JPH0452078A - Welding method - Google Patents

Welding method

Info

Publication number
JPH0452078A
JPH0452078A JP16197090A JP16197090A JPH0452078A JP H0452078 A JPH0452078 A JP H0452078A JP 16197090 A JP16197090 A JP 16197090A JP 16197090 A JP16197090 A JP 16197090A JP H0452078 A JPH0452078 A JP H0452078A
Authority
JP
Japan
Prior art keywords
welding
welding torch
point
target position
torch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16197090A
Other languages
Japanese (ja)
Other versions
JP2821244B2 (en
Inventor
Koichi Yoshioka
浩一 吉岡
Tokuo Yoshida
徳雄 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2161970A priority Critical patent/JP2821244B2/en
Publication of JPH0452078A publication Critical patent/JPH0452078A/en
Application granted granted Critical
Publication of JP2821244B2 publication Critical patent/JP2821244B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Laser Beam Processing (AREA)

Abstract

PURPOSE:To always accuratelly move a welding torch to the welding target position and also to confirm the welding torch by showing the welding target position and the tip position of the welding torch by spot light of an optical cutting method and a semiconductor laser and enabling to control the positional relation thereof. CONSTITUTION:A CCD camera 3 is set up above the welding target position P and the semiconductor laser 4 is set up at an optional angle on abutment between plates 1 and 2 passing the position P and catches the position P. The position of the torch 5 is then operated so that the electrode tip of the welding torch 5 intersects a plane H formed by a laser beam of the semiconductor laser 4 at a point and the point of intersection is made to Q. The welding torch 5 is moved so that the point P is coincident with the point Q. At this time, the electrode tip of the welding torch 5 moves on the plane H formed by the above-mentioned laser beam and when the point P is coincident with the point Q, the welding torch 5 is pulled up by the arc length and set up. Consequently, an electrode of the welding torch 5 can be correctly set up on the target position P.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、最適制御を行う溶接位置決め方法に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to a welding positioning method that performs optimal control.

(従来の技術) 従来の光切断法によるセンシング溶接では、特開昭61
−49114号公報に示されたように、縫合部の全長に
亘って正確に開先中心位置を求め、この開先の位置デー
タによって溶接トーチの位置を補正しながら溶接を行っ
ていた。この方法は溶接管等の縫合部の開先形状を予め
複数の基準形状に分類し、各基準形状の開先端点の基!
1!傾き値を定めるとともに、溶接される溶接管の縫合
部の開先形状を撮影して座標化し、微小区間の傾きを求
めて前記基準傾き値と比較することにより開先中心位置
を求め、溶接位置を制御するようにしていた。
(Conventional technology) In sensing welding using the conventional optical cutting method,
As disclosed in Japanese Patent No. 49114, the groove center position is accurately determined over the entire length of the seam, and welding is performed while correcting the position of the welding torch based on the groove position data. This method classifies the groove shape of a sutured part of a welded pipe etc. into multiple reference shapes in advance, and determines the base of the groove point of each reference shape.
1! In addition to determining the slope value, the groove shape of the seam of the welded pipe to be welded is photographed and converted into coordinates, and the slope of a minute section is determined and compared with the reference slope value to determine the center position of the groove, and the welding position is determined. I was trying to control it.

このため、この方法では第16図に示すように、溶接管
20の縫合部21の真上に光源22を設けてスリフト光
23を前記縫合部21に照射し、この照射によって表わ
れた開先形状像24を撮影機25で撮影し、その映像を
メモリ26に送り、演算装置27に予め分類しである基
準形状と比較させ、この演算結果に基づいてサーボ機構
28を介して溶接トーチ29を開先中心に位置させて溶
接していた。
For this reason, in this method, as shown in FIG. 16, a light source 22 is provided directly above the seam 21 of the welded pipe 20, and the thrift light 23 is irradiated to the seam 21, and the groove revealed by this irradiation is A shape image 24 is photographed by a camera 25, the image is sent to a memory 26, and a calculation device 27 compares it with a pre-classified reference shape.Based on this calculation result, a welding torch 29 is activated via a servo mechanism 28. Welding was done by positioning it in the center of the groove.

