JPH0452603A - Manufacture of distributed index type rubber optical fiber - Google Patents

Manufacture of distributed index type rubber optical fiber

Info

Publication number
JPH0452603A
JPH0452603A JP2161829A JP16182990A JPH0452603A JP H0452603 A JPH0452603 A JP H0452603A JP 2161829 A JP2161829 A JP 2161829A JP 16182990 A JP16182990 A JP 16182990A JP H0452603 A JPH0452603 A JP H0452603A
Authority
JP
Japan
Prior art keywords
core material
clad material
core
extruded
double pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2161829A
Other languages
Japanese (ja)
Inventor
Yoshiki Mine
美根 孝樹
Kazuhiko Seki
和彦 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nok Corp
Original Assignee
Nok Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nok Corp filed Critical Nok Corp
Priority to JP2161829A priority Critical patent/JPH0452603A/en
Publication of JPH0452603A publication Critical patent/JPH0452603A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

PURPOSE:To manufacture the distributed index rubber optical fiber continuously even when a clad material and a core material are extruded at the same time by extruding the clad material and core material from a double pipe at the same time and setting the clad material which is extruded from the double pipe only nearby the surface. CONSTITUTION:When the core material 17 is inserted into the inner pipe 15 of the double pipe 10 and the clad material 18 is inserted into the outer pipe 16 of the double pipe 10, a monomer which has a different refractive index from the core material 17 is added to the clad material 18 previously, then the clad material 18 and core material 17 are extruded from the double pipe 10 at the same time. After the core material 17 and clad material 18 are extruded from the double pipe 10 at the same time, the surface of the clad material 18 is irradiated with ultraviolet rays from the ultraviolet-ray lamp of an ultraviolet-ray irradiation device 11 to set only the surface of the clad material 18. Then the core material 17 and clad material 18 are extruded toward a coating tank 12 and taken up by a take-up device 14 through a heating furnace 13, and consequently the monomer in the clad material 18 permeates the core material 17 gradually and is diffused, thereby forming a core which varies in refractive index continuously.

Description

【発明の詳細な説明】 C産業上の利用分野〕 本発明はゴム光ファイバの製造方法に関し、特に、コア
材として軸心から表面までの屈折率分布が連続的に変化
する特性を有する屈折率分布型ゴム光ファイバの製造方
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for manufacturing a rubber optical fiber, and in particular, to a method for manufacturing a rubber optical fiber, in particular, a core material having a refractive index that has a characteristic that the refractive index distribution from the axis to the surface changes continuously. The present invention relates to a method of manufacturing a distributed rubber optical fiber.

〔従来の技術〕[Conventional technology]

一般に、屈折率分布型ゴム光ファイバはコア材の軸心近
くの一屈折率が周辺部よりも高く、軸心から表面に行く
に従って屈折率が徐々に低くなる特性を有しており、広
い伝送帯域を持つところから光通信用伝送路として採用
されている。
In general, graded index rubber optical fibers have a characteristic in which the refractive index near the axis of the core material is higher than that at the periphery, and the refractive index gradually decreases from the axis to the surface, allowing for wide transmission. It is used as a transmission line for optical communication because of its bandwidth.

この種のゴム光ファイバを製造するに際しては、従来、
特開昭57−20601号公報に記載されているように
、コア材内部のモノマを揮発させながら重合させること
により、屈折率分布特性を持たせる方法が採用されてい
る。
Conventionally, when manufacturing this type of rubber optical fiber,
As described in Japanese Unexamined Patent Publication No. 57-20601, a method is adopted in which a monomer inside the core material is polymerized while being volatilized to impart refractive index distribution characteristics.

ところが、この方法にあっては、材料が硬化しないので
、コア材、およびクラッド材を押出す途中で材料の自重
による流れが生し、コア材、およびクラッド材の二重押
出しが困難となっていた。
However, with this method, since the material does not harden, flow occurs due to the weight of the material during extrusion of the core material and cladding material, making double extrusion of the core material and cladding material difficult. Ta.

一方、コア材、およびクラッド材の二重押出しを行うた
めに、特開昭51−94941号、特開昭v4 794
0号公報、および特開昭57−177101号公報に記
載されているように、ポリマーをモノマー二こ浸透させ
てポリマー中にもモノマーを拡散させていく方法が提案
されている。
On the other hand, in order to perform double extrusion of the core material and the cladding material, Japanese Patent Application Laid-Open No. 51-94941 and Japanese Patent Application Laid-Open No. 479-4794
As described in Japanese Patent No. 0 and Japanese Patent Application Laid-Open No. 57-177101, a method has been proposed in which a polymer is infiltrated with a monomer and the monomer is diffused into the polymer.

