JPH0452378B2 - - Google Patents

Info

Publication number
JPH0452378B2
JPH0452378B2 JP10056383A JP10056383A JPH0452378B2 JP H0452378 B2 JPH0452378 B2 JP H0452378B2 JP 10056383 A JP10056383 A JP 10056383A JP 10056383 A JP10056383 A JP 10056383A JP H0452378 B2 JPH0452378 B2 JP H0452378B2
Authority
JP
Japan
Prior art keywords
turbine
output
performance
pressure
dust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10056383A
Other languages
Japanese (ja)
Other versions
JPS59226234A (en
Inventor
Yozo Sasaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP10056383A priority Critical patent/JPS59226234A/en
Publication of JPS59226234A publication Critical patent/JPS59226234A/en
Publication of JPH0452378B2 publication Critical patent/JPH0452378B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/02Arrangement of sensing elements
    • F01D17/04Arrangement of sensing elements responsive to load
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D21/00Shutting-down of machines or engines, e.g. in emergency; Regulating, controlling, or safety means not otherwise provided for
    • F01D21/10Shutting-down of machines or engines, e.g. in emergency; Regulating, controlling, or safety means not otherwise provided for responsive to unwanted deposits on blades, in working-fluid conduits or the like

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Control Of Turbines (AREA)

Description

【発明の詳細な説明】 本発明は、タービンのダスト付着検出方法に係
り、特に、高炉炉頂圧タービンの如く、高温、高
ダスト下で稼動させるタービンのダストの付着状
態を、効率的に推定・検出するタービンのダスト
付着検出方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for detecting dust adhesion in a turbine, and in particular, to efficiently estimate the state of dust adhesion in a turbine operated under high temperature and high dust conditions, such as a blast furnace top pressure turbine. -Relates to a method for detecting dust adhesion on a turbine.

例えば、軸流型炉頂圧タービンは、高炉ガス中
に含まれる多量のダストによつて種々の問題を起
こす。即ち、動翼については、ダスト付着によつ
てタービンの性能低下を起したり、アンバランス
なダスト付着でそのバランスが崩れ、振動値が大
きくなり、甚しい時には運転不能になつたりす
る。又、静翼については、ダスト付着によりガス
通路面積が減少し、流入ガス量が低下したり、ガ
ス流の乱れ発生によりタービンの性能低下を起こ
し、著しい出力低下を生じたりする。更に、ダス
ト付着による著しいガス流の乱れは、翼への異常
な加振力となり、翼の折損の問題を生ずることも
ある。このため、このような多量のダストの存在
する場所で使用されるタービンにあつては、ダス
ト付着防止のため、何らかの対策を講じる必要が
生ずる。
For example, axial flow furnace top pressure turbines cause various problems due to the large amount of dust contained in the blast furnace gas. That is, with regard to the rotor blades, dust adhesion may cause a decline in the performance of the turbine, or unbalanced dust adhesion may cause the rotor blades to become unbalanced, resulting in increased vibration values, and in severe cases, the blades may become inoperable. Furthermore, as for the stationary blades, the gas passage area decreases due to dust adhesion, resulting in a decrease in the amount of inflowing gas, and the occurrence of turbulence in the gas flow causes a deterioration in the performance of the turbine, resulting in a significant decrease in output. Furthermore, significant turbulence in the gas flow due to dust adhesion results in abnormal excitation force on the blades, which may lead to the problem of blade breakage. Therefore, in a turbine used in a place where such a large amount of dust exists, it is necessary to take some measures to prevent dust from adhering to the turbine.

ダスト付着の防止として効果的な対策として
は、翼への水噴射等を連続的に実施するものがあ
るが、出力の2〜3%の低下となり、数
100kW/hの出力損失となる。このためダスト
付着状態を検出(推定)し、バツチ的に水噴射し
てダスト除去を行う方法が得策である。
An effective measure to prevent dust adhesion is to continuously spray water onto the blades, but this results in a 2-3% reduction in power output and several
This results in an output loss of 100kW/h. Therefore, it is advisable to detect (estimate) the state of dust adhesion and remove the dust by spraying water in batches.