(発明が解決しようとする課題) しかしながら、上述した従来の方法では開先の位置デー
タにより溶接トーチの位置を補正しながら溶接を行って
いくため、装置が高価になるという問題点があった。
(Problems to be Solved by the Invention) However, in the above-described conventional method, welding is performed while correcting the position of the welding torch based on the groove position data, which has the problem that the equipment becomes expensive.

本発明は簡単な装置で、従来にない溶接位置決めとして
電極先端位置と、溶接ねらい位置との双方を確認して溶
接することのできる溶接方法を提案することを目的とす
る。
An object of the present invention is to propose a welding method that can perform welding by confirming both the electrode tip position and the welding target position as an unprecedented welding positioning method using a simple device.

(課題を解決するための手段) 上記目的を達成するため、本発明の溶接方法は、光切断
方式を用いて被溶接物の溶接ねらい位置に溶接トーチの
ティーチングを行い、溶接継手部のねろい位置からのず
れと継手開先の形状を測定するとともに、光切断線を移
動させることにより溶接スタート位置およびエンド位置
を決定し、前記溶接トーチの位置をねらいの位置に補正
することを特徴とするものである。
(Means for Solving the Problems) In order to achieve the above object, the welding method of the present invention uses an optical cutting method to teach a welding torch to the target welding position of the workpiece, and improves the gloss of the welded joint. The welding start position and end position are determined by measuring the deviation from the position and the shape of the joint groove, and by moving the optical cutting line, and the position of the welding torch is corrected to the target position. It is something.

(作用) 溶接のねらい位置と溶接トーチの先端位置を光切断法な
らびに半導体レーザのスポフト光で表わし、その位置関
係を制御できるようにしたので、溶接トーチが常に溶接
ねらい位置に正確に移動することができ、溶接トーチの
i認も可能である。
(Function) The target position of welding and the position of the tip of the welding torch are expressed using the optical cutting method and the spot light of the semiconductor laser, and the positional relationship can be controlled, so that the welding torch always moves accurately to the target welding position. It is also possible to verify the welding torch.

(実施例) 以下、本発明の実施例を第1図ないし第15図によって
説明する。この説明では代表的な溶接継手とじて、突合
せ継手、十字もしくはT学識手、かど継手の例を示す。
(Example) Examples of the present invention will be described below with reference to FIGS. 1 to 15. This explanation will show examples of typical welded joints, butt joints, cross or T-shaped joints, and corner joints.

第1図は突合せ継手の例で、図中1および2は板材であ
る。これらの板材1および2の突合せ部分上で溶接のね
らい位置をPとする。この溶接のねらい位置Pの上方に
CCDカメラ3を設置し、前記位置Pを通る板材1およ
び2の突合せ上で任意の角度に半導体レーザ4を設置し
て位置Pをとらえる。そして溶接トーチ5の電極先端と
半導体レーザ4のレーザ光がつくる平面Hとが一点で交
わるようにトーチ5の位置を操作し、その交点をQとす
る。この結果前記CCDカメラ3のとらえる画像は第2
図に示すようにあられされる。
FIG. 1 shows an example of a butt joint, and numerals 1 and 2 in the figure are plates. The target position for welding is P on the butt portion of these plate materials 1 and 2. A CCD camera 3 is installed above the target position P of this welding, and a semiconductor laser 4 is installed at an arbitrary angle on the butt of the plates 1 and 2 passing through the position P to capture the position P. Then, the position of the welding torch 5 is manipulated so that the electrode tip of the welding torch 5 and the plane H formed by the laser beam of the semiconductor laser 4 intersect at one point, and the intersection point is designated as Q. As a result, the image captured by the CCD camera 3 is the second one.
It will appear as shown in the figure.

