグラフ、 第5図は、同材11の熱重量測定結果を示すチャー1−
1 第6図は、比較例に係る材料(La   Sr0.89 0.11)O,94Mno   のB −H曲線を示す
グラフ、 第7図は、同月材の熱重量測定結果を示すチャート、 第8図は、他の比較例に係る材料(LaO,69Sr 
  )   MnOのX線回折図、0.3+、0.99
   3−6 第9図は、更に他の比較例に係る材料(LaOfi’l
S’ 0.31)0.84Mno   のX線回折図で
3−δ ある。 ]5
FIG. 1 shows a ferromagnetic material (La
Sr) MnO X-ray 0.69
0.31 0.94 3-6 diffraction diagram, Figure 2 is a graph showing the B-H curve of the same material, Figure 3 is a chart showing the thermogravimetric measurement results of the same material, Figure 4 is the book Ferromagnetic material (L) according to another embodiment of the invention
a Sr ) 0.79 0. of MnO.
21 0.94 A graph showing the 3-δB-H curve.
1. Figure 6 is a graph showing the B-H curve of the material (La Sr0.89 0.11)O,94Mno according to the comparative example. Figure 7 is a chart showing the thermogravimetric measurement results of the same material. The figure shows materials related to other comparative examples (LaO, 69Sr
) X-ray diffraction diagram of MnO, 0.3+, 0.99
3-6 FIG. 9 shows materials according to still another comparative example (LaOfi'l
The X-ray diffraction diagram of S'0.31)0.84Mno is 3-δ. ]5

Claims (11)

【特許請求の範囲】[Claims] 1.ペロブスカイト型結晶構造をもつ複合酸化物であっ
て、Aサイトを占める元素が3A族元素を含み、Bサイ
トを占める元素が3A族元素以外の遷移元素を含み、し
かもAサイト欠陥を有する強磁性体材料。
1. A ferromagnetic material that is a composite oxide having a perovskite crystal structure, in which the element occupying the A site contains a group 3A element, the element occupying the B site contains a transition element other than the group 3A element, and has an A site defect. material.
2.Aサイトを占める元素がY及びランタノイドからな
る群から選ばれた少なくとも1つの3A族元素を含む請
求項1記載の強磁性体材料。
2. 2. The ferromagnetic material according to claim 1, wherein the element occupying the A site contains at least one Group 3A element selected from the group consisting of Y and lanthanoids.
3.Bサイトを占める元素がCr、Mn、Fe及びCo
からなる群から選ばれた少なくとも1つの遷移元素を含
む請求項1又は2に記載の強磁性体材料。
3. The elements occupying the B site are Cr, Mn, Fe, and Co.
3. The ferromagnetic material according to claim 1, comprising at least one transition element selected from the group consisting of:
4.Aサイトを占める元素が3A族元素の他にアルカリ
土類金属を含む請求項1〜3のいずれか1項に記載の強
磁性体材料。
4. 4. The ferromagnetic material according to claim 1, wherein the element occupying the A site contains an alkaline earth metal in addition to the Group 3A element.
5.Aサイトを占める元素が3A族元素の他にCa、S
r及びBaからなる群から選ばれた少なくとも1つのア
ルカリ土類金属を含む請求項4記載の強磁性体材料。
5. Elements occupying the A site include Ca and S in addition to group 3A elements.
5. The ferromagnetic material according to claim 4, containing at least one alkaline earth metal selected from the group consisting of r and Ba.
6.式La_xMnO_3_−_δ(0.85≦x≦0
.96、δは正の微小値)で表わされるペロブスカイト
型結晶構造をもつ強磁性体材料。
6. Formula La_xMnO_3_-_δ(0.85≦x≦0
.. 96, δ is a positive infinitesimal value) A ferromagnetic material with a perovskite crystal structure.
7.式(La_1_−_yE_y)_xMnO_3_−
_δ(Eはアルカリ土類金属、0.85≦x≦0.96
、0<y<1、δは正の微小値)で表わされるペロブス
カイト型結晶構造をもつ強磁性体材料。
7. Formula (La_1_-_yE_y)_xMnO_3_-
_δ (E is an alkaline earth metal, 0.85≦x≦0.96
, 0<y<1, δ is a positive infinitesimal value). A ferromagnetic material with a perovskite crystal structure.
8.式(La_1_−_ySr_y)_xMnO_3_
−_δ(0.85≦x≦0.96、0.24≦y≦0.
50、δは正の微小値)で表わされるペロブスカイト型
結晶構造をもつ強磁性体材料。
8. Formula (La_1_−_ySr_y)_xMnO_3_
−_δ(0.85≦x≦0.96, 0.24≦y≦0.
A ferromagnetic material with a perovskite-type crystal structure expressed by 50, where δ is a positive infinitesimal value.
9.Bサイトを占める元素の平均イオン半径が当該材料
の結晶構造上の許容最大値より小さい請求項1〜8のい
ずれか1項に記載の強磁性体材料。
9. 9. The ferromagnetic material according to claim 1, wherein the average ionic radius of the element occupying the B site is smaller than the maximum allowable value according to the crystal structure of the material.
10.大気中室温から1200℃まで昇温しても酸素が
脱離しない請求項1〜8のいずれか1項に記載の強磁性
体材料。
10. The ferromagnetic material according to any one of claims 1 to 8, wherein oxygen is not desorbed even when the temperature is increased from room temperature to 1200°C in the atmosphere.
11.Bサイトを占める元素のイオン平均酸化数がAサ
イトとBサイトとの原子数比及びアルカリ土類金属の添
加量のみによって決定される請求項5〜8のいずれか1
項に記載の強磁性体材料。
11. Any one of claims 5 to 8, wherein the ion average oxidation number of the element occupying the B site is determined only by the atomic ratio between the A site and the B site and the amount of alkaline earth metal added.
Ferromagnetic materials described in Section.
JP2162282A 1990-06-20 1990-06-20 Ferromagnetic material Expired - Lifetime JP2929125B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2162282A JP2929125B2 (en) 1990-06-20 1990-06-20 Ferromagnetic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2162282A JP2929125B2 (en) 1990-06-20 1990-06-20 Ferromagnetic material

