JPH045293B2 - - Google Patents

Info

Publication number
JPH045293B2
JPH045293B2 JP58206748A JP20674883A JPH045293B2 JP H045293 B2 JPH045293 B2 JP H045293B2 JP 58206748 A JP58206748 A JP 58206748A JP 20674883 A JP20674883 A JP 20674883A JP H045293 B2 JPH045293 B2 JP H045293B2
Authority
JP
Japan
Prior art keywords
fiber
magnetic
amorphous metal
magnetic field
amorphous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58206748A
Other languages
Japanese (ja)
Other versions
JPS6097717A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP20674883A priority Critical patent/JPS6097717A/en
Publication of JPS6097717A publication Critical patent/JPS6097717A/en
Publication of JPH045293B2 publication Critical patent/JPH045293B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/0302Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity characterised by unspecified or heterogeneous hardness or specially adapted for magnetic hardness transitions
    • H01F1/0304Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity characterised by unspecified or heterogeneous hardness or specially adapted for magnetic hardness transitions adapted for large Barkhausen jumps or domain wall rotations, e.g. WIEGAND or MATTEUCCI effect
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/02Generators characterised by the type of circuit or by the means used for producing pulses
    • H03K3/45Generators characterised by the type of circuit or by the means used for producing pulses by the use, as active elements, of non-linear magnetic or dielectric devices