次に、この第2図における点Pと点Qとが一致するよう
に溶接トーチ5を移動させる。この時、溶接トーチ5の
電極先端は前記レーザ光の作る平面H上で移動し、点P
と点Qとが一致したとすると、溶接トーチ5をアーク長
lたけ引上げ第3図に示すように設定する。これによっ
て溶接トーチ5のtiはねらい位置P上に正しく設定す
ることができる。なお、半導体レーザ4が位置Pを照射
しているときのレーザ光と板材との角度θが既知である
ことから、アーク長さが2となる時のPQ間の距離も算
出できるので、アーク長さが2の位置になるように電極
を設定し、平面Hと交わる点Q″を見出して電極先端を
P上に移動させてもよい。
Next, welding torch 5 is moved so that point P and point Q in FIG. 2 coincide. At this time, the electrode tip of the welding torch 5 moves on the plane H created by the laser beam, and points P
Assuming that and point Q match, the welding torch 5 is set to be pulled up by an arc length l as shown in FIG. As a result, ti of the welding torch 5 can be set correctly on the target position P. In addition, since the angle θ between the laser beam and the plate material when the semiconductor laser 4 is irradiating the position P is known, the distance between PQ when the arc length is 2 can also be calculated, so the arc length It is also possible to set the electrode so that the angle is at position 2, find a point Q'' where it intersects with the plane H, and move the electrode tip onto P.

第4図は十字もしくはT学識手の例で、板材2上に板材
1を立設し溶接のねらい位置をPとすると、半導体レー
ザ4によって位置Pを照射すると、レーザ光と位置Pと
の間には平面Hが形成される。
Fig. 4 is an example of a cross or a T scholar.If plate material 1 is set up on plate material 2 and the target position of welding is P, then when position P is irradiated with semiconductor laser 4, there will be a gap between the laser beam and position P. A plane H is formed in .

この平面H上に溶接トーチの先端を合わせ点Qを得る。Place the tip of the welding torch on this plane H to obtain a point Q.

この結果をCCDカメラ3でとらえた画像は第5図に示
すものとなる0次に、第5図に示した点Qを点Pに一致
するように溶接トーチ5を移動させ、点Qと点Pとが一
致したところで溶接トーチ5をアーク長さ2まで引上げ
れば第6図に示すように設定できる。
The image captured by the CCD camera 3 of this result is shown in FIG. 5. Next, move the welding torch 5 so that the point Q shown in FIG. When P and P match, the welding torch 5 is pulled up to the arc length 2, and the settings as shown in FIG. 6 can be made.

また、平面Hと板材1または2とのなす角をθ、θ2と
すれば、この角は既知であるから板材l、2と溶接トー
チ5の電極の位置関係が算出でき、それぞれを所定の位
置関係にすることができ、点Qを点Pの直上に移動させ
て合わせることもできる。
Furthermore, if the angles formed between the plane H and the plate material 1 or 2 are θ and θ2, since these angles are known, the positional relationship between the plate materials l and 2 and the electrodes of the welding torch 5 can be calculated, and each can be set at a predetermined position. It is also possible to move point Q directly above point P to match them.

第7図はかと継手の例で、板材1と2とはその端面部を
隣接して置き、半導体レーザ4で溶接のねらい位置Pを
照射する。このレーザ光が位IPを照射してできた平面
H上に溶接トーチ5の先端を合わせて点Qを得る。その
結果をCCDカメラ3でとらえると第8図に示すように
なる。以下は溶接トーチ5を移動させて点P上に点Qを
一致させる。
FIG. 7 shows an example of a hemlock joint, in which plate materials 1 and 2 are placed with their end surfaces adjacent to each other, and a target position P of welding is irradiated with a semiconductor laser 4. A point Q is obtained by aligning the tip of the welding torch 5 with the plane H created by irradiating the laser beam onto the point IP. When the result is captured by the CCD camera 3, it becomes as shown in FIG. In the following, the welding torch 5 is moved to align the point Q with the point P.