従来知られているタービンのダスト付着検出方
法としては、例えば第1図に示すようなものがあ
る。この方法は、タービン10の入り側のガス流
量Q及びガス圧P1をそれぞれ流量計12及び圧
力計14にて測定し、タービン10の性能特性図
を基に性能出力Oaを演算器16によつて演算し、
この性能出力Oaと発電機18の発電機出力計3
0に取付けた演算器20からの発電機実出力Ob
を演算器22によつて対比し、この対比によつて
検出される偏差ΔOの程度により、ダストの付着
状態を推定するものである。尚、図において24
は流入ガス遮断弁、26は危急遮断弁、28は出
口ガス遮断弁である。
As a conventionally known method for detecting dust adhesion on a turbine, there is a method as shown in FIG. 1, for example. In this method, the gas flow rate Q and gas pressure P 1 on the inlet side of the turbine 10 are measured using a flow meter 12 and a pressure gauge 14, respectively, and the performance output Oa is calculated by a calculator 16 based on a performance characteristic diagram of the turbine 10. Then calculate
This performance output Oa and generator output total 3 of generator 18
Generator actual output Ob from the computing unit 20 attached to
are compared by the calculator 22, and the dust adhesion state is estimated based on the degree of the deviation ΔO detected by this comparison. In addition, 24 in the figure
2 is an inflow gas cutoff valve, 26 is an emergency cutoff valve, and 28 is an outlet gas cutoff valve.

又、他の方法として、発電機実出力と入口ガス
圧力との関係から、タービン性能特性により入口
ガス流量を求め、実ガス流量測定値と比較してガ
ス流量の低下を検出し、以てタービンの付着状態
を推定するものも知られている。
Another method is to determine the inlet gas flow rate based on the turbine performance characteristics from the relationship between the generator's actual output and the inlet gas pressure, and compare it with the actual gas flow rate measurement value to detect a decrease in the gas flow rate. There are also known methods for estimating the adhesion state of.

しかしながら、このような従来のダスト付着検
出方法にあつては、いずれも実ガス流量を測定す
ることが必須となるものであるが、実ガス流量の
測定はオリフイス流量計やアミユーバ流量計等で
行われるものであるため、次のような問題が生じ
ていた。
However, in all of these conventional dust adhesion detection methods, it is essential to measure the actual gas flow rate, but the measurement of the actual gas flow rate is performed using an orifice flowmeter, an Amiuba flowmeter, etc. As a result, the following problems arose:

オリフイス流量計の場合、測定のために圧力
損失が生じ、タービン入口圧力が低下する。例
えば、ガス流量400000Nm3/hで圧力損失500
mmH2Oでは常時200〜300kW/hの出力低下と
なる。
In the case of an orifice flowmeter, a pressure loss occurs due to the measurement, which reduces the turbine inlet pressure. For example, when the gas flow rate is 400000Nm 3 /h, the pressure loss is 500
At mmH 2 O, the output always decreases by 200 to 300 kW/h.

流量計の導圧管は、多量のダストのため短期
間に目詰りを生じ測定不能となる。
The impulse pipe of the flow meter becomes clogged in a short period of time due to a large amount of dust, making measurement impossible.

アミユーバ流量計の場合は、圧力損失の少な
い流量計であるが、圧力検出孔にダストが目詰
りし易い。このため自動的にN2パージを行う
対策もあるが、N2量の確保とメインテナンス
に人手がかかり、しかも精度的に充分でない。
In the case of the Amiyuba flowmeter, it is a flowmeter with low pressure loss, but the pressure detection hole is easily clogged with dust. For this reason, there are countermeasures for automatically purging N 2 , but this requires manpower to secure the amount of N 2 and maintain it, and is not accurate enough.

