JPH0452919Y2 - - Google Patents
Info
- Publication number
- JPH0452919Y2 JPH0452919Y2 JP4276884U JP4276884U JPH0452919Y2 JP H0452919 Y2 JPH0452919 Y2 JP H0452919Y2 JP 4276884 U JP4276884 U JP 4276884U JP 4276884 U JP4276884 U JP 4276884U JP H0452919 Y2 JPH0452919 Y2 JP H0452919Y2
- Authority
- JP
- Japan
- Prior art keywords
- light
- lens
- reflective
- light receiving
- photoelectric switch
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 230000003287 optical effect Effects 0.000 claims description 7
- 230000005540 biological transmission Effects 0.000 claims description 2
- 239000011347 resin Substances 0.000 description 9
- 229920005989 resin Polymers 0.000 description 9
- 238000001514 detection method Methods 0.000 description 8
- 238000000034 method Methods 0.000 description 4
- 230000011514 reflex Effects 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
Landscapes
- Switches Operated By Changes In Physical Conditions (AREA)
- Electronic Switches (AREA)
- Mounting And Adjusting Of Optical Elements (AREA)
Description
【考案の詳細な説明】
《考案の技術分野》
本考案は投光部と受光部とを一つのケースに収
納してなる反射形光電スイツチに係り、特に投光
部および受光部のレンズの構成を改良した反射形
光電スイツチに関する。[Detailed Description of the Invention] <<Technical Field of the Invention>> The present invention relates to a reflective photoelectric switch in which a light emitting part and a light receiving part are housed in one case. This invention relates to a reflective photoelectric switch that is improved.
《従来技術とその問題点》
投光部と受光部を有する2眼式の反射形光電ス
イツチは投光部からの光が反射物体で反射され受
光部に入射することで、反射物体の検出を行い、
そして、これは反射物体との間に光を遮断する物
体が進入することで、スイツチ動作を行うもので
ある。この反射形光電スイツチにおいて、反射物
体が投光部および受光部とのある距離より至近距
離に位置するほど、パララツクスのために反射物
体による反射光のうち受光素子で受光される光量
が減少する。特にリフレツクス・リフレクタとし
て反射テープを使用するならば、第1図に示す受
光量−リフレツクス・リフレクタの距離のグラフ
に表わされている如く受光素子の検出レベルに受
光量が達しないリフレツクス・リフレクタの設定
不能距離いわゆる不感帯を生じる欠点があつた。
こまり、これは投光部と受光部の光軸を一致させ
ることができないことに原因がある。又、反射物
体から拡散反射した光を受光部が受光する場合に
も、この反射物体は投光部および受光部とのある
距離より近距離において、この距離と受光量との
関係が逆転し、受光部の検出レベルによつては第
2図に示す受光量−反射物体の距離のグラフに表
わされる如く検出不能距離いわゆる不感帯を生じ
ていた。<Prior art and its problems> A twin-lens reflective photoelectric switch that has a light emitter and a light receiver detects the reflective object by reflecting the light from the light emitter on a reflective object and entering the light receiver. conduct,
This switch operation is performed when an object that blocks light enters between the reflecting object and the reflecting object. In this reflective photoelectric switch, as the reflective object is located closer than a certain distance to the light projector and the light receiver, the amount of light received by the light receiving element out of the light reflected by the reflective object decreases due to parallax. In particular, if a reflective tape is used as a reflex reflector, the amount of light received by the reflex reflector does not reach the detection level of the light receiving element, as shown in the graph of received light amount vs. distance of the reflex reflector shown in Figure 1. This method has the disadvantage of creating a distance that cannot be set, a so-called dead zone.
This problem is caused by the inability to align the optical axes of the light projecting section and the light receiving section. Also, when the light receiving section receives light diffusely reflected from a reflective object, the relationship between this distance and the amount of received light is reversed when the reflecting object is closer than a certain distance from the light projecting section and the light receiving section. Depending on the detection level of the light receiving section, an undetectable distance, so-called dead zone, occurs as shown in the graph of the amount of received light versus the distance to the reflecting object shown in FIG.
