JPH0452675Y2 - - Google Patents

Info

Publication number
JPH0452675Y2
JPH0452675Y2 JP7743985U JP7743985U JPH0452675Y2 JP H0452675 Y2 JPH0452675 Y2 JP H0452675Y2 JP 7743985 U JP7743985 U JP 7743985U JP 7743985 U JP7743985 U JP 7743985U JP H0452675 Y2 JPH0452675 Y2 JP H0452675Y2
Authority
JP
Japan
Prior art keywords
liquid
container
measured
amount
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7743985U
Other languages
Japanese (ja)
Other versions
JPS61193357U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP7743985U priority Critical patent/JPH0452675Y2/ja
Publication of JPS61193357U publication Critical patent/JPS61193357U/ja
Application granted granted Critical
Publication of JPH0452675Y2 publication Critical patent/JPH0452675Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Treatment Of Sludge (AREA)

Description

【考案の詳細な説明】[Detailed explanation of the idea] 【産業上の利用分野】[Industrial application field]

この考案は、例えば濃度を検出すべき汚泥等の
被測定液をサンプリングしてその液中の気泡量を
測定するための液体中の気泡量測定装置に関す
る。
This invention relates to an apparatus for measuring the amount of bubbles in a liquid, for example, for sampling a liquid to be measured such as sludge whose concentration is to be detected and measuring the amount of bubbles in the liquid.

【従来の技術】[Conventional technology]

一般に汚泥等の液体内には気泡が含まれ、この
気泡によつて前記液体の濃度計測値に誤差が生じ
るため、その正確な濃度計画には前記気泡の量を
測定する必要がある。 従来のこの種の計測手段として、例えば米国特
許第3229503号明細書に示されている温度および
圧力の変化に応じた液体の体積や重さの変化から
液体の濃度を算出する方法や、米国特許第
3680962号明細書に示されている液体の加圧前と
加圧後の光の透過量等を測定し、それにより液体
中に含まれている固形物と気泡量を算出する方法
や、特開昭47−30397号公報に示されているよう
な炭酸ガスの含有量を基準値との偏差により測定
する装置があつた。
Generally, a liquid such as sludge contains air bubbles, and these air bubbles cause an error in the measured concentration of the liquid, so it is necessary to measure the amount of air bubbles for accurate concentration planning. Conventional measuring means of this type include, for example, the method of calculating the concentration of a liquid from changes in the volume and weight of the liquid in response to changes in temperature and pressure, as shown in US Pat. No. 3,229,503, and the method disclosed in US Pat. No.
No. 3680962 describes a method of measuring the amount of light transmitted through a liquid before and after pressurization, thereby calculating the amount of solids and bubbles contained in the liquid, and There was a device that measured the carbon dioxide content based on the deviation from a standard value, as disclosed in Japanese Patent No. 1983-30397.

【考案が解決しようとする問題点】[Problem that the invention attempts to solve]

このような従来の計測手段では、何れの場合も
測定機器およびその付帯設備等が大がかりなもの
となつて構成が複雑となつてしまうためコストア
ツプ等を余儀なくされ汎用性に欠けるという問題
点と、充分な測定精度が得られないという問題点
があつた。 この考案は上記問題点を解決するためになされ
たもので、被測定液中の正確な気泡量を簡単かつ
正確に測定することができる液体中の気泡量測定
装置を得ることを目的とする。
In any case, such conventional measuring means have the problems of being large-scale measuring instruments and their ancillary equipment, and having complicated configurations, which inevitably increases costs and lacks versatility. The problem was that it was not possible to obtain accurate measurement accuracy. This invention was made in order to solve the above-mentioned problems, and the object is to obtain an apparatus for measuring the amount of bubbles in a liquid that can easily and accurately measure the amount of bubbles in a liquid to be measured.

