JPH0451783B2 - - Google Patents

Info

Publication number
JPH0451783B2
JPH0451783B2 JP3592082A JP3592082A JPH0451783B2 JP H0451783 B2 JPH0451783 B2 JP H0451783B2 JP 3592082 A JP3592082 A JP 3592082A JP 3592082 A JP3592082 A JP 3592082A JP H0451783 B2 JPH0451783 B2 JP H0451783B2
Authority
JP
Japan
Prior art keywords
solvent
weight
sample
present
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3592082A
Other languages
Japanese (ja)
Other versions
JPS58153146A (en
Inventor
Kazuhisa Sano
Hiroshi Ide
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tonen General Sekiyu KK
Original Assignee
Tonen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tonen Corp filed Critical Tonen Corp
Priority to JP3592082A priority Critical patent/JPS58153146A/en
Publication of JPS58153146A publication Critical patent/JPS58153146A/en
Publication of JPH0451783B2 publication Critical patent/JPH0451783B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/3103Atomic absorption analysis

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、発光分光分析に使用する溶剤に関す
る。更に詳しくは、本発明は、金属元素等を含有
する石油製品及びその添加剤、又は石炭系炭化水
素油等の各種試料を発光分光分析法により定量分
析する場合、その試料を希釈し又は溶解するため
に使用する溶剤に関する。 近年、発光分光法の発展はめざましく、重量分
析法や螢光X千分析法等に比し、分析に要する時
間が著しく短縮されたのみならず、多元素を同時
に分析でき測定精度も高いために、特に、工程管
理、規格管理等を目的とする場合には好んで利用
される分析方法となつた。 この場合、資料を希釈又は溶解するための溶剤
としては、従来から、アセトン、メチルエチルケ
トン、メチルイソブチルケトン等のケトン類、メ
タノール、エタノール等のアルコール類、ヘキサ
ン、ナフサ、石油エーテル、トルエン、キシレン
等の炭化水素等類等が使用され、特にキシレン、
メチルイソブチルケトンが好んで使用されてい
る。 しかしながらこれら従来の溶剤では、第1に、
被測定資料の溶解性が極度に悪い場合があり、第
2に、測定のための炎にゆらぎを生じ易く又点燈
性が悪い、第3に、測定値の安定性が悪い等の欠
点があつた。 本発明者らは、従来のかかる欠点を解決すべく
鋭意研究の結果、キシレンの如き芳香族のみか
らなる溶剤は、炎を不安定にすること、メチル
イソブチルケトンの如く芳香族を全く含まない溶
剤は、試料の溶解性が悪いこと、沸点約100℃
以下の低沸点炭化水素又は約300℃以上の高沸点
炭化水素溶剤は、分析装置の炎の点燈性、噴霧器
における試料の吸上げ性、更には測定値の安定性
等につきいずれか又は全部について、良好な結果
を与えないことを究明し、本発明に到達した。 従つて、本発明の第1の目的は、被測定試料の
溶解性がよい、発光分光分析用溶剤を提供するこ
とである。更に本発明の第2の目的は、点燈性が
よく、炎のゆらぎが少なく、測定値の安定性を改
善することができる発光分光分析用溶剤を提供す
ることである。 即ち本発明は、発光分光分析において、試料を
希釈又は溶解するための石油系炭化水素からなる
溶剤であつて、その組成が芳香族成分15〜50重量
%、パラフイン成分40〜80重量%及び65重量%以
下のナフテン成分からなり、溶剤の沸点範囲が
150〜200℃であることを特徴とする、発光分光分
析用溶剤である。 本発明における芳香族炭化水素としては、例え
ば、キシレン、エチルベンゼン、クメン、ヘミメ
リテン、プロピルベンゼン、t−ブチルベンゼ
ン、n−ブチルベンゼン、ナフタレン、ペンタメ
チルベンゼン等、炭素数8〜11の通常の芳香族炭
化水素を使用することができるが、特に、炎のゆ
らぎ、及び点燈性の観点から、炭素数9及び10の
芳香族炭化水素が好ましい。 次に、本発明におけるパラフイン成分として
は、側鎖を有することのある炭素数9〜16のパラ
フイン、例えばn−ノナン、n−デカン等を使用
することができる。 ナフテン成分としては、例えば、アルキル基を
側鎖として有するシクロペンタン、シクロヘキサ
ンをあげることができる。この場合、通常、シク
ロペンタン及び/又はシクロヘキサンは、一化合
物中に1〜3個結合しているが、3個以上結合し
ていてもよい。又側鎖に結合している基は炭素数
1〜10のアルキル基であればよく、これらは通常
6個以下であるが、全くこれらの側鎖のアルキル
基がない場合であつても、本発明に使用すること
ができる。 これら芳香族成分、パラフイン成分、ナフテン
成分を混合して、発光分光分析用溶剤として、十
分な性能を発揮させるための最も重要な因子は、
芳香族成分の割合である。芳香族成分が約15重量
%以下の場合には、試料の溶解性能が劣り、一
方、約50重量%以上の場合には、分析時のトーチ
の炎を不安定にし、好ましくない。従つて、芳香
族成分は約15〜50重量%が好ましく特に約15〜35
重量%が好ましい。 一方、発光分光分析においては、一般に、トー
チ炎における燃焼特性を高めることが必要である
が、このためには、試料溶剤としては、パラフイ
ン成分に富むことが好ましい。従つて、試料の溶
解性能をも鑑みて、パラフイン成分の量は約40〜
80重量%である。又試料の粘度が高い場合には、
n−ノナンやn−デカン等、沸点の低いパラフイ
ンを用いることが、試料溶液の粘度の点から好都
合である。 本発明におけるナフテン成分は、パラフイン成
分と芳香族成分の中間の試料溶解性能を有し、又
トーチ炎のゆらぎの減少にも寄与し得る。従つて
所望する性能を発揮せしめるための調整溶剤とし
て有用であり、上記芳香族成分及びパラフイン成
分の残部に相当する分量、即ち0〜65重量%であ
る。 以上の如く調整した溶剤の沸点範囲は約150〜
200℃であり、いずれの場合でも、発光分光分析
用溶剤として良好である。従つて、分析誤差の大
きな要因とならない場合には、溶剤の沸点範囲
が、上記温度範囲に存在する限りにおいて、各成
分に多少の不純物が含まれていても差し支えな
い。しかしながら、約150℃以下の低沸点溶剤は、
分析時におけるトーチ炎の点燈性を損う等、又約
200℃以上の高沸点溶剤の存在は、試料の噴霧器
への吸込み速度を落とす等、夫々即定精度を落と
す原因になるので、これらの原因となる不純物は
除去する必要があるし、その他、分析誤差の原因
となる金属化合物等の不純物を含んでなわないこ
とは当然である。 保管時等における安全性の点から引火点は約30
〜70℃、好ましくは約40〜60℃である。因みに本
溶剤の比重は0.70〜0.85、アニリン点は約40〜70
℃である。 本発明の溶剤は、上記の如く、各成分の炭化水
素を混合することにより容易に得られるが、大量
に得るためには、原油を常圧蒸留して、約150〜
200℃の石油留分を抜き出し、更に必要であれば
硫黄化合物、窒素化合物、オレフイン化合物又は
鉄等の金属化合物の等の不純物を除去するため
に、一定条件下で、水素化脱硫装置にて処理する
方法を採ることができる。 沸点範囲約150〜200℃の原油中の石油留分に金
属元素の分析誤差の原因となるナトリウム、鉄、
鉛等の金属化合物が含まれている場合は勿論、悪
臭の原因となる硫黄化合物や窒素化合物、重合し
てガム状物質を形成し、溶剤としての性能を劣化
させるオルフイン等の不純物が含有される場合に
は、水素化脱硫装置にて、公知の方法で処理する
ことが必要である。 水素化脱硫には、例えば、Co、Mo、Ni等の活
性金属を、アルミナ、シリカ、又はシリカアルミ
ナ等の担体へ担持した触媒を充填した反応器へ、
原料留出油を通過させる方法がある。 この場合、処理条件として、反応温度を約250
〜350℃、反応圧約5〜50Kg/cm2に設定し、原料
油の空間速度約0.5〜10V/H/V(V/H/Vは
触媒1容量に対する油の通油容量を表わす)、好
ましくは約1〜5V/H/Vとし、水素含有ガス
を約5〜200m3/K1(標準状態に換算)、好ましく
は約20〜80m3/K1(標準状態に換算)の流量で通
過させれば、石油留分中の、芳香族成分の水素化
を防止しつつ不純物を除去し、生成物中の硫黄含
有量を0.01重量%以下とすることが容易である。 本発明の溶剤を大量に生産する他の方法とし
て、沸点が約300℃以上の軽油留分又は蒸留残油
を、水素化分解する方法を採ることもできる。水
素化分解は、Ni、Mo、W、Co等の活性金属を酸
性の強いシリカ、シリカアルミナ等の無定形担体
に担持した触媒の存在下に、約330〜430℃に反応
温度、約70〜300Kg/cm2の圧力条件にある反応器
へ原料油を通過させることにより実施される。こ
の方法では、反応後の生成物から約150〜200℃の
沸点を有する炭化水素を取り出すための蒸留手段
が必須となる。 処理後の芳香族炭化水素成分が約5重量%以下
となつた場合には、他から芳香族化合物を添加し
て調整すればよい。 本発明の溶剤を用いる試料溶液は、キシレン等