そこで、例えば投光部と受光部との間隙を狭め
て至近距離に位置する反射物体による反射光が検
出できるようにする方法、他に投光部および受光
部のレンズの指向角を広げて、至近距離に位置す
る反射物体からの反射光が検出できるようにする
方法等が案出される。しかしながら、これらの方
法は反射物体が受光部より遠距離に位置している
場合に反射形光電スイツチの性能を犠牲にする結
果となつたり、又この反射物体が至近距離に位置
している場合でも前記欠点を十分に改善すること
ができない。つまり、反射形光電スイツチの動作
が正確に行えない問題を生じていた。 Therefore, for example, there is a method of narrowing the gap between the light emitting part and the light receiving part so that the reflected light from a reflective object located at a close distance can be detected, or by widening the directivity angle of the lenses of the light emitting part and the light receiving part A method or the like is devised to enable detection of reflected light from a reflective object located at a close distance. However, these methods result in sacrificing the performance of the reflective photoelectric switch when the reflective object is located far away from the light receiving part, and even when the reflective object is located at a close distance. The above drawbacks cannot be sufficiently improved. In other words, a problem has arisen in which the reflective photoelectric switch cannot operate accurately.
《考案の目的》
本考案は上記問題点に鑑みなされたもので、そ
の目的とするところはリフレツクス・リフレクタ
あるいは反射物体と反射形光電スイツチの距離が
至近距離および遠距離に拘らず、受光素子で受光
する光量の低下を防止し、リフレツクス・リフレ
クタの設定不能距離および拡散反射する反射物体
の検出不能距離いわゆる不感帯を除去するか減少
させる反射形光電スイツチを提供するにある。[Purpose of the invention] The present invention was developed in view of the above-mentioned problems, and its purpose is to make it possible for the light receiving element to It is an object of the present invention to provide a reflective photoelectric switch which prevents a decrease in the amount of received light and eliminates or reduces the unsettable distance of a reflex reflector and the undetectable distance of a reflective object that diffusely reflects, so-called dead zone.
《考案の構成と効果》
上記目的を達成するため、本考案の反射形光電
スイツチは、投光素子と、受光素子と、前記各素
子に対抗しかつ互いに隣接した位置に設けられた
投光用レンズおよび受光用レンズとからなる反射
形光電スイツチにおいて、前記各レンズの隣接部
に設けられ、前記投光用レンズを通つた出射光の
進行方向を前記受光用レンズに変化させる透過光
学素子を備えたことにより、反射物体が遠距離に
あるときには出射光は投光用レンズと受光用レン
ズとを通つて入光し、反射物体が至近距離にある
ときには出射光は投光用レンズと投受光用レンズ
の隣接部に設けられた透過光学素子と受光用レン
ズを通つて受光素子に入光することができるの
で、反射物体の不感帯が生じることがなく、反射
形光電スイツチの動作が正確に行える。<<Configuration and Effects of the Invention>> In order to achieve the above object, the reflective photoelectric switch of the present invention includes a light emitting element, a light receiving element, and a light emitting element located opposite to and adjacent to each of the elements. A reflective photoelectric switch comprising a lens and a light-receiving lens, including a transmission optical element that is provided adjacent to each of the lenses and changes the traveling direction of the emitted light passing through the light-emitting lens to the light-receiving lens. Therefore, when the reflective object is far away, the emitted light passes through the projecting lens and the receiving lens, and when the reflecting object is close, the emitted light passes through the projecting lens and the projecting/receiving lens. Since light can enter the light-receiving element through the transmitting optical element and the light-receiving lens provided adjacent to the lens, no dead zone of reflective objects occurs, and the reflective photoelectric switch can operate accurately.
《考案の実施例》
以下、本考案の実施例を図面に基づいて詳述す
る。<<Example of the invention>> Hereinafter, an example of the invention will be described in detail based on the drawings.