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Measuring Magnetic Variables (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は特定の非晶質金属磁性繊維を応用して
鋭いパルスを安定に発生させるパルス発生装置に
関するものである。 従来、磁性繊維を応用したパルス発生装置とし
ては、ウイーガンドワイヤを利用したもの、およ
び正磁歪の強磁性線等を移用したものが知られて
おり、その磁性繊維はすべてコア方式で利用され
いている。 ウイーガンドワイヤはウイーガンド効果を有す
るワイヤであり、保磁力が比較的低く軟質である
コア部と保磁力が比較的高く硬質である外殻とで
構成されており、該中央コア部と外殻とに二重磁
極を有し、中央コア部の磁極は外部磁界によつて
反転し、この時ウイーガンド効果と称する作用と
してワイヤの周囲に巻回した検出コイルに出力パ
ルスを発生させるものであり、従来のウイーガン
ドワイヤを利用したパルス発生装置としては、例
えば実公昭58−9382号公報に記載された装置があ
る。また、正磁歪の磁性線に、例えば、張力を付
加し、外部磁界の変化によつて、強磁性線の磁化
を変化させ、該強磁性線の周囲に巻回した検出コ
イルに誘導電圧としてパルス電圧を発生させる装
置が、特開昭55−99823号公報に記載されている。 これら従来の装置はパルス幅が広く、またパル
ス電圧値も小さく、SN比が悪いため、なかなか
実用にまでは至つていない。また電圧検出のため
に、検出コイルが必要であり、装置が大型化する
などの欠点を有していた。 一方、コア方式を採用せずに、ひねりを加えた
磁性体が外部磁界変化によつて磁性体の両端にパ
ルス電圧を発生することはマチウシ効果として知
られている。しかしながら、この効果を発揮する
には、強いひねりを必要とするが、結晶質磁性体
では強いひねりを与えられないこと、磁壁の移動
速度が遅く、また結晶粒界の存在のため保磁力が
局所的に大きく磁壁の伝搬が円滑でないこと、非
常に大きな磁界(100エルステツド以上)を要す
ること、得らえるパルス幅が非常に広く電圧値も
低いことなどの欠点を有しているため、実用化に
結びついてはいない。 本発明者らは、このような欠点を解消し、コア
方式を採用せずに、しかも従来のようにひねり加
工によるとなく、ピーク値の高い鋭いパルスを高
感度に安定に得ることができるパルス発生装置を
提供することを目的として鋭意研究した結果、従
来の結晶質磁性体に代えて特定の非晶質金属磁性
繊維を用いると、上記の目的が達成することを見
い出し、本発明を完成した。 すなわち、本発明は、水中急冷により非晶質状
態となした大バルクハウゼン効果を有する断面の
形状が円形な非晶質金属磁性繊維と、該繊維の繊
維軸方向の磁界を正負交互に反転させる外部磁界
変化手段と、該繊維の両端からパルスを導出する
検出手段とを備えたパルス発生装置である。 本発明を図面に基づき詳述すると、第1図及び
第2図は本発明の一実施態様を示す概略図で、1
に水中急冷により非晶質金属状態となした金属磁
性繊維である。この金属磁性繊維は水中急冷によ
り得られているので、断面の形状が円形であり、
かつ大バルクハウゼン効果を有しており、その直
流BHヒステリシス曲線の第2象限の面積(この
第2象限の面積とは、第3図に示すごとく非晶質
合金の一般的なBHヒステリシス曲線において斜
線部部で示す面積をいう。)が残留磁束密度
(Br)と保磁力(Hc)との積の値、すなわち、
第3図の破線で示される矩形O−Br−A−Hcの
面積の約95%以上(概略同じものも含む。)有す
る非晶質金属磁性繊維が特に有効であり、この繊
維の直流BHヒステリシス曲線の一例を示すと第
4図のごとくである。これらの非晶質金属磁性繊
維を得るには、例えば、特開昭56−165016号公
報、特開昭57−52550号公報に記載されている液
体冷却媒を回転ドラム内に入れ、遠心力でドラム
内壁に形成させた液体層に溶融金属を噴射して冷
却固化する方法(回転液中紡糸法)によつて得る
ことができる。特にFe、Ni、Coの一種または二
種以上の金属60〜90原子%とSi、B、P、Cで示
される半金属の一種または二種以上の金属10〜40
原子%を主成分とする合金を溶融し、ノズルより
流動水中に吹出して急冷することにより得られる
実質的に非晶質の直径250ミクロン以下の繊維が
好ましい。非晶質とはX線回析において結晶の回
析を示さずハローを示す状態である。上記合金
は、Cr、Mo、Ta、W、Nb等の耐食性向上金属
元素を10原子%以下含有することができる。 2は、上記の非晶質金属磁性繊維1の周囲に設
けた外部磁界変化を非晶質金属磁性繊維1の繊維
軸方向に正負交互に反転して印加する手段であ
る。この外部磁界変化を繊維軸方向に正負交互に
印加する手段としては、例えば、第1図に示すご
とく、コイルでの交流的な電流変化で行うことが
できるし、又、第2図に示すごとく、回転板4に
2個の互い磁極を反転した永久磁石を設け、その
永久磁石の回転移動等の位置移動や磁極変化で行
うともできる。 3は上記の非晶質金属磁性繊維1の両端からパ
ルスを導出する手段であり、この導出する手段と
しては、例えば、導電性の繊維でよく、非晶質金
属磁性繊維1と一体となつたものでもよい。 本発明は、このような構成を採用することによ
り、上記の非晶質金属磁性繊維1に外部磁界変化
を繊維軸方向に正負交互に印加し、大バルクハウ
ゼン効果を誘起せしめて非晶質金属磁性繊維1の
両端からパルス電圧が発生する。例えば、Fe75
−Si10−B15(原子%)合金を1350℃で溶融し、
直径130ミクロンのノズルより600m/分で回転し
ている水中に4.5Kg/cm2の圧力で吹出し、水中急
冷して非晶質金属磁性繊維を得、その長さ10cmの
繊維に表1に示す周波数の正弦波的に変化するク
クエルステツドの磁界を印加すると、その繊維の
両端よりパルスが発生した。そのパルスを測定し
た結果は、表1のとおりであつた。
The present invention relates to a pulse generator that stably generates sharp pulses by applying specific amorphous metal magnetic fibers. Conventionally, pulse generators that utilize magnetic fibers include those that use Wiegand wires and those that utilize positive magnetostrictive ferromagnetic wires, and all of these magnetic fibers are used in the core method. I'm there. Wiegand wire is a wire that has the Wiegand effect, and is composed of a soft core with a relatively low coercive force and a hard outer shell with a relatively high coercive force. It has double