の溶剤を用いる公知の場合と同様の操作で試料を
希釈又は溶解することにより調整することができ
る。従つて、石油製品及びその添加剤、石炭系炭
化水素油等の他、一般に石油系炭化水素に溶解す
る試料に対しては、すべて本発明の溶剤を使用す
ることができ、従来以上によい分析結果を得るこ
とができる。 使用する溶剤の量は、試料中の被測定元素含有
量がppm程度の場合には、約10〜50容量部であ
り、パーセント程度の場合には、約50〜250容量
部である。 試料が軽油、重油、潤滑油、常圧残渣油、減圧
残差油、原油、廃油スラツジ、グリース等の高沸
点石油系炭化水素及び石炭乾留油、石炭液化生成
油等の高沸点石炭系炭化水素等である場合には、
分析装置の噴霧器において、適当な吸い上げ性を
有するように、本発明の溶剤量を調節して、試料
溶液の粘度を室温において約5〜500センチスト
ークスにする必要がある。 本発明の溶剤は、顕著な試料溶解力を有するた
めに、公知の溶剤よりも短時間で試料溶液を調整
することができ、従つて、沸点が150℃以上で、
比較的粘性の高い高沸点炭化水素及びその添加剤
又はその組成物を試料とする場合に、特に有効で
ある。 添加剤としては、従来からBa、Ca、Mg等の
フオスフエート、スルホネート、フエネート、ナ
フテネート及び硫酸塩、Znのジアルキルジチオ
フオスフエート、ジアルキルジチオカルバメー
ト、硝酸塩及び硫酸塩や、ブチレン重合物の
P2S5の反応物の塩類等がある。 本発明の溶剤は試料溶解性がよいので、測定試
料の範囲を従来以上に広げることができ、従つて
従来から測定されていたBa、Ca、Mg、Zn、P、
S等に加え、更にB、Ni、V、Ag、AI、Cr、
Cu、Fe、Mn、Mo、Pb、Ti、Si、Na、As等の
元素を有する試料を分光学的に定量することも極
めて容易である。 更に、本発明の溶剤を使用することにより、試
料に大きな粘度低減効果がもたらされるので、原
子吸光分析より、試料粘度の影響を受け易いとさ
れているプラズマ発光分光分析においては、特に
本発明の溶剤の実用価値が大きい。 以下更に、実施例により本発明を説明するが、
本発明は、これにより限定されるものではない。 実施例 1 本発明お溶剤として、表1に示す、S1、S2
S3、S4、の4種の溶剤、及び次に示す工程によ
り、原油から得られる第5番目の溶剤、S5、を用
意した。
TECHNICAL FIELD The present invention relates to solvents used in emission spectroscopic analysis. More specifically, the present invention provides a method for quantitatively analyzing various samples such as petroleum products and their additives containing metal elements, coal-based hydrocarbon oil, etc. by optical emission spectrometry, by diluting or dissolving the samples. Concerning the solvent used for In recent years, the development of emission spectroscopy has been remarkable, and not only has the time required for analysis been significantly shortened compared to methods such as gravimetric analysis and fluorescence It has become a preferred analytical method, especially for purposes such as process control and specification control. In this case, conventional solvents for diluting or dissolving the materials include ketones such as acetone, methyl ethyl ketone, and methyl isobutyl ketone, alcohols such as methanol and ethanol, hexane, naphtha, petroleum ether, toluene, and xylene. Hydrocarbons, etc. are used, especially xylene,
Methyl isobutyl ketone is preferably used. However, with these conventional solvents, firstly,
The solubility of the material to be measured may be extremely poor; secondly, the flame used for measurement tends to fluctuate and lighting is poor; and thirdly, the stability of measured values is poor. It was hot. The inventors of the present invention have conducted extensive research to solve these conventional drawbacks, and have found that solvents consisting only of aromatics, such as xylene, make the flame unstable, and that solvents containing no aromatics, such as methyl isobutyl ketone, The solubility of the sample is poor, and the boiling point is approximately 100℃.
The following low-boiling point hydrocarbons or high-boiling point hydrocarbon solvents of approximately 300°C or higher may affect any or all of the following: However, the present invention was achieved by determining that the method does not give good results. Therefore, the first object of the present invention is to provide a solvent for emission spectrometry that has good solubility for a sample to be measured. Furthermore, a second object of the present invention is to provide a solvent for emission spectrometry that has good lighting properties, less flame fluctuation, and can improve the stability of measured values. That is, the present invention provides a solvent made of petroleum hydrocarbon for diluting or dissolving a sample in emission spectroscopic analysis, the composition of which is 15 to 50% by weight of aromatic components, 40 to 80% by weight of paraffin components, and 65% by weight of paraffin components. It consists of naphthenic components of less than % by weight, and the boiling point range of the solvent is