これらの問題点のため、ダスト付着検出も信頼
できず充分な管理ができないため、現実には大幅
な出力低下で気付き、対策を講じているというの
が実情である。
Due to these problems, dust adhesion detection is unreliable and cannot be adequately managed, so in reality, it is only noticed when the output drops significantly and countermeasures are taken.

本発明は、このような従来の問題点に鑑みてな
されたものであつて、これら流量測定上の問題点
を全て解消し、管理が容易で損失が少なく、且つ
長期に亘つて信頼性の高い検出の可能な、タービ
ンのダスト付着検出方法を提供し、タービンのダ
スト除去の最適且つ効率的な実施を可能ならしめ
ることをその目的としている。
The present invention has been made in view of these conventional problems, and solves all of these problems in flow measurement, and provides a system that is easy to manage, has little loss, and is highly reliable over a long period of time. It is an object of the present invention to provide a method for detecting dust adhesion on a turbine, and to enable optimal and efficient implementation of dust removal from a turbine.

本発明は、タービンのダスト付着検出方法にお
いて、タービンの入口ガス圧力とタービンの静翼
又は調速弁の角度とから、入口ガス温度及び出口
ガス圧力一定における当該タービンの性能特性に
基づいて、性能出力を求め、この性能出力と該タ
ービンの実出力とを比較し、この偏差に基づいて
ダストの付着量を検出することとして上記目的を
達成したものである。
The present invention provides a method for detecting dust adhesion in a turbine based on the performance characteristics of the turbine at a constant inlet gas temperature and constant outlet gas pressure, based on the turbine inlet gas pressure and the angle of the turbine stator vane or speed regulating valve. The above objective is achieved by determining the output, comparing this performance output with the actual output of the turbine, and detecting the amount of dust attached based on this deviation.

本発明は、従来のダスト付着検出にあたつて必
須であつたガス流量の測定を行うために生じる
種々の問題を、流量測定技術上の問題として捉え
て流量計の工夫・改善を試みるという手法をや
め、これらの問題を全て解消するべく、従来の流
量測定法によらず、ダストの検出方法自体を新し
く開発することに着目したものである。即ち、本
発明は、タービンの性能での静翼角度或いは調速
弁の角度と入口圧力、ガス流量、出力の関係とが
実稼動性能とよく合うことに注目し、静翼角度又
は調速弁の角度と入口圧力とから性能出力を産み
出す演算方法を見出したものである。
The present invention is a method that attempts to devise and improve flowmeters by treating the various problems that arise when measuring gas flow rates, which were essential in conventional dust adhesion detection, as problems in flow rate measurement technology. In order to eliminate all of these problems, we focused on developing a new dust detection method itself, without relying on conventional flow rate measurement methods. That is, the present invention focuses on the fact that the relationship between the stator vane angle or the governor valve angle and the inlet pressure, gas flow rate, and output in terms of turbine performance matches well with the actual operating performance. We have discovered a calculation method that produces performance output from the angle and inlet pressure.

以下図面に基づいて本発明を詳細に説明する。 The present invention will be explained in detail below based on the drawings.

まず本発明の原理から説明する。タービンの中
には、例えば軸流型高炉炉頂圧タービンの如く、
炉頂圧制御のため、又は、タービンの効率向上の
ため静翼可変としているものがある。この静翼の
角度とタービンの諸特性は、第2図の性能特性図
に示すようになつており、入口ガス温度と出口ガ
ス圧力が一定である限り、入口ガス圧力と静翼角
度とが解れば性能出力を求めることができる。
First, the principle of the present invention will be explained. Some turbines, such as axial flow blast furnace top pressure turbines,
Some stator blades are variable in order to control the furnace top pressure or improve turbine efficiency. The angle of this stator blade and various characteristics of the turbine are as shown in the performance characteristics diagram in Figure 2. As long as the inlet gas temperature and outlet gas pressure are constant, the inlet gas pressure and the stator blade angle are independent. If so, the performance output can be determined.