:発明が解決しようとする課題: しかしながら、ポリマー中にモノマへを拡散させる方法
では、コア材だけを押出してその後ポリマーをモノマー
に浸透させ、その後コア材にクラット材を被覆する工程
を採用しなければならず、工程が繁雑になるとともに、
ゴム光ファイバを連続的に製造することが困難となって
いる。
:Problem to be solved by the invention: However, in the method of diffusing the monomer into the polymer, a process must be adopted in which only the core material is extruded, the polymer is then infiltrated into the monomer, and then the core material is coated with the crat material. As the process becomes more complicated,
It has become difficult to continuously manufacture rubber optical fibers.

本発明の目的は、コア材とクラッド材の二重押出しによ
ってゴム光ファイバを連続的に製造することができる屈
折率分布型ゴム光ファイバの製造方法を提供することに
ある。
An object of the present invention is to provide a method for manufacturing a gradient index rubber optical fiber, which can continuously manufacture rubber optical fibers by double extrusion of a core material and a cladding material.

〔課題を解決するための手段] 前記目的を達成するために、本発明は、コア材を二重管
の内管に挿入し、クラッド材を二重管の外管−二挿入す
るに際して、クラッド材中にコア材とは異なる屈折率を
有するモノマーを予め添加し、その後このクラッド材と
コア材を重管から同時に押出し、二重管から押出された
クラット材の表面に熱を加えて表面近傍のみを硬化させ
ることを特徴とする屈折率分布型ゴム光ファイバの製造
方法を採用したものである。
[Means for Solving the Problems] In order to achieve the above object, the present invention provides a method for inserting a core material into an inner pipe of a double pipe and inserting a clad material into an outer pipe of a double pipe. A monomer having a refractive index different from that of the core material is added into the material in advance, and then the cladding material and the core material are simultaneously extruded from a double tube, and heat is applied to the surface of the cladding material extruded from the double tube to improve the area near the surface. This method employs a method for producing a gradient index rubber optical fiber characterized by curing only the refractive index rubber optical fiber.

3作用] 前記した手段によれば、クランド材とコア材が二重管か
ら同時に押出された際に、クラッド材の表面に熱が加え
られてクラッド材の表面近傍のみが硬化されるので、ク
ラッド材に予め添加されたモノマーが徐々にコア材側に
浸透、および拡散して行き、クラッド材の自重による流
れを防止することができ、クラッド材とコア材を同時に
押出しても屈折率分布型ゴム光ファイバを連続的に製造
することが可能となる。
3 Effects] According to the above-described means, when the crund material and the core material are simultaneously extruded from the double pipe, heat is applied to the surface of the cladding material and only the vicinity of the surface of the cladding material is hardened, so that the cladding material is hardened. The monomer added to the material in advance gradually penetrates and diffuses into the core material side, preventing the cladding material from flowing due to its own weight, and even if the cladding material and the core material are extruded at the same time, it is possible to create a gradient index rubber. It becomes possible to manufacture optical fibers continuously.

〔実施例〕〔Example〕

以下、本発明の一実施例を図面に基づいて説明する。 Hereinafter, one embodiment of the present invention will be described based on the drawings.

第1図において、ゴム光ファイバの製造装置は、二重管
10、紫外線照射装置11、コーティング槽重2、加熱
炉13、巻取装置14を備えて構成されている。
In FIG. 1, a rubber optical fiber manufacturing apparatus includes a double tube 10, an ultraviolet irradiation device 11, a coating tank 2, a heating furnace 13, and a winding device 14.

前記二重管10は内管15と外管16から構成されてお
り、内管15内にコア材17が挿入され、外管16内に
クラット材18が挿入され、これらが二重管10の出口
19側から同時に押出されるようになっている。
The double pipe 10 is composed of an inner pipe 15 and an outer pipe 16. A core material 17 is inserted into the inner pipe 15, and a crat material 18 is inserted into the outer pipe 16. They are extruded simultaneously from the outlet 19 side.

コア材17、およびクラッド材18を二重管10内に挿
入するに際しては、クラッド材18中にコア17とは異
なる屈折率を有するモノマーを予め添加することとして
いる。
When inserting the core material 17 and the cladding material 18 into the double pipe 10, a monomer having a refractive index different from that of the core 17 is added to the cladding material 18 in advance.