This is a solvent for emission spectroscopic analysis, characterized by a temperature of 150 to 200°C. Examples of aromatic hydrocarbons in the present invention include ordinary aromatic hydrocarbons having 8 to 11 carbon atoms, such as xylene, ethylbenzene, cumene, hemimelithene, propylbenzene, t-butylbenzene, n-butylbenzene, naphthalene, and pentamethylbenzene. Although hydrocarbons can be used, aromatic hydrocarbons having 9 and 10 carbon atoms are particularly preferred from the viewpoint of flame fluctuation and lighting performance. Next, as the paraffin component in the present invention, paraffin having 9 to 16 carbon atoms that may have a side chain, such as n-nonane and n-decane, can be used. Examples of the naphthene component include cyclopentane and cyclohexane having an alkyl group as a side chain. In this case, usually 1 to 3 cyclopentane and/or cyclohexane are bonded in one compound, but 3 or more cyclopentane and/or cyclohexane may be bonded. In addition, the group bonded to the side chain may be an alkyl group having 1 to 10 carbon atoms, and the number of these groups is usually 6 or less, but even if there are no alkyl groups in the side chain, the main Can be used for inventions. The most important factor in achieving sufficient performance as a solvent for emission spectrometry by mixing these aromatic components, paraffin components, and naphthenic components is:
This is the proportion of aromatic components. If the aromatic component is less than about 15% by weight, the dissolution performance of the sample will be poor, while if it is more than about 50% by weight, the flame of the torch during analysis will become unstable, which is undesirable. Therefore, the aromatic component is preferably about 15 to 50% by weight, especially about 15 to 35% by weight.
Weight percent is preferred. On the other hand, in optical emission spectrometry, it is generally necessary to enhance the combustion characteristics of the torch flame, and for this purpose, it is preferable that the sample solvent be rich in paraffin components. Therefore, considering the dissolution performance of the sample, the amount of paraffin component should be approximately 40~
It is 80% by weight. Also, if the viscosity of the sample is high,
It is advantageous to use paraffin with a low boiling point, such as n-nonane or n-decane, from the viewpoint of the viscosity of the sample solution. The naphthene component in the present invention has a sample dissolving performance between that of the paraffin component and the aromatic component, and can also contribute to reducing the fluctuation of the torch flame. Therefore, it is useful as a regulating solvent to exhibit desired performance, and the amount corresponds to the balance of the aromatic components and paraffin components, that is, 0 to 65% by weight. The boiling point range of the solvent adjusted as above is approximately 150~
The temperature is 200°C, and in either case, it is a good solvent for emission spectroscopic analysis. Therefore, as long as the boiling point range of the solvent is within the above-mentioned temperature range, it is acceptable for each component to contain some impurity, as long as it does not become a major cause of analytical error. However, low boiling point solvents below about 150℃
It may impair the illumination of the torch flame during analysis, or
The presence of high boiling point solvents of 200°C or higher causes a drop in the speed of sample suction into the atomizer, reducing the accuracy of immediate determination, so it is necessary to remove impurities that cause these problems, and to remove other impurities during analysis. It goes without saying that it does not contain impurities such as metal compounds that may cause errors. The flash point is approximately 30 for safety reasons during storage, etc.
-70°C, preferably about 40-60°C. Incidentally, the specific gravity of this solvent is 0.70 to 0.85, and the aniline point is approximately 40 to 70.
It is ℃. The solvent of the present invention can be easily obtained by mixing the respective hydrocarbon components as described above, but in order to obtain it in large quantities, crude oil must be distilled under atmospheric pressure to
The petroleum fraction at 200℃ is extracted and, if necessary, treated in a hydrodesulfurization equipment under certain conditions to remove impurities such as sulfur compounds, nitrogen compounds, olefin compounds, or metal compounds such as iron. You can take the following method. Petroleum fractions in crude oil with a boiling point range of approximately 150 to 200℃ contain sodium, iron, and
Not only does it contain metal compounds such as lead, but it also contains impurities such as sulfur compounds and nitrogen compounds that cause bad odors, and olfin, which polymerizes to form a gummy substance and deteriorates its performance as a solvent. In some cases, it is necessary to perform treatment using a hydrodesulfurization apparatus using a known method. For hydrodesulfurization, for example, active metals such as Co, Mo, and Ni are placed in a reactor filled with a catalyst supported on a carrier such as alumina, silica, or silica-alumina.