magnetic poles, and the magnetic pole in the central core is reversed by an external magnetic field, which causes an effect called the Wiegand effect to generate an output pulse in the detection coil wound around the wire. An example of a pulse generating device using the Wiegand wire is the device described in Japanese Utility Model Publication No. 58-9382. In addition, by applying tension to a positive magnetostrictive magnetic wire, for example, and changing the magnetization of the ferromagnetic wire by changing the external magnetic field, a pulse is generated as an induced voltage to a detection coil wound around the ferromagnetic wire. A device for generating voltage is described in Japanese Patent Laid-Open No. 55-99823. These conventional devices have a wide pulse width, a small pulse voltage value, and a poor signal-to-noise ratio, so they have not been put into practical use. Furthermore, a detection coil is required to detect the voltage, which has the disadvantage of increasing the size of the device. On the other hand, without adopting the core method, a twisted magnetic material generates a pulse voltage across both ends of the magnetic material due to changes in the external magnetic field, which is known as the Machiushi effect. However, in order to produce this effect, a strong twist is required, but with crystalline magnetic materials, strong twist cannot be applied, the moving speed of domain walls is slow, and the coercive force is localized due to the presence of grain boundaries. It has disadvantages such as large magnetic fields and uneven domain wall propagation, the need for a very large magnetic field (over 100 oersteds), and the pulse width that can be obtained is very wide and the voltage value is low. It is not tied to The present inventors have solved these drawbacks and have developed a pulse that can stably obtain sharp pulses with high peak values with high sensitivity without using the core method or twisting process as in the past. As a result of intensive research aimed at providing a generator, we discovered that the above object can be achieved by using a specific amorphous metal magnetic fiber in place of the conventional crystalline magnetic material, and have completed the present invention. . That is, the present invention provides an amorphous metal magnetic fiber having a circular cross-sectional shape having a large Barkhausen effect, which is made into an amorphous state by quenching in water, and a magnetic field in the fiber axis direction of the fiber is alternately reversed between positive and negative. This is a pulse generating device that includes external magnetic field changing means and detecting means that derives pulses from both ends of the fiber. To explain the present invention in detail based on the drawings, FIGS. 1 and 2 are schematic diagrams showing one embodiment of the present invention.
This is a metal magnetic fiber that is made into an amorphous metal state by quenching in water. This metal magnetic fiber is obtained by quenching in water, so its cross section is circular.