一方、例えば炉頂圧タービンが高炉の炉頂圧力
制御を併せて行うように、一般に、タービンの静
翼角度は、圧力制御機能によりガス流量に見合つ
た角度を選択する。翼にダスト付着がない場合と
か非常に少ない場合は、入口ガス圧力と静翼角度
とから正確にガス流量や出力が推定できる。
On the other hand, in general, the stator blade angle of the turbine is selected to match the gas flow rate by the pressure control function, for example, so that the furnace top pressure turbine also controls the furnace top pressure of the blast furnace. If there is no or very little dust attached to the blades, the gas flow rate and output can be accurately estimated from the inlet gas pressure and the stationary blade angle.

ところで、翼にダスト付着が生じると性能どお
りのガス流量が見込めず、静翼角度が開いて見か
け上ガス流量を増加した性能点となり、性能出力
上出力が増加するように示す。このため翼にダス
トが付着すると性能出力が発電機実出力より大き
くなり、ダスト付着量によりこの偏差が変化す
る。本発明は、この原理を利用してダスト付着量
を推定するものである。
By the way, if dust adhesion occurs on the blade, the gas flow rate as per performance cannot be expected, and the stator blade angle opens, resulting in a performance point where the gas flow rate is apparently increased, and the output is shown to increase in terms of performance output. For this reason, when dust adheres to the blades, the performance output becomes greater than the actual output of the generator, and this deviation changes depending on the amount of dust adhesion. The present invention utilizes this principle to estimate the amount of dust adhesion.

一方静翼可変での圧力制御でなく、別に調速弁
を保有して調速弁で圧力制御を行うタービンで
も、調速弁角度と出力の関係を性能特性図に表示
できる。このため、調速弁を持つタービンでも本
発明方法が採用できる。
On the other hand, even for turbines that have a separate governor valve and control pressure with the governor instead of controlling pressure by variable stator vanes, the relationship between the governor valve angle and output can be displayed in a performance characteristic diagram. Therefore, the method of the present invention can be adopted even in a turbine having a speed regulating valve.

次に、第3図に示した高炉炉頂圧タービンのダ
スト付着検出方法を参照して、本発明方法の一実
施例を説明する。尚、従来と同様な部位について
は図中で同一符号を付すにとどめ重複説明を省略
する。
Next, an embodiment of the method of the present invention will be described with reference to a method for detecting dust adhesion in a blast furnace top pressure turbine shown in FIG. It should be noted that portions similar to those of the prior art are designated by the same reference numerals in the drawings, and redundant explanation will be omitted.

まず、タービン10の入口ガス圧力P1及びタ
ービン10の静翼11の角度δを、それぞれ圧力
計14及び角度検出計32にて測定し、演算器1
6に入力する。演算器16は予め記憶してあるタ
ービン10の性能特性に見合つた計算式により、
或いは第2図に示すようなマツプのサーチにより
性能出力Oa′を演算する。この場合性能特出力Oa
は入口ガス温度Tおよび出口ガス圧力P2が一定
であることを前提としているため、これらを温度
計34及び圧力計36にて実測し、演算器38に
て補正したものを以て性能出力Oaとする。そし
て、この性能出力Oaと発電機18に接続した演
算器20からの発電機実出力Obとを演算器22
によつて対比し、この対比によつて検出される偏
差ΔOの程度によりダストの付着状態を推定する
ものである。
First, the inlet gas pressure P 1 of the turbine 10 and the angle δ of the stationary blade 11 of the turbine 10 are measured by the pressure gauge 14 and the angle detector 32, respectively, and the arithmetic unit 1
Enter 6. The computing unit 16 uses a pre-stored calculation formula that matches the performance characteristics of the turbine 10.
Alternatively, the performance output Oa' is calculated by searching a map as shown in FIG. In this case, performance special output Oa
Since it is assumed that the inlet gas temperature T and the outlet gas pressure P2 are constant, these are actually measured with the thermometer 34 and the pressure gauge 36, and the performance output Oa is determined by correcting it with the calculator 38. . Then, this performance output Oa and the generator actual output Ob from the calculator 20 connected to the generator 18 are calculated by the calculator 22.
The state of adhesion of dust is estimated based on the degree of deviation ΔO detected by this comparison.