There is a method of passing raw distillate oil. In this case, the treatment conditions include a reaction temperature of approximately 250°C.
~350°C, the reaction pressure is set at approximately 5-50 Kg/cm 2 , and the space velocity of the raw oil is approximately 0.5-10 V/H/V (V/H/V represents the oil passing capacity per volume of catalyst), preferably. is approximately 1 to 5 V/H/V, and hydrogen-containing gas is passed through at a flow rate of approximately 5 to 200 m 3 /K1 (converted to standard conditions), preferably approximately 20 to 80 m 3 /K1 (converted to standard conditions). For example, it is easy to remove impurities in petroleum fractions while preventing hydrogenation of aromatic components, and to reduce the sulfur content in the product to 0.01% by weight or less. As another method for producing a large amount of the solvent of the present invention, it is also possible to employ a method of hydrocracking a gas oil fraction or distillation residue having a boiling point of about 300° C. or higher. Hydrogenolysis is carried out at a reaction temperature of approximately 330 to 430°C, approximately 70°C to It is carried out by passing the feedstock oil through a reactor under pressure conditions of 300 Kg/cm 2 . This method requires a distillation means for removing hydrocarbons having a boiling point of about 150 to 200°C from the reaction product. If the aromatic hydrocarbon component after treatment is less than about 5% by weight, it may be adjusted by adding other aromatic compounds. A sample solution using the solvent of the present invention can be prepared by diluting or dissolving the sample in the same manner as in the known case using a solvent such as xylene. Therefore, in addition to petroleum products and their additives, coal-based hydrocarbon oil, etc., the solvent of the present invention can be used for all samples that are generally dissolved in petroleum-based hydrocarbons, allowing better analysis than ever before. You can get results. The amount of solvent used is about 10 to 50 parts by volume when the content of the element to be measured in the sample is about ppm, and about 50 to 250 parts by volume when it is about %. Samples include high-boiling point petroleum hydrocarbons such as light oil, heavy oil, lubricating oil, atmospheric residual oil, vacuum residual oil, crude oil, waste oil sludge, and grease, and high-boiling point coal hydrocarbons such as coal dry distillation oil and coal liquefaction product oil. etc., if
In order to have adequate wicking properties in the analyzer's nebulizer, the amount of the solvent of the present invention must be adjusted to give the sample solution a viscosity of about 5 to 500 centistokes at room temperature. Since the solvent of the present invention has remarkable sample-dissolving power, it is possible to prepare a sample solution in a shorter time than known solvents.
This is particularly effective when the sample is a relatively viscous high-boiling hydrocarbon, an additive thereof, or a composition thereof. Conventional additives include phosphates, sulfonates, phenates, naphthenates, and sulfates of Ba, Ca, Mg, etc., dialkyldithiophosphates, dialkyldithiocarbamates, nitrates, and sulfates of Zn, and butylene polymers.
There are salts of P 2 S 5 reactants. Since the solvent of the present invention has good sample solubility, it is possible to widen the range of measurement samples more than conventionally.
In addition to S etc., B, Ni, V, Ag, AI, Cr,
It is also extremely easy to spectroscopically quantify samples containing elements such as Cu, Fe, Mn, Mo, Pb, Ti, Si, Na, and As. Furthermore, since the use of the solvent of the present invention brings about a large viscosity reduction effect on the sample, the present invention is particularly suitable for plasma emission spectrometry, which is said to be more susceptible to sample viscosity than atomic absorption spectrometry. The practical value of the solvent is great. The present invention will be further explained below with reference to Examples.
The present invention is not limited thereby. Example 1 As the solvent of the present invention, S 1 , S 2 ,
Four types of solvents, S 3 and S 4 , and a fifth solvent, S 5 , obtained from crude oil were prepared by the following steps.