It also has a large Barkhausen effect, and the area of the second quadrant of the DC BH hysteresis curve (the area of the second quadrant is the area of the general BH hysteresis curve of an amorphous alloy, as shown in Figure 3). The area indicated by the shaded area) is the product of residual magnetic flux density (Br) and coercive force (Hc), that is,
An amorphous metal magnetic fiber having approximately 95% or more of the area of the rectangle O-Br-A-Hc shown by the broken line in FIG. An example of the curve is shown in FIG. In order to obtain these amorphous metal magnetic fibers, for example, the liquid cooling medium described in JP-A-56-165016 and JP-A-57-52550 is put into a rotating drum and heated by centrifugal force. It can be obtained by a method (rotating liquid spinning method) in which molten metal is injected into a liquid layer formed on the inner wall of a drum and cooled and solidified. In particular, 60 to 90 atomic percent of one or more metals such as Fe, Ni, and Co, and 10 to 40 atom percent of one or more metalloids represented by Si, B, P, and C.
Substantially amorphous fibers with a diameter of 250 microns or less obtained by melting an alloy containing atomic percent as a main component, blowing it out from a nozzle into flowing water, and rapidly cooling it are preferred. Amorphous is a state in which X-ray diffraction shows no crystalline diffraction and a halo. The above alloy may contain 10 atomic % or less of a corrosion resistance improving metal element such as Cr, Mo, Ta, W, or Nb. Reference numeral 2 denotes a means for applying an external magnetic field provided around the amorphous metal magnetic fiber 1 while alternating positive and negative changes in the fiber axis direction of the amorphous metal magnetic fiber 1. As means for applying this external magnetic field change alternately in the fiber axis direction, for example, as shown in Fig. 1, it can be done by changing an alternating current in a coil, or as shown in Fig. 2. Alternatively, the rotating plate 4 may be provided with two permanent magnets whose magnetic poles are reversed, and the permanent magnet may be moved by positional movement such as rotational movement or by changing the magnetic pole. 3 is a means for deriving pulses from both ends of the amorphous metal magnetic fiber 1, and this deriving means may be, for example, a conductive fiber, which is integrated with the amorphous metal magnetic fiber 1. It can be anything. By employing such a configuration, the present invention applies external magnetic field changes alternately in the fiber axis direction, positive and negative, to the amorphous metal magnetic fiber 1, thereby inducing a large Barkhausen effect and thereby forming amorphous metal. A pulse voltage is generated from both ends of the magnetic fiber 1. For example, Fe75
-Si10-B15 (atomic%) alloy is melted at 1350℃,
It was blown out at a pressure of 4.5 kg/cm 2 from a nozzle with a diameter of 130 microns into water rotating at 600 m/min, and rapidly cooled in water to obtain an amorphous metal magnetic fiber, and the length of the fiber was 10 cm as shown in Table 1. When a Kuelsted magnetic field whose frequency varied sinusoidally was applied, pulses were generated from both ends of the fiber. The results of measuring the pulse were as shown in Table 1.