そして、コア材17としてエチルアクリレートと2−ヒ
ドロキシエチルアクリレートをそれぞれ96対4の割合
で重合させた共重合体で屈折率1.48のものを用い、
クラッド材18としては、オクタフルオロペンチルアク
リレートとンシクロペンテニルアクリレートをそれぞれ
90対10の重合比で重合させた共重合体で、屈折率1
.40のものを用いる。
As the core material 17, a copolymer of ethyl acrylate and 2-hydroxyethyl acrylate in a ratio of 96 to 4 with a refractive index of 1.48 was used.
The cladding material 18 is a copolymer obtained by polymerizing octafluoropentyl acrylate and cyclopentenyl acrylate at a polymerization ratio of 90:10, respectively, and has a refractive index of 1.
.. 40 is used.

さらにクラッド材18に添加する七ツマ−としては、オ
クタフルオロペンチルアクリレート(屈折率−1,36
)を用い、クランド材18のモノマーの含有率を3Qp
hrとしている。
Furthermore, as the 7-mer added to the cladding material 18, octafluoropentyl acrylate (refractive index -1, 36
), the monomer content of crund material 18 was set to 3Qp.
It is hr.

そしてコア材17、およびクラッド材18を二重管10
かろ同時に押出す際には、押出し速度10 cm / 
m i n、押出し温度40゛Cで行う。
Then, the core material 17 and the cladding material 18 are attached to the double pipe 10.
When extruding at the same time, the extrusion speed is 10 cm/
Extrusion temperature is 40°C.

なお、クラッド材18のモノマーの含有率としては、第
2図に示されるように、40phr〜150phrが適
当であり、その量は押出しの条件、例えば押出し速度に
よって変ってくるが、モノマーの含有率が150phr
を越えると、モノマーの自重による流れが大きくなり、
コア材17、およびクランド材1日の同時押出しが困難
となる。
The monomer content of the clad material 18 is suitably 40 phr to 150 phr, as shown in FIG. is 150 phr
If it exceeds , the flow due to the monomer's own weight increases,
It becomes difficult to simultaneously extrude the core material 17 and the crund material in one day.

二重管10からコア材17、およびクランド材18が同
時に押出されると、コア材17の周囲にクラッド材18
が溶着された状態で出口19から押出され、クラッド材
18の表面には紫外線照射装置11の紫外線ランプから
の紫外線が照射される。
When the core material 17 and the cladding material 18 are simultaneously extruded from the double pipe 10, a cladding material 18 is formed around the core material 17.
is extruded from the outlet 19 in a welded state, and the surface of the cladding material 18 is irradiated with ultraviolet light from an ultraviolet lamp of the ultraviolet irradiation device 11.

クラッド材18に紫外線を照射させてクラ。The cladding material 18 is irradiated with ultraviolet light.

ド材18の表面からO,l mmのところまで硬化させ
るための照射条件として、波長λ=247mmにおける
照射x 2 JL/ギー= 80 mW/cff1. 
Nz中における照射時間30秒が設定されている。
The irradiation conditions for curing the hardening material 18 to a depth of 0,1 mm from the surface are irradiation x 2 JL/Gee = 80 mW/cff1. at wavelength λ = 247 mm.
The irradiation time in Nz was set to 30 seconds.

このような条件でクラッド材18の表面に紫外線が照射
されると、クランド材18の表面近傍のみが硬化される
When the surface of the cladding material 18 is irradiated with ultraviolet rays under such conditions, only the vicinity of the surface of the cladding material 18 is cured.

この後コア材17、およびクラッド材18をコーテイン
グ槽12側へ押出すとともに、加熱炉13を介して巻取
装置14で巻取ると、クラッド材18中のモノマーが徐
々にコア材17中に浸透及び拡散していくことになる。
Thereafter, the core material 17 and the cladding material 18 are extruded to the coating tank 12 side and wound up by the winding device 14 through the heating furnace 13, so that the monomer in the cladding material 18 gradually permeates into the core material 17. and will continue to spread.

紫外線照射装置11とコーテイング槽12との間の距離
は1mに設定されており、コア材17、およびクラッド
材18の拡散時間として約10分が設定されている。
The distance between the ultraviolet irradiation device 11 and the coating tank 12 is set to 1 m, and the diffusion time of the core material 17 and cladding material 18 is set to about 10 minutes.