以上述べた方法はいずれも半導体レーザ4を1個用いた
1ライン方式によるもので、これによって溶接トーチ5
の電極先端を正確に溶接のねらい位置に設定することが
できる。
All of the methods described above are based on a one-line system using one semiconductor laser 4, which allows the welding torch 5 to
The tip of the electrode can be set accurately at the target position for welding.

次に2ライン方式によるものを第9図ないし第12図に
よって説明する。
Next, the two-line system will be explained with reference to FIGS. 9 to 12.

第9図は突合せ継手の例で、図中1および2は板材であ
る。これらの板材lおよび2の突合せ部分上で溶接のね
らい位IをPとする。この溶接のねらい位置Pの上方に
はCCDカメラ3を設置し、前記位置Pを通る板材1お
よび2の突合せ上で任意の角度−二第1の半導体レーザ
4を設置する。この第1の半導体レーザ4に対して平行
なレーザ光を照射する第2の半導体レーザ6を設置する
。そして、この平行な2つのレーザ光の間隔りは、アー
ク長さ!、板材に対するレーザ光の照射角をθとしたと
き、L = l cosθとなるように設定する。
FIG. 9 shows an example of a butt joint, and numerals 1 and 2 in the figure are plates. The target position I of welding on the butt portion of these plates 1 and 2 is set as P. A CCD camera 3 is installed above the target position P of this welding, and a first semiconductor laser 4 is installed at an arbitrary angle on the butt of the plates 1 and 2 passing through the position P. A second semiconductor laser 6 that irradiates parallel laser light to the first semiconductor laser 4 is installed. And the distance between these two parallel laser beams is the arc length! , where θ is the irradiation angle of the laser beam with respect to the plate material, it is set so that L = l cos θ.

このようにしておき、溶接ねらい位置Pを第1の半導体
レーザ4でとらえると平面Hが形成される。これに対し
て第2の半導体レーザ6は前記平面Hに平行な平面Iを
形成する。この平面I上に溶接トーチ5の先端を合わせ
ると交点Qを得ることができる。この結果をCCDカメ
ラ5で写すとその画像は第10図に示すように表われる
In this manner, when the target welding position P is captured by the first semiconductor laser 4, a plane H is formed. On the other hand, the second semiconductor laser 6 forms a plane I parallel to the plane H. By aligning the tip of the welding torch 5 on this plane I, an intersection point Q can be obtained. When this result is photographed by the CCD camera 5, the image appears as shown in FIG.

次に、平面H上の点Pに平面I上の点Qを一致させるよ
うに溶接トーチ5を多動さセ一致すると、第12図に示
すよう2こ溶接トーチ5はアーク長さpの距離をあけて
配設されたことになる。
Next, when the welding torch 5 is moved so that the point P on the plane H coincides with the point Q on the plane I, the two welding torches 5 move at a distance of arc length p as shown in FIG. This means that they were placed with a gap between them.

このように、半導体レーザを2ライン方式と巳で用いる
ことにより、第11図に示したlライン方式の時のよう
な溶接トーチ5を2だけ引上げる補正は必要なく、溶接
トーチをスムーズにかつ正確に所定の位置に配設するこ
とができる。
In this way, by using the semiconductor laser in the 2-line method and the 3-line method, there is no need to correct the welding torch 5 by raising it by 2 as in the case of the 1-line method shown in FIG. 11, and the welding torch can be moved smoothly and It can be placed precisely in a predetermined position.