尚、入口ガス温度T及び出口ガス圧力P2の補
正は、例えば、タービン10の使用される場所
が、空調されていて入口ガスの温度変化のない場
所であつたり、又、出口配管の圧力損失が少ない
場所であつたりした時は、適宜これらのうちの一
方又は双方を省略することも可能である。又、静
翼角度については、制御系の信号を採用してもよ
い。
Note that the correction of the inlet gas temperature T and the outlet gas pressure P2 may be made, for example, if the turbine 10 is used in an air-conditioned place where the temperature of the inlet gas does not change, or if the pressure loss in the outlet piping is When there is a problem in a place where there are few, it is also possible to omit one or both of these as appropriate. Further, as for the stator blade angle, a signal from a control system may be adopted.

以上説明してきた如く、本発明によれば、従来
必須であつたガス流量の実測が不要となり、流量
測定に起因する種々の問題点が全て解消されると
いう効果がある。又、本発明方法で実測が必要な
ガス圧力、温度、静翼角度の測定は、測定技術上
容易且つ正確にオンラインで行うことができ、し
かもダスト等による測定不能という事態やメイン
テナンスの煩雑性も殆どないことから、常時連続
的に実出力と対比させることが可能となり、得ら
れた偏差に適宜のスレツシユホールドを設定して
異常を表示させたり、偏差の傾向より最適な時期
にのみ効率的にダスト付着防止のための操作、例
えば水噴射等の操作を実施できるという効果が得
られる。
As described above, according to the present invention, there is no need to actually measure the gas flow rate, which was conventionally essential, and all the various problems caused by flow rate measurement are eliminated. In addition, the measurements of gas pressure, temperature, and stationary blade angle that need to be measured using the method of the present invention can be easily and accurately performed online due to the measurement technology, and there is no need to worry about problems such as impossibility of measurement due to dust, etc., or complicated maintenance. Since there is almost no difference, it is possible to constantly compare the actual output with the actual output, and set an appropriate threshold for the obtained deviation to display the abnormality, or to check the deviation trend and make it efficient only at the optimal time. The effect is that operations for preventing dust adhesion, such as water injection, can be carried out.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来のタービンのダスト付着検出方
法が採用された、高炉炉頂圧タービンのダスト付
着検出装置の一例を示すブロツク線図、第2図
は、本発明の原理を説明するための、タービンの
静翼角度、出力、入口ガス圧力、入口ガス流量の
関係を示す性能特性図、第3図は、本発明方法に
係るタービンのダスト付着検出方法の一実施例が
採用された、高炉炉頂圧タービンのダスト付着検
出装置の一例を示すブロツク線図である。 10…タービン、11…静翼、12…流量計、
14…圧力計、16,20,22,38…演算
器、18…発電機、Q…入口ガス流量、P1…入
口ガス圧力、P2…出口ガス圧力、Oa…性能出力、
Ob…発電機実出力、ΔO…偏差、δ…静翼の角
度、T…入口ガス温度。
Fig. 1 is a block diagram showing an example of a dust adhesion detection device for a blast furnace top pressure turbine in which a conventional turbine dust adhesion detection method is adopted, and Fig. 2 is a block diagram for explaining the principle of the present invention. , a performance characteristic diagram showing the relationship among the stationary blade angle, output, inlet gas pressure, and inlet gas flow rate of the turbine. FIG. FIG. 2 is a block diagram showing an example of a dust adhesion detection device for a furnace top pressure turbine. 10...Turbine, 11...Stator vane, 12...Flowmeter,
14...Pressure gauge, 16,20,22,38...computer, 18...generator, Q...inlet gas flow rate, P1 ...inlet gas pressure, P2 ...outlet gas pressure, Oa...performance output,
Ob... Generator actual output, ΔO... Deviation, δ... Stator blade angle, T... Inlet gas temperature.