【表】 比重0.8067、イオウ分0.07重量%、流動点−32
℃、芳香族成分27.1重量%(160〜250℃留分中)
の中東原油2.5万バーレルを常圧蒸留塔に導入し
た。 蒸留塔を350℃、1.3Kg/cm2(フラツシユ帯域)
で運転し、0.7万バーレルの中間留分を抜き出し
た。次に、この留分を、水素化脱硫装置へ導入し
270℃、13Kg/cm2の条件で、水素化脱硫処理を行
つた。水素含有ガスは30m3/K1(75モル%水素、
標準状態に換算)で供給し、表2の溶剤S5を得
た。
[Table] Specific gravity 0.8067, sulfur content 0.07% by weight, pour point -32
°C, aromatic component 27.1% by weight (in the 160-250 °C fraction)
25,000 barrels of Middle Eastern crude oil was introduced into the atmospheric distillation column. Distillation column at 350℃, 1.3Kg/cm 2 (Flush zone)
The plant was operated at 7,000 barrels of middle distillate. Next, this fraction is introduced into the hydrodesulfurization equipment.
Hydrodesulfurization treatment was carried out under the conditions of 270°C and 13 kg/cm 2 . Hydrogen-containing gas is 30m 3 /K1 (75 mol% hydrogen,
Solvent S 5 in Table 2 was obtained.