コーテイング槽12にはEPDMのn・ヘキサン(・合
液(a度50%ンが満たされており、クラッド材18が
コーテイング槽12中を通過すると、クラット材18の
表面にコーティングが施されるようになっている。
The coating tank 12 is filled with a mixed solution of EPDM in n-hexane (50% a degree), so that when the cladding material 18 passes through the coating tank 12, the surface of the cladding material 18 is coated. It has become.

コーティング処理されたクラッド材]8は加熱炉13中
を通過して巻取装置14に巻取られる。
The coated cladding material] 8 passes through a heating furnace 13 and is wound up by a winding device 14.

加熱炉I3の温度は60°C!こ設定されており、クラ
ッド材18が加熱炉13を5秒間で通過する際に、クラ
ッド材18表面のコーテイング液が乾燥するようになっ
ている。
The temperature of heating furnace I3 is 60°C! This setting is such that when the cladding material 18 passes through the heating furnace 13 for 5 seconds, the coating liquid on the surface of the cladding material 18 dries.

そして、前記巻取装置14に巻取られたゴム光ファイバ
は屈折率計で屈折率の分布が測定される。
Then, the refractive index distribution of the rubber optical fiber wound by the winding device 14 is measured using a refractometer.

第3図には、クラッド材18中に添加するモノマーとし
て、オクタフルオロペンチルアクリレートを用いたもの
の屈折率分布特性が示されており、また、第4図には、
七ツマ−として、テトラフルオロプロピルアクリレート
(屈折率1、36 )を用いたときの屈折率分布特性が
示されている。
FIG. 3 shows the refractive index distribution characteristics when octafluoropentyl acrylate is used as the monomer added to the cladding material 18, and FIG.
The refractive index distribution characteristics are shown when tetrafluoropropyl acrylate (refractive index 1.36) is used as a hexamer.

第3図、および第4図から、モノマーとしてオクタフル
オロペンチルアクリレートを用いたものと、テトラフル
オロプロピルアクリレートを用いたものとでは屈折率の
分布特性において大差は無いことが理解される。
It is understood from FIGS. 3 and 4 that there is no significant difference in the refractive index distribution characteristics between those using octafluoropentyl acrylate and those using tetrafluoropropyl acrylate as a monomer.

〔発明の効果] 以上説明したように、本発明によれば、クラッド材中に
コア材とは異なる屈折率を有する七ツマ−を予め添加し
、コア材とクランド材を同時に押出した後クラッド材の
表面のみを硬化させるようにしたため、七ツマ−が自重
によって流れ出すことなくクラッド材中からコア材中に
徐々に浸透及び拡散させることができ、軸心から表面に
亘って屈折率が連続的に変化するコアを生成することが
可能となり、屈折率分布型ゴム光ファイバの連続製造の
迅速化に寄与することができるという効果を有している
[Effects of the Invention] As explained above, according to the present invention, the cladding material is added in advance to the cladding material, having a refractive index different from that of the core material, and after extruding the core material and the cladding material simultaneously. Because only the surface of the material is hardened, it is possible to gradually infiltrate and diffuse from the cladding material into the core material without the seven-layer material flowing out due to its own weight, and the refractive index is continuous from the axis to the surface. This has the effect of making it possible to produce a core that changes, thereby contributing to speeding up the continuous production of graded index rubber optical fibers.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明が適用されたゴム光ファイバの製造装置
の構成図、第2図はモノマー含有率と押出し粘度との関
係を示す特性図、第3図はモノマーとしてオクタフルオ
ロペンチルアクリレートを用いたときの屈折率分布特性
図、第4図はモノマーとしてテトラフルオロプロピルア
クリレートを用いたときの屈折率分布特性図である。 0・・・・・・二重管 ■・・・・・・紫外線照射装置 2・・・・・・コーテイング槽 3・・・・・・加熱炉 4・・・・・・巻取装置 5・・・・・・内管 6・・・・・・外管 7・・・・・・コア材 8・・・・・・クラッド材
Fig. 1 is a block diagram of a rubber optical fiber manufacturing apparatus to which the present invention is applied, Fig. 2 is a characteristic diagram showing the relationship between monomer content and extrusion viscosity, and Fig. 3 is a diagram using octafluoropentyl acrylate as a monomer. FIG. 4 is a refractive index distribution characteristic diagram when tetrafluoropropyl acrylate is used as the monomer. 0... Double tube ■... Ultraviolet irradiation device 2... Coating tank 3... Heating furnace 4... Winding device 5. ...Inner pipe 6 ...Outer pipe 7 ... Core material 8 ... Clad material