【表】 本発明に用いた非晶質金属磁性繊維は、特に応
力やひねりを加えなくても鋭いパルスを発生す
る。このような特異な効果は、結晶質合金又は一
般に金属ロール冷却法、スパツタ法などによつて
作られる非晶質薄帯では得られない効果であり、
水中急冷の特異的な効果である。 この水中急冷により非晶質状態となした金属磁
性繊維がひねり加工することなしに鋭いパルスを
金属磁性繊維の両端に発生させることができる理
由は、次のように考えられる。 非晶質金属材料にはロール急冷法により作製さ
れる薄帯状と、水中急冷法により作製れる繊維状
の二種類がある。この二種類の非晶質金属材料
は、特に磁歪を有する組成については、その形状
に起因するものに加えて作製されるプロセスの相
違に起因して磁気特性に関して両者の間に際立つ
た相違を示す。ロール急冷法による薄帯の断面内
での冷却過程は、そのロール接触面から自由表面
への方向であり、一方向の温度分布である。従つ
て、冷却が自由表面側に進行していくから、冷却
による応力緩和は比較的自由に進行し、応力分布
は均一にロール面側から自由表面側へと緩やか勾
配を有するのみである。この薄帯は大バルクハウ
ゼン効果を示さない。この薄帯にトロイダルアニ
ール後、引伸し処理又はひねり処理を施すことに
よつて、初めて薄帯内に張力層と圧縮力層の応力
二重層が形成され、大バルクハウゼン効果を示す
ようになる。後者のひねりを加えた薄帯は、長さ
方向に対して傾斜した磁化ベクトルをも有してい
るから、磁化反転に伴つてその両端に上記したマ
チウシ効果と称される電圧を発生する。 一方、水中急冷法により作製された金属磁性繊
維は、水中での冷却固化する融液の表面張力のた
め、その断面が円形となり、その円断面の最外周
部が最初に固化されて形状が固定され、次いで中
心に向かつて順次冷却固化される。このときの中
心部付近の冷却に伴う体積収縮力によて、外周部
には求心的な張力が作用し内周部には長さ方向の
流動による張力が作用し、その結果方向の異なる
応力による二重層が形成されていると考えられ
る。水中急冷法による金属磁性繊維は断面が円形
であり、応力二重層の存在によつて作製されたま
まの状態で大バルクハウゼン効果を示す。 さらに、上記の金属磁性繊維は、作製されたま
まの状態で(薄帯のごときひねりを必要とせず)、
その磁化反転に伴い両端に電圧を発生する上記の
マチウシ効果を示す。この効果には繊維軸に対し
て傾斜した磁化ベクトルの存在が必要であるが、
その原因は以下のように考えられる。 すなわち、水中急冷法により非晶質金属磁性繊
維の作製時に、溶融金属の噴出前の水流は層流と
考えられるが、その水流中に溶融金属を噴出する
と、溶融金属(非晶質金属磁性繊維)周辺に乱流
が発生して固化時に溶融金属(非晶質体金属磁性
属繊維)に“ねじり”に相当するひずみ応力が与
えられ、この過程で溶融金属(非晶質金属磁性繊
維)の中央部分に張力が印加された状態で溶融金
属(非晶質金属磁性繊維)の外殻部からひねりに
相当する応力が印加される応力2重層構造となる
もとの推定される。この応力分布は、例えばトロ
イダルアニール後引き伸ばしたリボンや公知のひ
ねりリボンの如き各2分の1と厚さの張力・圧縮
の2層応力分布とは全く異なつている。 本発明に用いた非晶質金属磁性繊維は大バルク
ハウゼン効果を有し、その低保磁力のため、磁界
変化に対して非常に高感度にパルス電圧を発生す
る。ウイーガンドワイヤの20〜30倍の感度を有し
ており、1エルステツド程度の微小磁界でも鋭い
電圧パルスを発生する。また、磁界変化速度にほ
とんど影響を受けず、1Hz以下の低周波での磁界
変化に対してもパルス電圧を発生する。 一般に磁壁の移動速度は外部磁界の中ある一定
のしきい値を超える部分に比例して変わる。従つ
て通常は、パルス発生も同様の外部磁界依存性を
もつことになる。しかし、本発明に用いた非晶質
金属磁性繊維金属繊維は前記の如く外部磁界依存
性が小さいという特徴を有している。さらに非晶
質金属磁性繊維を適当な条件での熱処理あるいは
線引加工を施すことによつて、磁界変化の周波数
による保磁力の変化をなくし、周波数とは無関係
にある一定磁界のところで電圧パルスを発生する
装置、即ち、外部磁界変化速度に全く依存しない
装置とすることができる。 本発明の装置は外部磁界を永久磁石にすれば、
無電源型のパルス発生装置となり、また得られる
パルスが非常に鋭いパルスのため、デイジタル処
理に最も適したパルス電圧発生装置である。 本発明の装置は、検出コイルを使用しないた
め、小型化することができ、またピーク値の高い
鋭いパルスを高感度に安定に得ることができる、
特に自動車、工業用ロボツト等の過酷な条件下で
も非常に安定なパルス出力を発生する装置であ
る。
[Table] The amorphous metal magnetic fiber used in the present invention generates sharp pulses without applying any particular stress or twist. Such a unique effect is an effect that cannot be obtained with crystalline alloys or amorphous ribbons generally made by metal roll cooling method, sputtering method, etc.
This is a unique effect of underwater rapid cooling. The reason why sharp pulses can be generated at both ends of the metal magnetic fiber without twisting the metal magnetic fiber, which has been brought into an amorphous state by quenching in water, is considered to be as follows. There are two types of amorphous metal materials: a ribbon-like material produced by a roll quenching method, and a fibrous material produced by an underwater quenching method. These two types of amorphous metal materials exhibit marked differences between them in terms of magnetic properties, due to their shapes as well as differences in the fabrication process, especially when it comes to their magnetostrictive compositions. . The cooling process within the cross section of the ribbon by the roll quenching method is from the roll contact surface to the free surface, and the temperature distribution is unidirectional. Therefore, since cooling progresses toward the free surface side, stress relaxation due to cooling progresses relatively freely, and the stress distribution is uniform and has only a gentle gradient from the roll surface side to the free surface side. This ribbon does not exhibit the large Barkhausen effect. By subjecting this ribbon to a stretching or twisting process after toroidal annealing, a stress double layer of a tension layer and a compressive layer is formed within the ribbon, and the large Barkhausen effect is exhibited. Since the latter twisted ribbon also has a magnetization vector tilted with respect to the length direction, a voltage called the above-mentioned Machiushi effect is generated at both ends of the ribbon as the magnetization is reversed. On the other hand, metal magnetic fibers produced by the underwater quenching method have a circular cross section due to the surface tension of the melt solidified by cooling in water, and the outermost part of the circular cross section is first solidified and the shape is fixed. It is then cooled and solidified sequentially toward the center. At this time, due to the volumetric contraction force associated with cooling near the center, centripetal tension acts on the outer periphery, and tension due to longitudinal flow acts on the inner periphery, resulting in stress in different directions. It is thought that a double layer is formed. The metal magnetic fiber produced by the underwater quenching method has a circular cross section and exhibits the large Barkhausen effect in its as-prepared state due to the presence of a stressed double layer. Furthermore, the above-mentioned metal magnetic fiber can be used in its as-produced state (without the need for twisting like a ribbon).