第3図は本考案の一実施例の反射形光電スイツ
チの原理を説明する図である。図において、1は
投光素子であり、この投光素子1から発する光を
反射物体2例えば反射テープに入射するように投
光用レンズ3およびこの反射物体2側で中央部に
光が所定角で屈折する透過光学素子のシリンドリ
カルレンズ4を有する透明な樹脂平板5が互いに
接近して配設されている。前記入射光が反射物体
2で反射し、この反射光が前記樹脂平板5を透過
した後、集光されるように受光用レンズ6が配置
されている。そしてこの受光用レンズ6で集光さ
れた光を受光する受光素子7が配置されている。
尚、前記投光素子1および受光素子7は夫々投光
用レンズ3、受光用レンズ6の光軸上に配置され
ている。即ち、それらは夫々投光用レンズ3、受
光用レンズ6の焦点に位置している。第4図は前
述に基づく構成を一つのケースに収納した反射形
光電スイツチの断面図である。 FIG. 3 is a diagram illustrating the principle of a reflective photoelectric switch according to an embodiment of the present invention. In the figure, 1 is a light projecting element, and the light emitted from the light projecting element 1 is directed at a predetermined angle to the central part of the projecting lens 3 and the reflective object 2 side so that the light emitted from the light projecting element 1 is incident on a reflective object 2, for example, a reflective tape. Transparent resin flat plates 5 each having a cylindrical lens 4, which is a transmissive optical element that refracts light, are arranged close to each other. A light-receiving lens 6 is arranged so that the incident light is reflected by the reflective object 2, and after the reflected light passes through the resin flat plate 5, it is condensed. A light-receiving element 7 is arranged to receive the light collected by the light-receiving lens 6.
Incidentally, the light projecting element 1 and the light receiving element 7 are arranged on the optical axes of the light projecting lens 3 and the light receiving lens 6, respectively. That is, they are located at the focal points of the light projecting lens 3 and the light receiving lens 6, respectively. FIG. 4 is a sectional view of a reflective photoelectric switch in which the above-mentioned structure is housed in a single case.
次に、反射形光電スイツチの動作を上述の原理
に基づいて説明する。先ず、反射物体2が反射形
光電スイツチから遠距離に位置している場合につ
いて述べると、投光素子1から発した光は投光用
レンズ3でほぼ平行光8となり、この大部分は樹
脂平板5で屈折することなく真つ直ぐに進む。続
いて、この樹脂平板5を透過した平行光9は反射
物体2に入射し、ほぼ同じ向きで反射光10とな
り、樹脂平板5を透過する。このうち、受光用レ
ンズ6側の樹脂平板5を透過した光の大部分は受
光用レンズ6で受光素子7に集光される。このと
き、この受光素子7は検出レベルに十分なる光量
を受光することができる。尚、樹脂平板5の中央
部に設けられているシリンドリカルレンズ4で屈
折して受光素子2に集光する光は殆どない。つま
り、平行な光8はシリンドリカルレンズ4で屈折
するために、受光用レンズ6で結ぶ位置が受光素
子7からずれるからである。 Next, the operation of the reflective photoelectric switch will be explained based on the above-mentioned principle. First, let's talk about the case where the reflective object 2 is located far away from the reflective photoelectric switch.The light emitted from the light projecting element 1 becomes almost parallel light 8 at the light projecting lens 3, and most of this is reflected by the resin flat plate. 5. Go straight without bending. Subsequently, the parallel light 9 transmitted through the resin flat plate 5 enters the reflective object 2, becomes reflected light 10 in substantially the same direction, and is transmitted through the resin flat plate 5. Most of the light that has passed through the flat resin plate 5 on the side of the light receiving lens 6 is focused on the light receiving element 7 by the light receiving lens 6. At this time, the light receiving element 7 can receive a sufficient amount of light for the detection level. It should be noted that almost no light is refracted by the cylindrical lens 4 provided at the center of the resin flat plate 5 and focused on the light receiving element 2 . That is, since the parallel light 8 is refracted by the cylindrical lens 4, the position where it connects with the light receiving lens 6 is shifted from the light receiving element 7.