Claims (1)

【特許請求の範囲】[Claims] (1)コア材(17)を二重管(10)の内管(15)
に挿入し、クラッド材(18)を二重管(10)の外管
(16)に挿入するに際して、クラッド材(18)中に
コア材(17)とは異なる屈折率を有するモノマーを予
め添加し、その後このクラッド材(18)とコア材(1
7)を二重管(10)から同時に押出し、二重管(10
)から押出されたクラッド材(18)の表面に熱を加え
て表面近傍のみを硬化させることを特徴とする屈折率分
布型ゴム光ファイバの製造方法。
(1) Core material (17) is inserted into the inner tube (15) of the double tube (10)
When inserting the cladding material (18) into the outer tube (16) of the double tube (10), a monomer having a refractive index different from that of the core material (17) is added to the cladding material (18) in advance. Then, this clad material (18) and core material (1
7) from the double tube (10) at the same time.
1. A method for producing a gradient index rubber optical fiber, characterized in that heat is applied to the surface of a cladding material (18) extruded from a material (18) to harden only the vicinity of the surface.
JP2161829A 1990-06-20 1990-06-20 Manufacture of distributed index type rubber optical fiber Pending JPH0452603A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2161829A JPH0452603A (en) 1990-06-20 1990-06-20 Manufacture of distributed index type rubber optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2161829A JPH0452603A (en) 1990-06-20 1990-06-20 Manufacture of distributed index type rubber optical fiber

Publications (1)

Publication Number Publication Date
JPH0452603A true JPH0452603A (en) 1992-02-20

Family

ID=15742710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2161829A Pending JPH0452603A (en) 1990-06-20 1990-06-20 Manufacture of distributed index type rubber optical fiber

Country Status (1)

Country Link
JP (1) JPH0452603A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999060426A3 (en) * 1998-05-19 2000-01-13 Nextrom Holding Sa Method of making a plastic optical fibre, and a plastic optical fibre
US10474099B2 (en) * 2007-02-28 2019-11-12 Dai Nippon Printing Co., Ltd. Method of producing volume hologram laminate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999060426A3 (en) * 1998-05-19 2000-01-13 Nextrom Holding Sa Method of making a plastic optical fibre, and a plastic optical fibre
US10474099B2 (en) * 2007-02-28 2019-11-12 Dai Nippon Printing Co., Ltd. Method of producing volume hologram laminate

Similar Documents

Publication Publication Date Title
US5593621A (en) Method of manufacturing plastic optical transmission medium
US5555525A (en) Method of making graded refractive index polymeric optical fibers and optical fibers made by the method
EP0863415A3 (en) Method and apparatus for producing a graded refractive index plastic optical fiber
DE69614023T2 (en) Process for quickly applying and curing an optical fiber coating
JPH0452603A (en) Manufacture of distributed index type rubber optical fiber
US6265018B1 (en) Fabricating graded index plastic optical fibers
EP0879138B1 (en) Method of making graded index polymeric optical fibres
JPS62215204A (en) Production of plastic optical transmission body
JPH0327881B2 (en)
EP0864109B1 (en) Method of making graded index polymeric optical fibres
JP2889136B2 (en) Method for producing composite monofilament for light / image transmission and composite monofilament produced by the method
JPH09218312A (en) Production of preform for graded index plastic optical fiber
JPH0233104A (en) Manufacture of plastic optical transmission body
JPH09138313A (en) Production of distributed refractive index plastic optical fiber
KR20030012783A (en) Cavity-Preventing Type Reactor and Method for Fabricating Preform for Plastic Optical Fiber Using the Same
JPH11174242A (en) Plastic optical fiber
JPH08146235A (en) Manufacture of graded-index fiber for macromolecular material
JPH0364705A (en) Production of plastic optical transmission body
JPH0364704A (en) Production of plastic optical transmission body
JPH11153717A (en) Production of graded index optical fiber
US20120063734A1 (en) Multimode graded-index plastic optical fiber and method for producing the same
JPS61236636A (en) Coating method for jacket of optical fiber
JPH0395505A (en) Manufacture of optical fiber
JPH09178959A (en) Production of preform for distributed refractive index plastic optical fiber
JP2005157376A (en) Apparatus and method for fabricating plastic optical fiber