This shows the above-mentioned Machiushi effect, which generates a voltage across both ends as the magnetization reversals occur. This effect requires the presence of a magnetization vector tilted to the fiber axis;
The reason for this is thought to be as follows. In other words, when producing amorphous metal magnetic fibers by the underwater quenching method, the water flow before the molten metal is jetted out is considered to be a laminar flow, but when the molten metal is jetted into the water flow, the molten metal (amorphous metal magnetic fibers ) A turbulent flow is generated around the molten metal (amorphous metal magnetic fiber), and a strain stress equivalent to "torsion" is applied to the molten metal (amorphous metal magnetic fiber) during solidification, and in this process, the molten metal (amorphous metal magnetic fiber) is It is presumed that a stressed double layer structure is formed in which stress corresponding to twisting is applied from the outer shell of the molten metal (amorphous metal magnetic fiber) while tension is applied to the central portion. This stress distribution is completely different from the two-layer stress distribution of tension and compression each having a thickness of 1/2 and that of a ribbon stretched after toroidal annealing or a known twisted ribbon, for example. The amorphous metal magnetic fiber used in the present invention has a large Barkhausen effect, and because of its low coercive force, generates a pulse voltage with extremely high sensitivity to changes in the magnetic field. It has 20 to 30 times the sensitivity of Wiegand wire, and generates sharp voltage pulses even in a minute magnetic field of about 1 Oerstead. Furthermore, it is almost unaffected by the rate of change in the magnetic field, and generates a pulse voltage even when the magnetic field changes at a low frequency of 1 Hz or less. Generally, the moving speed of a domain wall changes in proportion to the portion of the external magnetic field that exceeds a certain threshold. Therefore, pulse generation will normally have a similar dependence on the external magnetic field. However, the amorphous metal magnetic fiber metal fiber used in the present invention is characterized by having a small dependence on external magnetic field as described above. Furthermore, by subjecting the amorphous metal magnetic fiber to heat treatment or wire drawing under appropriate conditions, changes in coercive force due to the frequency of magnetic field changes can be eliminated, and voltage pulses can be applied at a constant magnetic field regardless of frequency. ie, a device that is completely independent of the rate of change of the external magnetic field. In the device of the present invention, if the external magnetic field is a permanent magnet,
It is a pulse voltage generator most suitable for digital processing because it is a power-free pulse generator and the pulses obtained are very sharp. Since the device of the present invention does not use a detection coil, it can be miniaturized and can stably obtain sharp pulses with high peak values with high sensitivity.
This device generates extremely stable pulse output even under harsh conditions, especially in automobiles and industrial robots.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は、本発明の一実施態様を
示す概略図、第3図は、非晶質合金の一般的な
BHヒステリシス曲線を示す図、第4図は、本発
明に用いた非晶質金属磁性繊維の直流BHヒステ
リシス曲線を示す図である。 1……非晶質金属磁性繊維、2……コイル又は
永久磁石、3……導電性繊維。
1 and 2 are schematic diagrams showing one embodiment of the present invention, and FIG. 3 is a general diagram of an amorphous alloy.
FIG. 4 is a diagram showing a DC BH hysteresis curve of the amorphous metal magnetic fiber used in the present invention. 1... Amorphous metal magnetic fiber, 2... Coil or permanent magnet, 3... Conductive fiber.