Publications (2)

Publication Number Publication Date
JPH0453206A true JPH0453206A (en) 1992-02-20
JP2929125B2 JP2929125B2 (en) 1999-08-03

Family

ID=15751519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2162282A Expired - Lifetime JP2929125B2 (en) 1990-06-20 1990-06-20 Ferromagnetic material

Country Status (1)

Country Link
JP (1) JP2929125B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6534430B2 (en) 2000-02-28 2003-03-18 Kabushiki Kaisha Toyota Chuo Kenkyusho Material for measuring static and dynamic physical parameters
US7007553B2 (en) 2000-11-06 2006-03-07 Toyoda Koki Kabushiki Kaisha Mechanical quantity sensor element, load sensor element, acceleration sensor element, and pressure sensor element
CN114634208A (en) * 2022-04-13 2022-06-17 桂林电子科技大学 Oxide composite material and preparation method and application thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6534430B2 (en) 2000-02-28 2003-03-18 Kabushiki Kaisha Toyota Chuo Kenkyusho Material for measuring static and dynamic physical parameters
US7007553B2 (en) 2000-11-06 2006-03-07 Toyoda Koki Kabushiki Kaisha Mechanical quantity sensor element, load sensor element, acceleration sensor element, and pressure sensor element
CN114634208A (en) * 2022-04-13 2022-06-17 桂林电子科技大学 Oxide composite material and preparation method and application thereof

Also Published As

Publication number Publication date
JP2929125B2 (en) 1999-08-03

Similar Documents

Publication Publication Date Title
US9123460B2 (en) Ferrite composition for high frequency bead and chip bead comprising the same
Kang et al. Enhancement of magnetic properties in Mn–Zn substituted M-type Sr-hexaferrites
Krichene et al. Correlation between electrical and magnetic properties of polycrystalline La0. 5Ca0. 5Mn0. 98Bi0. 02O3
Litsardakis et al. Structural and magnetic properties of barium hexaferrites with Gd–Co substitution
US2677663A (en) Manganite composition
JP2000286119A (en) Ferrite
JP2001135512A (en) Ferrite magnet powder, magnet using the magnet powder and method of manufacturing both
EP1052658A1 (en) Ferrite magnet powder and magnet using said magnet powder, and method for preparing them
da Silva et al. Local iron ion distribution and magnetic properties of the perovskites La1-xSrxFeO3-γ.
JP4255068B2 (en) Oxygen ion conductor using layered cobalt oxide and fuel cell using the same
JPH0453206A (en) Ferromagnetic material
US20160322141A1 (en) Nickel-zinc ferrites and methods for preparing same using fine iron oxide and bag house dust
JP3951184B2 (en) Ferrite magnet
JP2674683B2 (en) Memory switching type magnetoresistive element
WO2002095772A1 (en) Oxide magnetic material
JP2002198212A (en) Low-loss oxide magnetic material
JP3951183B2 (en) Ferrite magnet
JP2005045167A (en) Anisotropic ferrite magnet
JPH10270229A (en) Mn-ni ferrite material
JP2004296514A (en) Ferrite magnet and its producing process
JP3257536B2 (en) Composite ferrite magnet material
JP3467329B2 (en) Manufacturing method of sintered core and sintered core
Byeon et al. Oxygen partial pressure dependent magnetic properties of manganese-zinc ferrite polycrystals
JP2004296502A (en) Ferrite magnet and its producing process
JP2004296501A (en) Ferrite magnet and its producing process