一方、破線に示すように反射物体2が反射形光
電スイツチから至近距離に位置している場合、投
光素子1から発した光は投光レンズ3でほぼ平行
光8となり、この大部分が樹脂平板5を真つ直ぐ
に透過する。この透過光は反射物体2でほぼ平行
な光11となる。しかし、この平行な光11は反
射物体2が至近距離に位置しているが故に殆ど受
光用レンズに進まない。更に前記平行光8の一部
分はシリンドリカルレンズ4で屈折し反射物体2
に対してやや角度を持つた入射光12となる。従
つて、この光12は前記角度とほぼ同じ反射角で
反射する反射光13となり、シリンドリカルレン
ズ4でほぼ平行な光になる。そして、この平行な
光が受光用レンズ6で受光素子7に集光され、反
射物体2の検知が行われる。このとき、投光素子
1から発した光の一部分のみが受光素子7で受光
されるにも拘らず、反射物体2が至近距離に位置
しているので光の密度が高いので、受光素子7は
反射物体2の検出レベルに十分たる光量を受光す
ることができる。以上のことは、第5図に示す反
射物体の距離−反射物体からの反射光を受光した
光量のグラフからも明白である。グラフにおい
て、(I)はシリンドリカルレンズ4によつて受
光される受光量、()は投光用レンズ3および
受光用レンズ6の大部分を使用して受光される受
光量、()は前記(I)および()のグラフ
の和として得られる総合受光量を示している。つ
まり、反射物体2が反射形光電スイツチに近づく
ほど()グラフに示されている如く受光量は急
峻に減少しており、この分(I)グラフの受光量
が補う形となつている。従つて、受光素子7の受
光量は検出レベルに十分達し、不感帯が取除かれ
る。 On the other hand, when the reflective object 2 is located at a close distance from the reflective photoelectric switch as shown by the broken line, the light emitted from the light emitting element 1 becomes almost parallel light 8 at the light emitting lens 3, and most of this is made of resin. It passes straight through the flat plate 5. This transmitted light becomes substantially parallel light 11 at the reflecting object 2. However, since the reflecting object 2 is located at a close distance, this parallel light 11 hardly reaches the light receiving lens. Furthermore, a portion of the parallel light 8 is refracted by the cylindrical lens 4 and reflected by the reflecting object 2.
The incident light 12 has a slight angle with respect to the incident light 12. Therefore, this light 12 becomes reflected light 13 that is reflected at substantially the same reflection angle as the above-mentioned angle, and becomes substantially parallel light at the cylindrical lens 4. Then, this parallel light is focused on the light receiving element 7 by the light receiving lens 6, and the reflecting object 2 is detected. At this time, although only a portion of the light emitted from the light emitting element 1 is received by the light receiving element 7, the density of the light is high because the reflective object 2 is located at a close distance, so the light receiving element 7 receives the light. A sufficient amount of light can be received for the detection level of the reflective object 2. The above is also clear from the graph of the distance to the reflective object versus the amount of received light reflected from the reflective object shown in FIG. In the graph, (I) is the amount of light received by the cylindrical lens 4, () is the amount of light received using most of the light emitting lens 3 and the light receiving lens 6, and () is the amount of light received by the cylindrical lens 4. It shows the total amount of received light obtained as the sum of the graphs I) and (). In other words, as the reflective object 2 approaches the reflective photoelectric switch, the amount of received light decreases sharply as shown in graph (), and the amount of received light in graph (I) compensates for this. Therefore, the amount of light received by the light receiving element 7 sufficiently reaches the detection level, and the dead zone is removed.
又、前記シリンドリカルレンズ4は投光用レン
ズ3と受光用レンズ6にまたがつているが、これ
をいずれか一方に片寄らせてもよい。つまり、投
光用レンズ3と受光用レンズ6のいずれか一方の
みの光路を変更するように設けても上記同様の効
果が得られる。更に、これは前記受光素子7に検
出レベルにたる光量が受光されるようにプリズム
あるいは前記形状と異なる形のレンズを用いても
よい。以上のように構成された反射形光電スイツ
チは、至近距離から遠距離にわたり正確にスイツ
チ動作が行えることになる。 Further, although the cylindrical lens 4 extends over the light projecting lens 3 and the light receiving lens 6, it may be biased to either side. In other words, the same effect as described above can be obtained even if the optical path of only one of the light projecting lens 3 and the light receiving lens 6 is provided to be changed. Further, a prism or a lens having a shape different from the shape described above may be used so that the light receiving element 7 receives an amount of light corresponding to the detection level. The reflective photoelectric switch configured as described above can perform switching operations accurately over a short distance to a long distance.