第13図は別の実施例でスポットライン方式によるもの
である。このスポットライン方式は、溶接トーチ5の直
径方向の外周上に半導体レーザ7および8を設けたもの
である。この半導体レーザ7および8はレーザスポット
光が照射されるもので、これらのレーザスポット光は互
いにli掻の中心軸上で交わり、その交点Qと電極の先
端までとの距離がアーク長さ!と等しくなるように設定
しである。
FIG. 13 shows another embodiment using the spot line method. In this spot line method, semiconductor lasers 7 and 8 are provided on the outer periphery of the welding torch 5 in the diametrical direction. These semiconductor lasers 7 and 8 are irradiated with laser spot lights, and these laser spot lights intersect with each other on the central axis of the li oscillator, and the distance between the intersection point Q and the tip of the electrode is the arc length! Set it to be equal to .

このようなスポットライン方式によって、突合せ継手に
挫ける電極の位置決めについて以下に説明する。このス
ポットライン方式による位置決めは、第1図に示したよ
うに板材1および2と、CCDカメラ3と、半導体レー
ザ4とはその配置が全く同様であって、半導体レーザ4
により溶接のねらい位置Pをとらえ、溶接トーチ5のレ
ーザスポット光を板材上に照射すると、半導体レーザマ
のスポット光は点Q2に、8のスポット光は点Qに結像
する。この結果、CCDカメラ3でとらえた画像は第1
4図に示すように、平面HとQQ2の画像が表われる。
The positioning of the electrode in the butt joint using such a spot line method will be described below. In positioning using this spot line method, as shown in FIG.
When the target position P of welding is determined and the laser spot light from the welding torch 5 is irradiated onto the plate material, the spot light from the semiconductor laser beam is focused on the point Q2, and the spot light 8 is focused on the point Q. As a result, the image captured by CCD camera 3 is
As shown in Figure 4, images of planes H and QQ2 appear.

ここで、溶接トーチ5の位置を上下方向に操作してQ、
とQ2のスポントを重なるように補正する。そして、Q
、とQ2とが一致してQとスポット光になったときは、
電極の先端がアーク長さlに等しく保たれたので、平面
H上の点Pと前記Q点とを一致させることにより、電極
は正しく溶接ねらい位置P上にアーク長さlを隔てて設
置されることになる。
Here, operate the position of the welding torch 5 in the vertical direction to
Correct the spots of Q2 and Q2 so that they overlap. And Q
, and Q2 match and become Q and a spot light,
Since the tip of the electrode was kept equal to the arc length l, by aligning the point P on the plane H with the point Q, the electrode was correctly placed at the welding target position P, separated by the arc length l. That will happen.

また、半導体レーザ7および8のレーザスポット光が電
極の延長上で交わっズいることから、その交差角をθと
すれば、所定のアーク長となる輝点Q、 、Q、間の距
離が算出でき、二のQ、と92間の距離を測定すること
によってアーク長さを制御Bすることも可能である。
Also, since the laser spot lights of the semiconductor lasers 7 and 8 intersect on the extension of the electrode, if their intersection angle is θ, the distance between the bright spots Q, , Q, which has a predetermined arc length can be calculated. It is also possible to control the arc length by measuring the distance between Q and 92.

第15図は別の実施例で、ここでは溶接トーチ5の周囲
に4つの半導体レーザ9,10,11.12を配設し、
それらの半導体レーザ9,10,11.12のスポット
光が点Qで交差してQ、、Qz、Q3.Q、の輝点を得
るようにしたものである。これにより、これらの輝点Q
、、Q2.Q3.Q4の位置をCCDカメラ3でとらえ
、その輝点の位置関係から姿勢およびアーク長さを制御
してから、所定のねらい位置Pの真上に溶接トーチ5を
位置決めすることができる。
FIG. 15 shows another embodiment, in which four semiconductor lasers 9, 10, 11, 12 are arranged around the welding torch 5,
The spot lights of these semiconductor lasers 9, 10, 11.12 intersect at point Q and form Q, , Qz, Q3 . This is to obtain a bright spot of Q. As a result, these bright spots Q
,,Q2. Q3. The welding torch 5 can be positioned directly above a predetermined target position P after the position of Q4 is captured by the CCD camera 3 and the posture and arc length are controlled based on the positional relationship of the bright spots.