Claims (1)

【特許請求の範囲】[Claims] 1 水中急冷により非晶質状態となした大バルク
ハウゼン効果を有する断面の形状が円形な非晶質
金属磁性繊維と、該繊維の繊維軸方向の磁界を正
負交互に反転させる外部磁界変化手段と、該繊維
の両端からパルスを導出する検出手段とを備えた
パルス発生装置。
1. An amorphous metal magnetic fiber having a circular cross-sectional shape and having a large Barkhausen effect that has been made into an amorphous state by quenching in water, and an external magnetic field changing means that alternately reverses the positive and negative magnetic fields in the fiber axis direction of the fiber. , and detection means for deriving pulses from both ends of the fiber.
JP20674883A 1983-11-01 1983-11-01 Pulse generator Granted JPS6097717A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20674883A JPS6097717A (en) 1983-11-01 1983-11-01 Pulse generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20674883A JPS6097717A (en) 1983-11-01 1983-11-01 Pulse generator

Publications (2)

Publication Number Publication Date
JPS6097717A JPS6097717A (en) 1985-05-31
JPH045293B2 true JPH045293B2 (en) 1992-01-31

Family

ID=16528442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20674883A Granted JPS6097717A (en) 1983-11-01 1983-11-01 Pulse generator

Country Status (1)

Country Link
JP (1) JPS6097717A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07112335B2 (en) * 1986-07-11 1995-11-29 株式会社豊田自動織機製作所 Rotation detection device in compressor
JP2007225536A (en) * 2006-02-27 2007-09-06 Nikkoshi Co Ltd Device for detecting rotary motion

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57164487A (en) * 1981-04-02 1982-10-09 Tdk Corp Bistable type magnetic element

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57164487A (en) * 1981-04-02 1982-10-09 Tdk Corp Bistable type magnetic element

Also Published As

Publication number Publication date
JPS6097717A (en) 1985-05-31

Similar Documents

Publication Publication Date Title
Ogasawara et al. Preparation and properties of amorphous wires
Vazquez et al. Magnetic bistability of amorphous wires and sensor applications
US6355361B1 (en) Fe group-based amorphous alloy ribbon and magnetic marker
Mohri et al. Large Barkhausen effect and Matteucci effect in amorphous magnetostrictive wires for pulse generator elements
JPH09148117A (en) Long-length body for electromagnetic robbery prevention device and its preparation
Yamasaki et al. Large Barkhausen discontinuities in Co‐based amorphous wires with negative magnetostriction
Mohri et al. Jitter-less pulse generator elements using amorphous bistable wires
Chen et al. Revised core-shell domain model for magnetostrictive amorphous wires
KR100227923B1 (en) Fe-b-si alloys exhibiting enhanced ac magnetic properties and handleability
JPH045293B2 (en)
Ogasawara et al. Tension annealing cold-drawn amorphous CoFeSiB wires
JPH01312488A (en) Service frequency division amorphous wire transponder for use in existence detection system
JPH03107210A (en) Pulse generating element
JP3388773B2 (en) Heat treatment method for amorphous metal wires
Atalay et al. Pulse annealing of FeSiB amorphous wires
JPS6052557A (en) Low-loss amorphous magnetic alloy
JPS63240003A (en) Fine wire of amorphous metal and manufacture thereof
JP4097748B2 (en) Fe group-based amorphous metal ribbon and magnetic marker
JPH0151540B2 (en)
JP2860914B2 (en) Manufacturing method of magnetic wire
Chen et al. AC magnetization analyses in iron-rich amorphous wires
JP2955998B2 (en) Composite magnetic wire
Humphrey Applications of amorphous wire
JPH07153639A (en) Pulse generating magnetic wire and manufacture thereof
Panina et al. Domain collapse in amorphous magnetostrictive wires