第1図および第2図は従来の反射形光電スイツ
チを用いて検出した結果を表わすグラフ図、第3
図は本考案の一実施例の原理を説明する図、第4
図は第3図の原理に基づいて構成した反射形光電
スイツチの断面図、第5図は本考案の反射形光電
スイツチを用いて検出した結果を表わすグラフ図
である。
1……投光素子、2……反射物体、3……投光
用レンズ、4……シリンドカルレンズ、5……樹
脂平板、6……受光用レンズ、7……受光素子。
Figures 1 and 2 are graphs showing the results detected using a conventional reflective photoelectric switch;
Figure 4 is a diagram explaining the principle of an embodiment of the present invention.
This figure is a sectional view of a reflective photoelectric switch constructed based on the principle of FIG. 3, and FIG. 5 is a graph showing the results of detection using the reflective photoelectric switch of the present invention. 1... Light projecting element, 2... Reflective object, 3... Light projecting lens, 4... Cylindrical lens, 5... Resin flat plate, 6... Light receiving lens, 7... Light receiving element.
Claims (1)
かつ互いに隣接した位置に設けられた投光用レン
ズおよび受光用レンズとからなる反射形光電スイ
ツチにおいて、前記各レンズの隣接部に設けら
れ、前記投光用レンズを通つた出射光の進行方向
を前記受光用レンズに変化させる透過光学素子を
備えたことを特徴とする反射形光電スイツチ。 A reflective photoelectric switch comprising a light emitting element, a light receiving element, and a light emitting lens and a light receiving lens provided opposite each of the elements and adjacent to each other; . A reflective photoelectric switch comprising: a transmission optical element that changes the traveling direction of the emitted light passing through the light projecting lens to the light receiving lens.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4276884U JPS60155145U (en) | 1984-03-27 | 1984-03-27 | Reflective photoelectric switch |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4276884U JPS60155145U (en) | 1984-03-27 | 1984-03-27 | Reflective photoelectric switch |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60155145U JPS60155145U (en) | 1985-10-16 |
JPH0452919Y2 true JPH0452919Y2 (en) | 1992-12-11 |
Family
ID=30553823
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4276884U Granted JPS60155145U (en) | 1984-03-27 | 1984-03-27 | Reflective photoelectric switch |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60155145U (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021181803A1 (en) * | 2020-03-11 | 2021-09-16 | オムロン株式会社 | Multiple-optical-axis photoelectric sensor system and reflector |
-
1984
- 1984-03-27 JP JP4276884U patent/JPS60155145U/en active Granted
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021181803A1 (en) * | 2020-03-11 | 2021-09-16 | オムロン株式会社 | Multiple-optical-axis photoelectric sensor system and reflector |
Also Published As
Publication number | Publication date |
---|---|
JPS60155145U (en) | 1985-10-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0768542B2 (en) | Optical distance measuring apparatus | |
TW200306711A (en) | Optical part for two-way optical communication | |
JPH0452919Y2 (en) | ||
US6650450B1 (en) | Light transmitting and receiving device having optical member with beam splitter | |
JPS61260178A (en) | Optical system for optical object detector | |
JPH0656944U (en) | Reflective photoelectric switch | |
JPS58106413A (en) | Light reflecting sensor | |
JP2986635B2 (en) | Light emitting element, light receiving element and transmission type optical coupling device | |
JPS60146173A (en) | Reflection type photoelectric switch | |
JPS62289713A (en) | Reflection type photoelectric sensor | |
JPH0530144Y2 (en) | ||
JPH09258061A (en) | High-stability photodetecting device | |
JPS6199229A (en) | Reflection type photoelectric switch | |
JP3350826B2 (en) | Limited reflection type photoelectric sensor | |
JPS59121011A (en) | Focusing position detector | |
JP2503439B2 (en) | Photometric device | |
JPS5844777A (en) | Photo interrupter | |
JPH0520988A (en) | Photoelectric sensor | |
JPH086349Y2 (en) | Retro-reflective photoelectric switch | |
JPS5912575Y2 (en) | photodetector | |
JP2559076Y2 (en) | Reflective photo interrupter | |
JP2004063396A (en) | Regression reflecting photoelectric switch | |
JPS5758110A (en) | Optical system having focus detector | |
JPH0255325A (en) | Light source device | |
JPH0711622B2 (en) | Projection system for automatic focus detection |