以上述べた1ライン方式、2ライン方式もしくはスポッ
トライン方式等を用いて溶接継手部のねらい位置からの
ずれや継手開先の形状の測定も可能であり、ねらい位置
を溶接スタート位置およびエンド位置に設定することに
より、それらの位置の決定も可能となる。特に溶接トー
チをロボットに持たせることによって、ロボントのティ
ーチングにも応用することができる。
It is also possible to measure the deviation from the target position of the weld joint and the shape of the joint groove using the one-line method, two-line method, spot line method, etc. described above. By setting these, it is also possible to determine their positions. In particular, by equipping the robot with a welding torch, it can also be applied to robot teaching.

(発明の効果) 以上説明したように本発明の溶接方法は、光切断方式を
用いて被溶接物の溶接ねらい位置に溶接トーチのティー
チングを行い、溶接継手部のねらい位置からのずれと継
手開先の形状を測定するとともに、光切断線を移動させ
ることにより溶接のスタート位置およびエンド位置を決
定し、前記溶接トーチの位置をねらい位置に補正するよ
うにしたので、簡単な装置で電極先端位置と、溶接のね
らい位置との双方を確認して溶接することが出来る利点
がある。
(Effects of the Invention) As explained above, the welding method of the present invention uses a light cutting method to teach a welding torch to the target welding position of the workpiece, and detects the deviation of the weld joint from the target position and the opening of the joint. In addition to measuring the shape of the tip, the start and end positions of welding are determined by moving the optical cutting line, and the position of the welding torch is corrected to the target position, so a simple device can be used to determine the electrode tip position. There is an advantage that it is possible to weld while confirming both the target position and the welding target position.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ないし第15図は本発明の実施例で、第1図は1
ライン方式による突合せ継手の斜視図、第2図は同画像
図、第3図は同要部を示す図、第4図はT字継手の斜視
図、第5図は同画像図、第6図は同要部を示す図、第7
図はかど継手の斜視図、第8図は同画像図、第9図は2
ライン方式による突合せ継手の斜視図、第10図は同画
像図、第11図は1ライン方式の同要部を示す図、第1
2図は2ライン方式の同要部を示す図、第13図はスポ
、トライン方式による突合せ継手の斜視図、第14図:
よ同画像図、第15図iま4スポ・ト方式による突合せ
継手の斜視図、第16図は従来例を示す図である。 1.2  ・ ・ ・ ・ ・ ・ 3 ・ ・   ・ ・ ・ ・ 4 ・ ・   ・ ・ ・ ・ 5 ・ ・ ・ −・ ・ 7.8,9.10,11.12・
1 to 15 show embodiments of the present invention, and FIG.
A perspective view of a butt joint using the line method, Fig. 2 is the same image, Fig. 3 is a view showing the main parts, Fig. 4 is a perspective view of the T-joint, Fig. 5 is the same image, Fig. 6 Figure 7 shows the same main parts.
Figure 8 is a perspective view of the corner joint, Figure 8 is the same image, Figure 9 is 2
A perspective view of a butt joint using the line method, FIG. 10 is an image of the same, FIG.
Figure 2 is a diagram showing the same essential parts of the 2-line system, Figure 13 is a perspective view of a butt joint using the spot and trine system, and Figure 14:
15 is a perspective view of a four-spot type butt joint, and FIG. 16 is a diagram showing a conventional example. 1.2 ・ ・ ・ ・ ・ ・ 3 ・ ・ ・ ・ ・ 4 ・ ・ ・ ・ ・ 5 ・ ・ ・ −・ ・ 7.8, 9.10, 11.12・

Claims (1)