【表】 但し、各成分の値は比重、屈折率及び粘度等の
測定から決定した。 次に、比重(15/4℃)0.8983、粘度105.9セ
ンチストークス(40℃)、11.5センチストークス
(100℃)、色相(ASTM規格)4.0、引火点254
℃、流動点−25℃の潤滑油組成物試料約1グラム
を0.001グラムの精度で秤量し、約50m1の上記
各溶剤を加え、試料を希釈振とうし、5種類の試
料溶液を調整した。 このように調整した各試料溶液を島津製作所製
プラズマ発光分光分析装置(ICPQ−100型)を用
いて、常法に従い分析を行い表3の結果を得た。
[Table] However, the values of each component were determined from measurements of specific gravity, refractive index, viscosity, etc. Next, specific gravity (15/4℃) 0.8983, viscosity 105.9 centistokes (40℃), 11.5 centistokes (100℃), hue (ASTM standard) 4.0, flash point 254
About 1 gram of a lubricating oil composition sample at a temperature of -25 DEG C. and a pour point of -25 DEG C. was weighed to an accuracy of 0.001 gram, about 50 ml of each of the above solvents was added, and the sample was diluted and shaken to prepare five types of sample solutions. Each of the sample solutions prepared in this way was analyzed using a plasma emission spectrometer (ICPQ-100 model) manufactured by Shimadzu Corporation according to a conventional method, and the results shown in Table 3 were obtained.