【問題点を解決するための手段】 この考案の液体中の気泡量測定装置は、被測定
液を収容する容器の上端開口部を密閉する蓋体
と、この蓋体を貫通し前記容器内に挿入された先
端部に隔膜が取付けられ、かつ内部に液体が収容
され外部給気系統から加圧空気が導入される測定
管と、前記容器内の液圧を検出する圧力センサを
設けたものである。
[Means for Solving the Problems] The device for measuring the amount of bubbles in a liquid of this invention includes a lid that seals the upper end opening of a container containing a liquid to be measured, and a lid that penetrates the lid and enters the container. A diaphragm is attached to the inserted tip, a measuring tube is provided with a liquid stored inside and pressurized air is introduced from an external air supply system, and a pressure sensor that detects the liquid pressure in the container. be.

【作用】[Effect]

この考案においては、被測定液をサンプリング
して容器内に略充満状態に入れ、この容器の上端
開口部を蓋体で密閉して、前記容器内に上部に気
体が残存しない液充満状態とする。この状態にお
いて、前記測定管内に外部給気系統から加圧空気
を供給すると、測定管先端の隔膜が加圧空気の圧
力を受けて風船のように膨張し、間接的に容器内
の被測定液が加圧される。 このとき、加圧された容器内圧力が圧力センサ
で検出され、その検出圧力が所定圧に達した時点
から前記容器内の被測定液が平衡状態となるまで
の時間経過後に前記測定管内の液位減少量を計測
する。 その計測値によつて液体中の気泡量を簡単に算
出することができる。
In this device, a sample of the liquid to be measured is placed in a container to substantially fill the container, and the top opening of the container is sealed with a lid, so that the container is filled with liquid so that no gas remains at the top. . In this state, when pressurized air is supplied into the measurement tube from the external air supply system, the diaphragm at the tip of the measurement tube expands like a balloon under the pressure of the pressurized air, indirectly causing the liquid to be measured in the container to is pressurized. At this time, the pressure inside the pressurized container is detected by a pressure sensor, and after a period of time has elapsed from the time when the detected pressure reaches a predetermined pressure until the liquid to be measured in the container reaches an equilibrium state, the liquid in the measuring tube is Measure the amount of decrease in position. The amount of bubbles in the liquid can be easily calculated from the measured value.