Claims (1)

【特許請求の範囲】[Claims] 1 タービンの入口ガス圧力とタービンの静翼又
は調速弁の角度とから、入口ガス温度及び出口ガ
ス圧力一定における当該タービンの性能特性に基
づいて、性能出力を求め、この性能出力と該ター
ビンの実出力とを比較し、この偏差に基づいてダ
ストの付着量を検出することを特徴とするタービ
ンのダスト付着検出方法。
1. Calculate the performance output from the turbine inlet gas pressure and the angle of the turbine stator vane or speed regulating valve, based on the performance characteristics of the turbine when the inlet gas temperature and outlet gas pressure are constant, and calculate the performance output and the turbine's performance output. A method for detecting dust adhesion in a turbine, which comprises comparing the actual output with the actual output and detecting the amount of dust adhesion based on the deviation.
JP10056383A 1983-06-06 1983-06-06 Method of detecting dust attached to turbine Granted JPS59226234A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10056383A JPS59226234A (en) 1983-06-06 1983-06-06 Method of detecting dust attached to turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10056383A JPS59226234A (en) 1983-06-06 1983-06-06 Method of detecting dust attached to turbine

Publications (2)

Publication Number Publication Date
JPS59226234A JPS59226234A (en) 1984-12-19
JPH0452378B2 true JPH0452378B2 (en) 1992-08-21

Family

ID=14277382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10056383A Granted JPS59226234A (en) 1983-06-06 1983-06-06 Method of detecting dust attached to turbine

Country Status (1)

Country Link
JP (1) JPS59226234A (en)

Also Published As

Publication number Publication date
JPS59226234A (en) 1984-12-19

Similar Documents

Publication Publication Date Title
US8152496B2 (en) Continuing compressor operation through redundant algorithms
US7827803B1 (en) Method and apparatus for an aerodynamic stability management system
KR100429298B1 (en) Turbomachinery with variable-angle fluid guiding device
US9027398B2 (en) Method of detecting wear in a pump driven with a frequency converter
US6776584B2 (en) Method for determining a centrifugal pump operating state without using traditional measurement sensors
JP2866862B2 (en) Method and apparatus for monitoring turbine blade vibration
US8827630B2 (en) Method and system for determining gas turbine tip clearance
Chew et al. Rim sealing of rotor–stator wheelspaces in the absence of external flow
JPH0580576B2 (en)
EP0728919B1 (en) The fuel supply for a gas turbine regulated in accordance with a synthesized turbine outlet temperature
RU2354851C1 (en) Method of controlling compressor operating conditions and device to this end
US20120141251A1 (en) Method and device for predicting the instability of an axial compressor
JPH0520569B2 (en)
JPH0452378B2 (en)
JP2010019228A (en) Blade random vibration monitoring system of rotary machine
Madhavan et al. Rotating stall caused by pressure surface flow separation on centrifugal fan blades
JP4527257B2 (en) Method for estimating turbine inlet temperature of gas turbine engine
JPS61207804A (en) Erosion preventing apparatus for movable vane for steam turbine
JP3400967B2 (en) Gas turbine power generation equipment
JPH09287408A (en) Erosion monitor for stationary blade of steam turbine
JPS6388300A (en) Method and device for monitoring surging of axial flow compressor
JPS6165001A (en) Gas turbine monitoring device
JPS62255504A (en) Erosion monitoring device for steam turbine blade
JPS62255503A (en) Erosion monitoring method for nozzle blade of steam turbine
KR100543671B1 (en) Apparatus and Method of Rotating Stall Warning in Compressor using Spatial Fourier Coefficient