【表】 但し測定値は夫々重量%である。 これにより、本発明の溶剤を用いたプラズマ発
光分光分析値は、いずれも、基準とした化学分析
値と同様に、高い測定精度を有すことが確認され
た。 実施例 2
[Table] However, each measured value is in weight%. As a result, it was confirmed that all of the plasma emission spectroscopic analysis values using the solvent of the present invention had high measurement accuracy, similar to the chemical analysis values used as the standard. Example 2

【表】【table】

【表】 の本発明の溶剤を用いた他は実施例1と同様にし
て、Zn、Ba、Pの夫々について0.046、0.115、
0.040重量%の値を得た。 この結果は本溶剤の使用が極めて高い精度で被
測定元素を定量するのに有効であることを支持す
るものである。 実施例 3 実施例1で用いたと同じ本発明の溶剤S5を用
い、比重(15/4℃)0.9016、粘度86.1センチス
トークス(40℃)、6.3センチストークス(100
℃)、色相(ASTM規格)6.5、引火点236℃の潤
滑油組成物試料を希釈した他は、実施例1と同様
にして、次の結果を得た。
[Table] In the same manner as in Example 1 except that the solvent of the present invention was used, Zn, Ba, and P were 0.046, 0.115,
A value of 0.040% by weight was obtained. This result supports that the use of this solvent is effective for quantifying the analyte element with extremely high precision. Example 3 Using the same inventive solvent S 5 as used in Example 1, specific gravity (15/4°C) 0.9016, viscosity 86.1 centistokes (40°C), 6.3 centistokes (100
The following results were obtained in the same manner as in Example 1, except that a lubricating oil composition sample having a color (ASTM standard) of 6.5 and a flash point of 236°C was diluted.

【表】 この結果から、本発明の溶剤は従来法に比し、
多種の元素を極めて高い精度で分析するのに適し
ていることがわかる。 実施例 4 石油製品添加剤(バリウムフオスフエート比重
1.0831、粘度16.98センチストークス(100℃)、
(引火点198℃)を試料とした他は、実施例3と同
様にして、バリウム及びリンを定量した。
[Table] From this result, the solvent of the present invention has a lower
It can be seen that it is suitable for analyzing a wide variety of elements with extremely high precision. Example 4 Petroleum product additive (barium phosphate specific gravity
1.0831, viscosity 16.98 centistokes (100℃),
Barium and phosphorus were quantified in the same manner as in Example 3, except that (flash point: 198°C) was used as a sample.

【表】 含有量の測定値は重量%
表6に示す如く、キシレン25重量%、メチルイ
ソブチルケトン75重量%の従来法によつては、試
料がこの混合溶剤に殆んど溶解しないため、実際
の含有量から大きくかけ離れた分析値を示すのに
対し、本発明の溶剤を使用した場合には、極めて
良い結果が得られた。 実施例 5 比重(15/4℃)0.9712、粘度167センチスト
ークス(50℃)、引火点94℃、流動点10℃、残留
炭素2.47重量%の重油試料を用いた他は、実施例
3と同様にして、ニツケル及びバナジウムを定量
した。
[Table] Content measurements are in weight%
As shown in Table 6, in the conventional method using 25% by weight of xylene and 75% by weight of methyl isobutyl ketone, the sample hardly dissolves in this mixed solvent, resulting in analytical values that are far different from the actual contents. On the other hand, when the solvent of the present invention was used, extremely good results were obtained. Example 5 Same as Example 3 except that a heavy oil sample with specific gravity (15/4°C) 0.9712, viscosity 167 centistokes (50°C), flash point 94°C, pour point 10°C, and residual carbon 2.47% by weight was used. Nickel and vanadium were quantitatively determined.

【表】 上表に示す如く、本発明の溶剤は、重油の分析
にも極めて良好である。 実施例 6 実施例1で用いた本発明の溶剤を用いた場合
と、キシレン100%及びキシレン2重量%、メチ
ルイソブチルケトン75重量%の混合溶剤を用いた
場合のくり返し測定精度を、Zn、Ca、Ba、P、
Mg、Bの各元素の測定について求めた。
[Table] As shown in the above table, the solvent of the present invention is also extremely suitable for the analysis of heavy oil. Example 6 The repeated measurement accuracy was measured using the solvent of the present invention used in Example 1 and a mixed solvent of 100% xylene, 2% by weight of xylene, and 75% by weight of methyl isobutyl ketone. ,Ba,P,
Measurements of each element, Mg and B, were obtained.

【表】 これらの結果から、本発明の溶剤を使用した場
合にはバラツキが小さく、安定した測定結果が得
られることがわかる。 これにより、本発明の溶剤が、従来の溶剤が有
する欠点をなくした、極めて良好なものであるこ
とがわかる。
[Table] These results show that when the solvent of the present invention is used, the variation is small and stable measurement results can be obtained. This shows that the solvent of the present invention is extremely good, eliminating the drawbacks of conventional solvents.

Claims (1)

【特許請求の範囲】 1 発光分光分析において、試料を希釈又は溶解
するための石油系炭化水素からなる溶剤であつ
て、その組成が芳香族成分15〜50重量%、パラフ
イン成分40〜80重量%からなり、溶剤の沸点範囲
が150〜200℃であることを特徴とする、発光分光
分析用溶剤。 2 第三の成分として、65重量%以下のナフテン
成分を含むことを特徴とする、特許請求の範囲第
1項に記載の発光分光分析用溶剤。
[Claims] 1. A solvent made of petroleum hydrocarbon for diluting or dissolving a sample in emission spectrometry, the composition of which is 15 to 50% by weight of aromatic components and 40 to 80% by weight of paraffin components. A solvent for emission spectrometry, characterized in that the solvent has a boiling point range of 150 to 200°C. 2. The solvent for emission spectroscopic analysis according to claim 1, which contains 65% by weight or less of a naphthene component as the third component.
JP3592082A 1982-03-09 1982-03-09 Solvent for atomic absorbance analysis or emission spectrochemical analysis Granted JPS58153146A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3592082A JPS58153146A (en) 1982-03-09 1982-03-09 Solvent for atomic absorbance analysis or emission spectrochemical analysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3592082A JPS58153146A (en) 1982-03-09 1982-03-09 Solvent for atomic absorbance analysis or emission spectrochemical analysis

Publications (2)

Publication Number Publication Date
JPS58153146A JPS58153146A (en) 1983-09-12
JPH0451783B2 true JPH0451783B2 (en) 1992-08-20

Family

ID=12455462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3592082A Granted JPS58153146A (en) 1982-03-09 1982-03-09 Solvent for atomic absorbance analysis or emission spectrochemical analysis

Country Status (1)

Country Link
JP (1) JPS58153146A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4671012B2 (en) * 2001-09-03 2011-04-13 三菱瓦斯化学株式会社 Method for analyzing metal components of high purity adamantanes
CN108074256B (en) * 2016-11-11 2022-03-04 中国石油化工股份有限公司抚顺石油化工研究院 Sulfide information extraction method, device and system based on distributed processing
CN108074225B (en) * 2016-11-11 2022-03-08 中国石油化工股份有限公司抚顺石油化工研究院 Sulfide information extraction method and device

Also Published As

Publication number Publication date
JPS58153146A (en) 1983-09-12

Similar Documents

Publication Publication Date Title
KR100813745B1 (en) Flexible method for producing oil bases and distillates from feedstock containing heteroatoms
Di Carlo et al. Composition and visbreakability of petroleum residues
CN110121545A (en) Oil base stock and lubricant oil composite containing the oil base stock
AU2022202785A1 (en) Middle distillate hydrocracking catalyst with a base extrudate having a high nanopore volume
Tam et al. Desulfurization of fuel oil by oxidation and extraction. 2. Kinetic modeling of oxidation reaction
Korcek et al. Relation between base oil composition and oxidation stability at increased temperatures
Curtis et al. Activity and selectivity of three molybdenum catalysts for coal liquefaction reactions
CN101326270A (en) Fischer-tropsch derived turbine fuel and process for making same
Iovik et al. Thermal transformations of sulfur-containing components of oxidized vacuum gas oil
JPH051290A (en) Method for manufacturing oxidation-stable and low temperature-stable base oil and middle cut
FR2617412A1 (en) CATALYST COMPRISING A MINERAL SUPPORT, PHOSPHORUS AND BORON, METHODS OF PREPARATION AND USE IN HYDROREFINING OF OIL CUTS
JP4464606B2 (en) Method for measuring heteroatom content in Fischer-Tropsch wax
JPH0451783B2 (en)
US3989617A (en) Catalytic treatment of lubrication oil base stock for improvement of oxidative stability
US3155607A (en) Process for the production of heavy heating oils having low sulfur contents
Dolbear et al. Upgrading studies with Californian, Mexican and Middle Eastern heavy oils
Whitehead Status of work in separation and identification of sulphur compounds in petroleum and shale oil
CA1090275A (en) Base-oil compositions
Goncharov et al. Calculation of the rate constants of thermal cracking and condensation reactions of high-sulfur tar asphaltenes
Wanless et al. Properties of High Boiling Petroleum Products. Physical and Chemical Characterization Studies with Relation to Polynuclear Aromatic Components
Srića et al. Determination of hydrocarbon type distribution of coking gasolines by nmr spectrometry
GB1572794A (en) Baseoil compositions
Koltai et al. Hydrodesulfurization of diesel feeds by association of a catalytic process and a separation process using charge-transfer complexes
GB2024852A (en) Lubricating oils
KOSUGI et al. Structural changes of heavy oil fractions in hydrodesulfurization