【実施例】【Example】

以下、この考案の一実施例を図面に基づいて説
明する。第1図において、1は被測定液を受入れ
るための容器であり、上端が開口した有底筒状を
なしてその上端開口部には蓋体2が設けられてい
る。 この実施例において、蓋体2は容器1の上端開
口部に環状パツキン3を介してねじ4で脱着可能
に締め付けられるようになつている。 前記蓋体2の内面には、容器1の上端開口部密
閉時にその器内上部に臨ませるための膨出部5が
設けられている。 この膨出部5は図示例において球面状に形成さ
れている。 前記蓋体2には、その中心部を貫通して容器1
内に開口する測定管6が設けられている。 測定管6には液体が収容され、その上方はコン
プレツサ等の外部給気系統(図示せず)に接続さ
れ、かつ下端部には容器内の被測定液と仕切る隔
膜7を有している。 一方、容器1には、容器内の液圧を検出するた
めの圧力センサ8が設けられている。 つぎに、上記実施例の作用を説明する。まず、
蓋体2を取外して容器1内に汚泥等の被測定液を
略充満状態に導入する。 その導入後に、容器1の上端開口部を蓋体2で
密閉する。この蓋体2を閉じる時に該蓋体の膨出
部5が被測定液を押圧するため、その被測定液の
一部が容器1の上端開口部より外部に溢れ出す。 これにより、前記容器1内は被測定液が充満さ
れた状態になる。 この状態において、測定管6に外部給気系統か
ら加圧空気が供給されると、その加圧空気により
測定管6内に保持されている液体を介して隔膜7
を風船のように膨張させて、容器1内の被測定液
を加圧する。 このとき、圧力センサ8により容器1内の被測
定液の圧力が検出される。 そして、圧力センサ8による被測定液の圧力検
出値が所定圧(例えば、2〜10Kg/cm2位)に達し
たならば、その時点から容器1内の被測定液が平
衡状態となるまでの時間経過後に前記測定管6内
の液体の水位減少量を目視もしくは顕微鏡などで
水位を読みとるか、静電容量、電気抵抗、磁場な
どで間接的に計測する。 この液位減少量を容器1の容量で除算すること
により被測定液中の気泡量が正確に算出される。 すなわち、ボイルの法則により、被測定液を加
圧して縮小した気泡の体積を測定することによ
り、前記被測定液中の気泡量を計算で正確に求め
ることができる。 次に実測データで説明する。 第1図に示す容器1(内径80mmφ、高さ120mm、
有効容量573cm3)に、20℃に調整した都市下水処
理施設の嫌気性消化汚泥を空気がはいらないよう
に満たし、密閉した。 ガラス製目盛つき測定管6に色水を適量入れ、
その上部先端から窒素ガスを徐々に入れてゆく
と、圧力センサ8がゲージ圧5Kg/cm2を安定に示
す5分経過時点での水位は、もとの水位より
13.3m1だけ減つていた。 別に、圧力を段階的に変えたときの水位の減少
量を測定したところ、第3図、第4図のようにな
つた。 もとの気泡量V〔m1〕は加圧後の気泡容量
V′〔m1〕に減少水位量13.3〔m1〕を加えたものに
等しい。 V=V′+13.3 …… また、ボイルの法則より、 PV=P′V′ ここで、PまたはP′は絶対圧力(Kg/cm2)であ
つて、絶対圧力=ゲージ圧力+大気圧となり、大
気圧の単位をKg/cm2で表わすと1.0332となる。従
つて、 V′=PV/P′=1.0332×V/(5+1.0332) …… をに代入すると、Vが求まる。 V=(5+1.0332)/5×13.3 =16m1 同様に、純水に既知量の空気をシリンジ(注射
器)で加えて加圧したところ、測定管6の水位減
少量からその気泡量を求め得ることが確認され
た。 また、第2図に示されるようにこの容器1に被
測定液を導入・排出するための入口・出口管路を
設け、導入・排出を自動的に行うようにしてもよ
い。
An embodiment of this invention will be described below based on the drawings. In FIG. 1, reference numeral 1 denotes a container for receiving a liquid to be measured, which has a bottomed cylindrical shape with an open upper end, and a lid 2 is provided at the upper end opening. In this embodiment, the lid 2 is removably fastened to the upper opening of the container 1 with a screw 4 via an annular packing 3. A bulging portion 5 is provided on the inner surface of the lid 2 to expose the upper part of the interior of the container 1 when the upper end opening is sealed. This bulging portion 5 is formed into a spherical shape in the illustrated example. The container 1 is inserted through the center of the lid 2.
A measuring tube 6 opening inward is provided. The measuring tube 6 contains a liquid, is connected above to an external air supply system (not shown) such as a compressor, and has a diaphragm 7 at its lower end that separates it from the liquid to be measured in the container. On the other hand, the container 1 is provided with a pressure sensor 8 for detecting the liquid pressure within the container. Next, the operation of the above embodiment will be explained. first,
The lid 2 is removed and the liquid to be measured, such as sludge, is introduced into the container 1 to a substantially full state. After the introduction, the upper end opening of the container 1 is sealed with the lid 2. When the lid 2 is closed, the bulging portion 5 of the lid presses the liquid to be measured, so that a portion of the liquid to be measured overflows to the outside from the upper opening of the container 1. As a result, the inside of the container 1 is filled with the liquid to be measured. In this state, when pressurized air is supplied to the measurement tube 6 from the external air supply system, the pressurized air passes through the liquid held in the measurement tube 6 to the diaphragm 7.
is inflated like a balloon to pressurize the liquid to be measured in the container 1. At this time, the pressure of the liquid to be measured in the container 1 is detected by the pressure sensor 8. When the pressure value of the liquid to be measured by the pressure sensor 8 reaches a predetermined pressure (for example, 2 to 10 kg/ cm2 ), from that point until the liquid to be measured in the container 1 reaches an equilibrium state, After a period of time has elapsed, the amount of decrease in the water level of the liquid in the measuring tube 6 is measured visually, by reading the water level using a microscope, or indirectly by measuring capacitance, electric resistance, magnetic field, or the like. By dividing this liquid level decrease amount by the capacity of the container 1, the amount of bubbles in the liquid to be measured can be accurately calculated. That is, according to Boyle's law, by pressurizing the liquid to be measured and measuring the volume of the reduced bubbles, the amount of bubbles in the liquid to be measured can be calculated accurately. Next, we will explain using actual measurement data. Container 1 shown in Figure 1 (inner diameter 80mmφ, height 120mm,
An effective capacity of 573 cm 3 ) was filled with anaerobic digested sludge from a municipal sewage treatment facility adjusted to 20°C to prevent air from entering, and the container was sealed. Pour an appropriate amount of colored water into the measuring tube 6 with a glass scale,
When nitrogen gas is gradually introduced from the upper tip, the water level at the time when the pressure sensor 8 stably indicates a gauge pressure of 5 kg/cm 2 after 5 minutes has passed is lower than the original water level.
It had decreased by 13.3m1. Separately, we measured the amount of decrease in water level when the pressure was changed step by step, and the results were as shown in Figures 3 and 4. The original bubble volume V [m1] is the bubble volume after pressurization.
It is equal to V′ [m1] plus the reduced water level amount 13.3 [m1]. V=V'+13.3 ... Also, from Boyle's law, PV=P'V' Here, P or P' is absolute pressure (Kg/cm 2 ), and absolute pressure = gauge pressure + atmospheric pressure Therefore, the unit of atmospheric pressure expressed in Kg/cm 2 is 1.0332. Therefore, by substituting V'=PV/P'=1.0332×V/(5+1.0332)..., V can be found. V = (5 + 1.0332) / 5 × 13.3 = 16 m1 Similarly, when a known amount of air is added to pure water with a syringe and pressurized, the amount of bubbles can be determined from the amount of decrease in the water level in the measuring tube 6. This was confirmed. Further, as shown in FIG. 2, inlet and outlet pipes for introducing and discharging the liquid to be measured may be provided in the container 1, and the introduction and discharging may be performed automatically.

【考案の効果】[Effect of the idea]

以上、この考案によれば、汚泥等の被測定液を
サンプリングして容器内に入れ、この容器を密閉
し、この容器内に接続された測定管内に加圧空気
を導入させるだけで、前記容器に設けられた圧力
センサによる該容器内の被測定液の圧力検出値が
所定圧に達した時点から該被測定液が平衡状態に
なるまでの時間経過後における前記測定管内の液
位減少量を計測することにより、被測定液に含ま
れた気泡量を正確に算出することができる。 従つて、汚泥等の液体濃度計測時にその液体に
含まれた気泡含有量の大小による測定誤差が生じ
るのを未然に防止でき、前記液体濃度の計測精度
の向上に大きく寄与する効果が得られる。
As described above, according to this invention, by simply sampling the liquid to be measured such as sludge, placing it in a container, sealing the container, and introducing pressurized air into the measuring pipe connected to the container, The amount of decrease in the liquid level in the measuring tube after the time has elapsed from the time when the pressure detection value of the measured liquid in the container reaches a predetermined pressure by the pressure sensor installed in the measuring tube until the measured liquid reaches an equilibrium state. By measuring, it is possible to accurately calculate the amount of bubbles contained in the liquid to be measured. Therefore, when measuring the concentration of a liquid such as sludge, it is possible to prevent measurement errors due to the size of the bubble content contained in the liquid, and it is possible to obtain an effect that greatly contributes to improving the measurement accuracy of the liquid concentration.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの考案の一実施例を示す概略的な断
面構成説明図、第2図はその他の実施例を示す
図、第3図はこの考案の一実施例のゲージ圧と減
少体積の実測値を示す図、第4図は第3図のデー
タの相関図である。 図において、1は容器、2は蓋体、5は膨出
部、6は測定管、8は圧力センサ、9は入口管
路、10は出口管路である。
Fig. 1 is a schematic cross-sectional view of one embodiment of the present invention, Fig. 2 is a view showing another embodiment, Fig. 3 is a view showing the actual measured values of the gauge pressure and the reduced volume of one embodiment of the present invention, and Fig. 4 is a correlation diagram of the data in Fig. 3. In the figure, 1 is a container, 2 is a lid, 5 is a bulging portion, 6 is a measuring tube, 8 is a pressure sensor, 9 is an inlet pipe, and 10 is an outlet pipe.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 被測定液受入用の容器と、この容器に被測定液
を受入れ、排出する手段と、前記容器の上端開口
部を密閉する蓋体と、この蓋体を貫通し前記容器
内に挿入された先端部に隔膜が取付けられ、かつ
内部に液体が収容され外部給気系統から加圧空気
が導入される測定管と、前記容器に設けられて該
容器内の液圧を検出する圧力センサとを備え、こ
の圧力センサによる検出値が所定圧に達した時点
から前記容器内の被測定液が平衡状態となるまで
の時間経過後に前記測定管内の液位減少量を計測
するようにしたことを特徴とする液体中の気泡量
測定装置。
A container for receiving a liquid to be measured, a means for receiving and discharging the liquid to be measured into the container, a lid for sealing an opening at an upper end of the container, and a tip penetrating the lid and inserted into the container. A measurement pipe having a diaphragm attached to the part, a measuring pipe containing a liquid and introducing pressurized air from an external air supply system, and a pressure sensor provided in the container to detect the liquid pressure in the container. , the amount of decrease in the liquid level in the measuring tube is measured after a period of time has elapsed from the time when the detected value by the pressure sensor reaches a predetermined pressure until the liquid to be measured in the container reaches an equilibrium state. A device for measuring the amount of bubbles in liquid.
JP7743985U 1985-05-24 1985-05-24 Expired JPH0452675Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7743985U JPH0452675Y2 (en) 1985-05-24 1985-05-24

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7743985U JPH0452675Y2 (en) 1985-05-24 1985-05-24

Publications (2)

Publication Number Publication Date
JPS61193357U JPS61193357U (en) 1986-12-02
JPH0452675Y2 true JPH0452675Y2 (en) 1992-12-10

Family

ID=30620507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7743985U Expired JPH0452675Y2 (en) 1985-05-24 1985-05-24

Country Status (1)

Country Link
JP (1) JPH0452675Y2 (en)

Also Published As

Publication number Publication date
JPS61193357U (en) 1986-12-02

Similar Documents

Publication Publication Date Title
US5509294A (en) Apparatus for determining amount of gases dissolved in liquids
DK155765B (en) PROCEDURE FOR DETERMINING THE CONCENTRATION OF A SUBSTANCE IN A TEST AND APPARATUS FOR USE IN EXERCISING THE PROCEDURE
JPS62223640A (en) System for detecting leakage in liquid storage tank
EP0043229B1 (en) Method of and apparatus for measuring concentration of gas in a liquid
JPS5621036A (en) Measuring method for bubble content of liquid containing bubble and apparatus thereof
US2680060A (en) Ultramicrogasometer for determining gases in body fluids
US4649739A (en) Method of detecting leaks in liquid storage tanks
US4561291A (en) Leak detector for underground storage tanks
US4783172A (en) Respirometer
US5516489A (en) Apparatus for testing peroxide concentrations in sterilants
CN109269587B (en) Device for measuring biogas volume in laboratory and use method thereof
JPH0452675Y2 (en)
GB833913A (en) Improvements in gas flow calibrator
CN107290396A (en) Coal petrography adsorption-desorption integral resistance rate measurement apparatus
US4627281A (en) Tank gaging system
US5861554A (en) Method and apparatus for determining fill level volume of air of containers
US4000657A (en) Apparatus for measuring the apparent weight of a sludge charging a liquid
US2537668A (en) Porosimeter and method of using same
JPH01227045A (en) Detecting apparatus of gas for oil-immersed apparatus, collecting apparatus of gas in oil and detecting method of gas
CN209911370U (en) Simple and easy survey device of mud oxygen consumption rate
US3783697A (en) Method of determining small surface areas
GB976758A (en) Improvements in or relating to methods of testing gases
US3695845A (en) Apparatus and process for measuring the amount of air in gaseous mixtures of carbon dioxide and air
JP2000088843A (en) Fresh concrete air meter and air quantity measuring method
RU2629132C2 (en) Modernized device for determining average path length and effective diameter of gas molecules