【特許請求の範囲】[Claims] 光切断方式を用いて被溶接物の溶接ねらい位置に溶接ト
ーチのティーチングを行い、溶接継手部のねらい位置か
らのずれと継手開先の形状を測定するとともに、光切断
線を移動させることにより溶接のスタート位置およびエ
ンド位置を決定し、前記溶接トーチの位置をねらいの位
置に補正することを特徴とする溶接方法。
The welding torch is taught to the target welding position of the workpiece using the optical cutting method, the deviation from the target position of the welding joint and the shape of the joint groove are measured, and the welding is performed by moving the optical cutting line. A welding method comprising determining a start position and an end position of the welding torch, and correcting the position of the welding torch to a target position.
JP2161970A 1990-06-20 1990-06-20 Welding method Expired - Fee Related JP2821244B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2161970A JP2821244B2 (en) 1990-06-20 1990-06-20 Welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2161970A JP2821244B2 (en) 1990-06-20 1990-06-20 Welding method

Publications (2)

Publication Number Publication Date
JPH0452078A true JPH0452078A (en) 1992-02-20
JP2821244B2 JP2821244B2 (en) 1998-11-05

Family

ID=15745546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2161970A Expired - Fee Related JP2821244B2 (en) 1990-06-20 1990-06-20 Welding method

Country Status (1)

Country Link
JP (1) JP2821244B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6849821B2 (en) * 2000-05-11 2005-02-01 Hokkaido University Laser welding head-controlling system, a laser welding head and a method for controlling a laser welding head

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63230276A (en) * 1987-03-17 1988-09-26 インダストリアル・テクノロジ−・リサ−チ・インステイテユ−ト Method and device for tracing welding seam by artificial visual sense of welding robot

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63230276A (en) * 1987-03-17 1988-09-26 インダストリアル・テクノロジ−・リサ−チ・インステイテユ−ト Method and device for tracing welding seam by artificial visual sense of welding robot

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6849821B2 (en) * 2000-05-11 2005-02-01 Hokkaido University Laser welding head-controlling system, a laser welding head and a method for controlling a laser welding head

Also Published As

Publication number Publication date
JP2821244B2 (en) 1998-11-05

Similar Documents

Publication Publication Date Title
US4594497A (en) Image processing welding control method
US4590356A (en) Robot navigation method for joint following
EP1486283B1 (en) Method of controlling the welding of a three-dimensional construction by taking a two-dimensional image of the construction and adjusting in real time in the third dimension
CA2403596C (en) Method of welding three-dimensional structure and apparatus for use in such method
JPH0890266A (en) Welding method using high density energy beam, and its device
JP2000317667A (en) Composite head for laser beam welding
US6849821B2 (en) Laser welding head-controlling system, a laser welding head and a method for controlling a laser welding head
JPH0452078A (en) Welding method
JP3117374B2 (en) Automatic control of bead shape
JPH06246448A (en) Welding robot for joining corrugated lap plates
JPH06328385A (en) Attitude control of visual sensor of industrial robot
JP5761490B2 (en) Laser welding method and laser welding apparatus
JP3482615B2 (en) Welding position automatic profiling control device
JP2001340966A (en) Automatic welding method and it's apparatus
JPS6149774A (en) Outside surface welding method of weld pipe
JP2004105971A (en) Laser beam welding apparatus
KR102591186B1 (en) Welding robot that can perform precise welding by correcting distance from welding line according to difference in gradient of joint of pair of steel pipes by performing weaving operation at appropriate hertz to prevent thermal deformation while forming correct welding bead
EP1314510A1 (en) Method of welding three-dimensional structure and apparatus for use in such method
JPH01184066A (en) Apparatus for follow-up movement
JPH0569132A (en) Teaching method for arc welding robot
Dufour et al. Adaptive robotic welding using a rapid image pre-processor
JPS62161473A (en) Automatic welding method
JP3077931B2 (en) Welding method
JPH04190990A (en) Device for correcting position in laser beam welding
JP2001038467A (en) Method and device for checking welding quality

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees