JPH0451560B2 - - Google Patents

Info

Publication number
JPH0451560B2
JPH0451560B2 JP14527285A JP14527285A JPH0451560B2 JP H0451560 B2 JPH0451560 B2 JP H0451560B2 JP 14527285 A JP14527285 A JP 14527285A JP 14527285 A JP14527285 A JP 14527285A JP H0451560 B2 JPH0451560 B2 JP H0451560B2
Authority
JP
Japan
Prior art keywords
compound
mol
reaction
trihydroperfluorobutanol
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14527285A
Other languages
Japanese (ja)
Other versions
JPS624296A (en
Inventor
Takuro Morimoto
Takefumi Nakanaga
Juji Tada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seisan Kaihatsu Kagaku Kenkyusho
Original Assignee
Seisan Kaihatsu Kagaku Kenkyusho
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seisan Kaihatsu Kagaku Kenkyusho filed Critical Seisan Kaihatsu Kagaku Kenkyusho
Priority to JP14527285A priority Critical patent/JPS624296A/en
Publication of JPS624296A publication Critical patent/JPS624296A/en
Publication of JPH0451560B2 publication Critical patent/JPH0451560B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Lubricants (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、新規なフルオロアルコキシ環状ホス
ホニトリレートに関するものであり、さらに詳し
くは、1,1,3−トリヒドロパーフルオロブチ
ルオキシ基を有するフルオロアルコキシ環状ホス
ホニトリレートと、その製造法及び用途に関する
ものである。 本発明に係る物質(以下「本件化合物」とい
う。)の用途としては、基本骨格とその構成元素
および物性から、不燃性の潤滑油、作動油を挙げ
ることができる。 〔従来技術〕と〔発明が解決しようとする問題
点〕 一般に、アルコキシホスホニトリレートの製造
においては、ピリジン等の第三級アミンや炭酸カ
リウム等のアルカリ金属塩のようなハロゲン化水
素捕捉剤の存在下、アルコールとホスホニトリル
クロリドの反応が行なわれており、有用な、レー
ヨン用難燃剤であるプロポキシホスホニトリレー
トは、この方法で工業的に製造されている。しか
しながら、この方法ではフルオロアルコールは反
応せず、特に残留塩素や転位のない、完全置換の
フルオロアルコキシホスホニトリレートの製造は
困難であつた。 本発明者らは、各種フルオロアルコキシ環状ホ
スホニトリレート物性を詳細に検討した結果、炭
素数3〜7のフルオロアルコキシ基を有する分子
量1500〜2500のフルオロアルコキシ環状ホスホニ
トリレートが作動油としての物性を有し、特に、
炭素数4〜6のフルオロアルコキシ基を有する分
子量1500〜2000程度のものが低温流動製、粘性、
蒸気圧等に適切な値を持つのではないかと考え
た。 現在工業的に製造可能なフルオロアルコールと
しては、テトラフルオロエチレンを原料とする H(CF2CF2XCH2OH(X=1〜7の混合物)、 CF3CF2(CF2CF2yCH2OH(y=1〜7の混合物)
やヘキサフルオロプロピレンを原料とする (CF32CHOH,CF3CFHCF2CH2OHの他、CF3
CH2OH,CF3CF2CH2OH等がある。テトラフル
オロエチレンを原料とするアルコールはテロマー
混合物のため目的、用途のためには分留を要し、
また、テトラフルオロエチレン自身の取扱いにも
問題があり、輸送はできず、製造時の安全面でも
難点がある。他方、ヘキサフルオロプロピレンは
取扱いが容易であることと、テロメリ化を行なわ
ないことから、目的物を得るための選択率、収率
の点で本質的な経済性を有している。特に1,
1,3−トリヒドロパーフルオロブタノールは一
工程の反応で得られることから、前記用途に対
し、適当なフルオロアルコールと思われる。 しかし、1,1,3−トリヒドロパーフルオロ
ブタノールはアルカリ条件下において、脱フツ化
水素を起し、下式のごとく副生物を生じ脱酸剤を
消費するため、高純度の完全置換フルオロアルコ
キシ環状ホスホニトリレートが得られなかつたも
のと考えられる。そして、不完全な置換体は、残
存する活性ハロゲンにより、耐熱性が悪くなり、
また、水分により加水分解を受け、金属腐食を起
す等、当該用途に対して大きな欠点を有してい
る。 ちなみに、1,1,3−トリヒドロパーフルオ
ロブタノールの各種塩基等モル量存在下における
フツ化水素の脱離の程度を知るため本発明者が予
備的に行なつた試験の結果は次表
[Industrial Application Field] The present invention relates to a novel fluoroalkoxy cyclic phosphonitrilate, and more specifically, a fluoroalkoxy cyclic phosphonitrilate having a 1,1,3-trihydroperfluorobutyloxy group. , its manufacturing method and uses. Applications of the substance according to the present invention (hereinafter referred to as "the compound") include nonflammable lubricating oils and hydraulic oils based on the basic skeleton, its constituent elements, and physical properties. [Prior Art] and [Problems to be Solved by the Invention] Generally, in the production of alkoxyphosphonitrilates, hydrogen halide scavengers such as tertiary amines such as pyridine and alkali metal salts such as potassium carbonate are used. Propoxyphosphonitrile, a useful flame retardant for rayon, is produced industrially by this method. However, in this method, fluoroalcohols do not react, and it is particularly difficult to produce fully substituted fluoroalkoxyphosphonitrites without residual chlorine or rearrangement. As a result of a detailed study of the physical properties of various fluoroalkoxy cyclic phosphonitrilates, the present inventors found that fluoroalkoxy cyclic phosphonitrilates with a molecular weight of 1,500 to 2,500 and having a fluoroalkoxy group having 3 to 7 carbon atoms exhibit physical properties as hydraulic fluids. have, especially
Those with a molecular weight of about 1,500 to 2,000 and having a fluoroalkoxy group with a carbon number of 4 to 6 are made of low-temperature flow, viscous,
I thought that it might have an appropriate value for vapor pressure, etc. Currently, fluoroalcohols that can be produced industrially include H(CF 2 CF 2 ) X CH 2 OH (mixture of X=1 to 7), CF 3 CF 2 (CF 2 CF 2 ), which is made from tetrafluoroethylene. y CH 2 OH (mixture of y = 1 to 7)
In addition to (CF 3 ) 2 CHOH, CF 3 CFHCF 2 CH 2 OH, which uses hexafluoropropylene as raw material, CF 3
There are CH 2 OH, CF 3 CF 2 CH 2 OH, etc. Alcohol made from tetrafluoroethylene is a mixture of telomers and requires fractional distillation for its purpose and use.
Additionally, there are problems in the handling of tetrafluoroethylene itself, making it impossible to transport, and there are safety issues during production. On the other hand, since hexafluoropropylene is easy to handle and does not undergo telomerization, it is essentially economical in terms of selectivity and yield for obtaining the desired product. Especially 1,
Since 1,3-trihydroperfluorobutanol can be obtained in a one-step reaction, it appears to be a suitable fluoroalcohol for the above applications. However, 1,1,3-trihydroperfluorobutanol undergoes dehydrofluorination under alkaline conditions, producing by-products as shown in the formula below and consuming the deoxidizing agent. It is thought that the cyclic phosphonitrilate was not obtained. Incompletely substituted products have poor heat resistance due to the remaining active halogen,
In addition, it has major drawbacks for this purpose, such as being hydrolyzed by moisture and causing metal corrosion. Incidentally, the results of a preliminary test conducted by the present inventor to determine the degree of elimination of hydrogen fluoride in the presence of equimolar amounts of various bases of 1,1,3-trihydroperfluorobutanol are shown in the table below.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者は前記諸点に鑑み、詳細なる反応の研
究の結果、水素化ナトリウムを徐々に添加しつつ
反応を行なうことにより1,1,3−トリヒドロ
パーフルオロブタノールから、脱フツ化水素を起
こすことなく容易に高収率で本件化合物を製造し
うる方法を開発し本発明を完成した。 即ち、本発明は 式 〔(CF3CFHCF2CH2O)n(HCF2CF2CF2CF2
CH2O)2o-n(PN)o〕 ……() (式中n3又は4、mは1≦m≦2n−1の整数
を意味する。)で表わされるフルオロアルコキシ
環状ホスホニトリレート、 1,1,3−トリヒドロパーフルオロブタノ
ールと1,1,5−トリヒドロパーフルオロペ
ンタノールとホスホニトリルクロリドトリマー
又は/及びホスホニトリルクロリドテトラマー
とを、水素化ナトリウムを徐々に添加しつつ溶
媒下に反応させることを特徴とする、前記
()式で表わされる本件化合物の製造法、 及び 前記で()式で表わされる本件化合物を主
成分とするロータリーポンプ油、 を提供するものである。 ()式の化合物のホスホニトリル環(PN)o
への(CF3CFHCF2CH2O)と(HCF2CF2CF2
CF2CH2O)との導入比率は、後述の実施例にも
みられる如く、原料化合物である1,1,3−ト
リフドロパーフルオロブタノールと1,1,5−
トリヒドロパーフルオロペンタノールとの仕込み
モル比率に相応したものとなるため、本件化合物
のmの値を設定し、設定通りの目的物を得ること
は容易である。 一方、ホスホニトリル環のnの値は、原料の環
状ホスホニトリルクロリドとして、ホスホニトリ
ルクロリドトリマーを使用するか、ホスホニトリ
ルクロリドテトラマーを使用するかによつて3又
は4のいずれかに決定することができる。 この様に本件化合物は、あらかじめ原料を選択
し、その配合比を設定すれば、n,mの値が一様
の単一化合物として得られるが、本件化合物を各
種本件化合物の混合物の状態で得るために、原料
の環状ホスホニトリルクロリドを2種類混合して
用いることも可能である。 前述の本発明の反応機構は充分解明されてい
ないものの、水素化ナトリウムと反応液との固液
不均一反応であることから、水素化ナトリウム表
面での反応が律速となり、脱フツ化水素反応を抑
制しているものと思われる。 本発明の方法は、本件化合物の製造のみではな
く、1,1,3−トリヒドロパーフルオロブタノ
ールや2−ヒドロパーフルオロイソプロパノール
を用いた、酸クロライド等のエステル化反応にも
非常に有効と思われる。 〔実施例等〕 実施例 1 攪拌装置、温度計、還流冷却器、粉体投入器を
備えた1の四ツ口フラスコに1,1,3−トリ
ヒドロパーフルオロブタノール45.5g(0.25モ
ル)と1,1,5−トリヒドロパーフルオロペン
タノール58g(0.25モル)と、ホスホニトリルク
ロリドテトラマー23g(0.2ユニツトモル)、およ
びエチルエーテル300mlを仕込み、粉体投入器に
水素化ナトリウムの粉末10g(0.48モル)を入れ
て取付ける。攪拌下、粉体投入器より、水素ナト
リウム粉末を徐々に添加し、36℃で4時間反応を
行なつた。反応後、系内に冷水を注加し、生成し
た塩を溶解した後、エーテル100mlを追加し、分
液、水洗を4回行ない、硫酸マグネシウムで脱水
後、溶媒および過剰のフルオロアルコールを留去
して淡黄色の粗製物84g(92%)を得た。このも
のの残留活性塩素濃度は0.002%と、ほぼ完全な
置換がなされており、熱および水分に対する安定
性の危惧は全くなかつた。しかして、理論段数50
段の精密分留装置にて精留を行ない。沸点199〜
200℃/0.1mmHgで主留分を分取した。この液体
の比重は1.78(20℃)であり、粘度は160センチス
トークス(40℃)であり、屈折率は1.3559(20℃)
であつた。この化合物はシリコンOV−17を用い
たガスクロマトグラフイーより単一成分であるこ
とを、赤外吸収スペクトル(第1図)の1350cm-1
の吸収から四量体P=N環骨格の存在をプロント
核磁気共鳴スペクトル(第2図)の5〜6ppmと
6〜7.5ppmのピーク積分値の割合より二種のフ
ルオロアルコキシ基の置換比率が1:1であるこ
とを確認し、テトラキス(1,1,3−トリヒド
ロパーフルオロブチルオキシ)テトラキス(1,
1,5−トリヒドロパーフルオロペンチルオキ
シ)シクロテトラホスホニトリレート(以下化合
物Aという。)であることを確認した。 実施例 2 1,1,3−トリヒドロパーフルオロブタノー
ル68.3g(0.375モル)と1,1,5−トリヒド
ロパーフルオロペンタノール29g(0.125モル)
を用い、実施例1と同じ装置で、同様に反応を行
ない、同様に処理をして、淡黄色液体78g(90.3
%)を得た。このものの残留活性塩素濃度は
0.003%であり、前例同様精留により190〜191
℃/0.2mmHgの主留分を分取した。この液体の物
性値は、比重1.77(20℃)、粘度150センチストー
クス(40℃)、屈折率1.3571(20℃)であり、ガス
クロマトグラフイー、赤外吸収スペクトル(第3
図)、プロトン核磁気共鳴スペクトル(第4図)
よりヘキサキス(1,1,3−トリヒドロパーフ
ルオロブチルオキシ)ビス(1,1,5−トリヒ
ドロパーフルオロペンチルオキシ)シクロテトラ
ホスホニトリレート(以下化合物Bという。)で
あることを確認した。 実施例 3 1,1,3−トリヒドロパーフルオロブタノー
ル22.8g(0.125モル)と1,1,5−トリヒド
ロパーフルオロペンタノール87g(0.375モル)
を用いて前例と同様に反応、処理等を行ない、
210〜211℃/0.1mmHgの主留分を得た。前例と同
様な分析により、本化合物はビス(1,1,3−
トリヒドロパーフルオロブチルオキシ)ヘキサキ
ス(1,1,5−トリヒドロパーフルオロペンチ
ルオキシ)シクロラトテホスホニトリレートであ
ることを確認した。尚、本化合物の残留活性塩素
濃度は0.001%、物性値は、比重1.78(20℃)、粘
度177センチストークス(40℃)、屈折率1.3547
(20℃)であつた。 参考例 1,1,3−トリヒドロパーフルオロブタノー
ル91g(0.5モル)を用いて、前例と同様に反応、
処理を行ない、活性塩素濃度0.0002%の淡黄色の
液体73g(89.7%)を得た。蒸留して得た。沸点
175〜177℃/0.04mmHgの主留分は微黄色の液体
で、一夜静置により結晶化した。分析の結果、こ
の化合物は、融点59℃のオクタキス(1,1,3
−トリヒドロパーフルオロブチルオキシ)シクロ
ラトテホスホニトリレートであることを確認し
た。 比較例 1 1,1,3−トリヒドロパーフルオロブタノー
ル91g(0.5モル)とホスホニトリルクロリドト
リマー23g(0.2ユニツトモル)およびトリエチ
ルアミン61g(0.6モル)を用い、アセトニトリ
ル溶媒中78℃で6時間反応を行ない、前例と同様
な処理をし、黄色粘性液体8gと原料アルコール
73gを回収した。この黄色粘性液体は、前例と同
様な分析を行なつた結果、構造不明の混合物であ
つた。 比較例 2 約1mm角に細断したナトリウム片9.6g(0.42
モル)を使用して、参考例と同様に反応、処理を
行ない、蒸留後、沸点150〜200℃/0.1mmHgの主
留分31.5g(38.7%)を得た。このものの活性塩
素濃度は3.0%であつた。 実施例 4 1,1,3−トリヒドロパーフルオロブタノー
ル45.5g(0.25モル)と1,1,5−トリヒドロ
パーフルオロペンタノール58g(0.25モル)とホ
スホニトリルクロリドトリマー23g(0.2ユニツ
トモル)をエチルエーテル300mlに溶解し、水素
化ナトリウム10g(0.42モル)を使用して実施例
1の装置を用い同様に36℃で7時間反応を行な
い、同様に処理を行なつて、黄色粘性液体82g
(90%)を得た。残留活性塩素濃度は0.005%であ
つた。実施例1と同様に精留を行ない、沸点169
〜170℃/0.3mmHgの主留分を分取した。この化
合物は、実施例1と同様に分析し、ガスクロマト
グラフイーより単一成分であること、赤外吸収ス
ペクトル(第5図)の1250cm-1の吸収から、三量
体P=N環骨格が存在すること、また、プロトン
核磁気共鳴スペクトル(第6図)の、5〜6ppm
と6〜7.5ppmのピーク積分値の比率から、二種
類のフルオロアルコキシ基の置換比率が1:1で
あることから、トリス(1,1,3−トリヒドロ
パーフルオロブチルオキシ)トリス(1,1,5
−トリヒドロパーフルオロペンチルオキシ)シク
ロテトリホスホニトリレート(以下化合物Cとい
う。)であることを確認した。測定した物性値は、
比重1.78(20℃)、粘度90センチストークス(40
℃)、屈折率1.3526(20℃)であつた。 実施例 5 1,1,3−トリヒドロパーフルオロブタノー
ル30.3g(0.167モル)と1,1,5−トリヒド
ロパーフルオロペンタノール77.3g(0.333モル)
を用いて実施例4と同様な反応、処理、精留を行
ない、沸点180〜181℃/0.3mmHgの主留分を分取
した。前例と同様に分析し、ガスクロマトグラフ
イー、赤外吸収スペクトル(第7図)、プロトン
核磁気共鳴スペクトル(第8図)の結果から、本
化合物がビス(1,1,3−トリヒドロパーフル
オロブチルオキシ)テトラキス(1,1,5−ト
リヒドロパーフルオロペンチルオキシ)シクロト
リホスホニトリレート(以下化合物Dという。)
であることを確認した。 実施例 6 1,1,3−トリヒドロパーフルオロブタノー
ル75.8g(0.417モル)と1,1,5−トリヒド
ロパーフルオロペンタノール19.3g(0.083モル)
を用い、前列と同様に反応、処理、精留、分析を
行ない、沸点150〜151℃/0.4mmHgの留分がペン
タキス(1,1,3−トリヒドロパーフルオロブ
チルオキシ)1,1,5−トリヒドロパーフルオ
ロペンチルオキシシクロトリホスホニトリレート
であることを確認した。物性測定値は、比重1.78
(20℃)、粘度83センチストークス(40℃)、屈折
率1.3549(20℃)であつた。 実施例 7〜10 化合物A,B,C,Dを個別に用いて、回転翼
型二段式真空ポンプで7日間の連続運転テストを
行なつた結果を次表に示した。いずれの油を使用
した場合も、運転開始後1〜2時間で定常状態と
なり、以後、外温による変動以外は変化は認めら
れず良好であつた。試験後の油は、摺動材による
わずかな濁りを認めるのみでポンプ本体および粘
度等の物性に変化はなく、化合物A,B,C,D
が、ロータリーポンプ油として適したものである
ことが確認された。
In view of the above points, as a result of detailed reaction research, the present inventor has dehydrofluorinated 1,1,3-trihydroperfluorobutanol by carrying out the reaction while gradually adding sodium hydride. The present invention has been completed by developing a method for easily producing the compound in high yield without any problems. That is, the present invention has the following formula: [(CF 3 CFHCF 2 CH 2 O) n (HCF 2 CF 2 CF 2 CF 2
CH 2 O) 2o-n (PN) o ] ...() (In the formula, n3 or 4, m means an integer of 1≦m≦2n-1.) Fluoroalkoxy cyclic phosphonitrilate, 1 , 1,3-trihydroperfluorobutanol, 1,1,5-trihydroperfluoropentanol, and phosphonitrile chloride trimer or/and phosphonitrile chloride tetramer in a solvent while gradually adding sodium hydride. The present invention provides a method for producing the present compound represented by the above formula (), which is characterized by causing the compound to react, and a rotary pump oil containing the present compound represented by the above formula () as a main component. Phosphonitrile ring (PN) of compound of formula () o
(CF 3 CFHCF 2 CH 2 O) and (HCF 2 CF 2 CF 2
CF 2 CH 2 O) and 1,1,3-trifluoroperfluorobutanol, which are raw material compounds, and 1,1,5-
Since it corresponds to the molar ratio of the charged molar ratio with trihydroperfluoropentanol, it is easy to set the value of m of the present compound and obtain the desired product as set. On the other hand, the value of n in the phosphonitrile ring can be determined to either 3 or 4 depending on whether a phosphonitrile chloride trimer or a phosphonitrile chloride tetramer is used as the raw material cyclic phosphonitrile chloride. can. In this way, the Compound can be obtained as a single compound with uniform n and m values by selecting the raw materials in advance and setting their blending ratio, but the Compound can be obtained as a mixture of various Compounds. Therefore, it is also possible to use a mixture of two types of cyclic phosphonitrile chloride as raw materials. Although the reaction mechanism of the present invention described above has not been fully elucidated, since it is a solid-liquid heterogeneous reaction between sodium hydride and the reaction liquid, the reaction on the sodium hydride surface is rate-limiting, and the dehydrofluorination reaction is It seems to be suppressed. The method of the present invention is considered to be very effective not only for the production of the subject compound, but also for the esterification reaction of acid chlorides, etc. using 1,1,3-trihydroperfluorobutanol and 2-hydroperfluoroisopropanol. It will be done. [Examples, etc.] Example 1 45.5 g (0.25 mol) of 1,1,3-trihydroperfluorobutanol and Charge 58 g (0.25 mol) of 1,1,5-trihydroperfluoropentanol, 23 g (0.2 unit mol) of phosphonitrile chloride tetramer, and 300 ml of ethyl ether, and add 10 g (0.48 mol) of sodium hydride powder to a powder injector. ) and install it. While stirring, sodium hydrogen powder was gradually added from a powder injector, and the reaction was carried out at 36°C for 4 hours. After the reaction, add cold water to the system to dissolve the formed salt, then add 100 ml of ether, separate and wash with water 4 times, dehydrate with magnesium sulfate, and distill off the solvent and excess fluoroalcohol. 84 g (92%) of pale yellow crude product was obtained. The residual active chlorine concentration of this product was 0.002%, indicating almost complete replacement, and there was no concern about stability against heat and moisture. However, the number of theoretical plates is 50
Rectification is performed using a stage precision fractionator. Boiling point 199~
The main fraction was collected at 200°C/0.1mmHg. The specific gravity of this liquid is 1.78 (at 20°C), the viscosity is 160 centistokes (at 40°C), and the refractive index is 1.3559 (at 20°C)
It was hot. Gas chromatography using silicon OV-17 revealed that this compound is a single component, as shown in the infrared absorption spectrum (Figure 1) at 1350 cm -1.
The presence of a tetrameric P=N ring skeleton was confirmed from the absorption of Confirm that the ratio is 1:1, and add tetrakis(1,1,3-trihydroperfluorobutyloxy)tetrakis(1,
It was confirmed that the product was 1,5-trihydroperfluoropentyloxy)cyclotetraphosphonitrilate (hereinafter referred to as compound A). Example 2 68.3 g (0.375 mol) of 1,1,3-trihydroperfluorobutanol and 29 g (0.125 mol) of 1,1,5-trihydroperfluoropentanol
Using the same equipment as in Example 1, the reaction was carried out in the same manner and the treatment was carried out in the same manner to obtain 78 g (90.3 g) of pale yellow liquid.
%) was obtained. The residual active chlorine concentration of this product is
0.003%, and 190 to 191 by rectification as in the previous example.
The main fraction at °C/0.2 mmHg was collected. The physical properties of this liquid are specific gravity 1.77 (20℃), viscosity 150 centistokes (40℃), refractive index 1.3571 (20℃), gas chromatography, infrared absorption spectrum (3
Figure), proton nuclear magnetic resonance spectrum (Figure 4)
The product was confirmed to be hexakis(1,1,3-trihydroperfluorobutyloxy)bis(1,1,5-trihydroperfluoropentyloxy)cyclotetraphosphonitrilate (hereinafter referred to as compound B). Example 3 22.8 g (0.125 mol) of 1,1,3-trihydroperfluorobutanol and 87 g (0.375 mol) of 1,1,5-trihydroperfluoropentanol
Perform the reaction, treatment, etc. in the same manner as in the previous example using
A main fraction of 210-211°C/0.1 mmHg was obtained. Analysis similar to the previous example revealed that this compound was bis(1,1,3-
It was confirmed that it was trihydroperfluorobutyloxy)hexakis(1,1,5-trihydroperfluoropentyloxy)cyclolattephosphonitrilate. The residual active chlorine concentration of this compound is 0.001%, the physical properties are specific gravity 1.78 (20℃), viscosity 177 centistokes (40℃), and refractive index 1.3547.
(20℃). Reference Example Using 91 g (0.5 mol) of 1,1,3-trihydroperfluorobutanol, the reaction was carried out in the same manner as in the previous example.
After treatment, 73 g (89.7%) of a pale yellow liquid with an active chlorine concentration of 0.0002% was obtained. Obtained by distillation. boiling point
The main fraction at 175-177°C/0.04mmHg was a slightly yellow liquid that crystallized by standing overnight. As a result of analysis, this compound was found to be octakis (1,1,3
-trihydroperfluorobutyloxy) cyclolatetephosphonitrilate. Comparative Example 1 Using 91 g (0.5 mol) of 1,1,3-trihydroperfluorobutanol, 23 g (0.2 unit mol) of phosphonitrile chloride trimer, and 61 g (0.6 mol) of triethylamine, a reaction was carried out at 78°C for 6 hours in an acetonitrile solvent. , the same process as in the previous example was carried out, and 8 g of yellow viscous liquid and raw alcohol were added.
73g was recovered. Analysis of this yellow viscous liquid in the same manner as in the previous example revealed that it was a mixture of unknown structure. Comparative Example 2 9.6 g of sodium pieces shredded into approximately 1 mm squares (0.42
The reaction and treatment were carried out in the same manner as in Reference Example, and after distillation, 31.5 g (38.7%) of the main fraction with a boiling point of 150-200°C/0.1 mmHg was obtained. The active chlorine concentration of this product was 3.0%. Example 4 45.5 g (0.25 mol) of 1,1,3-trihydroperfluorobutanol, 58 g (0.25 mol) of 1,1,5-trihydroperfluoropentanol, and 23 g (0.2 unit mol) of phosphonitrile chloride trimer were mixed with ethyl The same reaction was carried out at 36°C for 7 hours using the apparatus of Example 1 using 10 g (0.42 mol) of sodium hydride dissolved in 300 ml of ether, and 82 g of yellow viscous liquid was obtained by carrying out the same treatment.
(90%). The residual active chlorine concentration was 0.005%. Rectification was carried out in the same manner as in Example 1, and the boiling point was 169.
The main fraction at ~170°C/0.3mmHg was collected. This compound was analyzed in the same manner as in Example 1, and gas chromatography showed that it was a single component, and from the absorption at 1250 cm -1 in the infrared absorption spectrum (Figure 5), it was found that the trimeric P=N ring skeleton was present. The presence of 5 to 6 ppm in the proton nuclear magnetic resonance spectrum (Figure 6)
From the ratio of the peak integral value between 1,5
-trihydroperfluoropentyloxy) cyclotetriphosphonitrilate (hereinafter referred to as compound C). The measured physical property values are
Specific gravity 1.78 (20℃), viscosity 90 centistokes (40
℃), and the refractive index was 1.3526 (at 20℃). Example 5 30.3 g (0.167 mol) of 1,1,3-trihydroperfluorobutanol and 77.3 g (0.333 mol) of 1,1,5-trihydroperfluoropentanol
The reaction, treatment, and rectification were carried out in the same manner as in Example 4, and the main fraction with a boiling point of 180 to 181°C/0.3 mmHg was collected. Analyzes were conducted in the same manner as in the previous example, and the results of gas chromatography, infrared absorption spectrum (Figure 7), and proton nuclear magnetic resonance spectrum (Figure 8) revealed that this compound was bis(1,1,3-trihydroperfluorinated). butyloxy)tetrakis(1,1,5-trihydroperfluoropentyloxy)cyclotriphosphonitrilate (hereinafter referred to as Compound D)
It was confirmed that Example 6 75.8 g (0.417 mol) of 1,1,3-trihydroperfluorobutanol and 19.3 g (0.083 mol) of 1,1,5-trihydroperfluoropentanol
The reaction, treatment, rectification, and analysis were carried out in the same manner as in the previous column. -trihydroperfluoropentyloxycyclotriphosphonitrilate. Physical property measurement value is specific gravity 1.78
(20°C), viscosity 83 centistokes (40°C), and refractive index 1.3549 (20°C). Examples 7 to 10 Compounds A, B, C, and D were individually used in a 7-day continuous operation test using a rotary vane type two-stage vacuum pump, and the results are shown in the following table. Regardless of which oil was used, a steady state was reached within 1 to 2 hours after the start of operation, and after that, no changes other than fluctuations due to external temperature were observed and the results were good. After the test, the oil showed only slight turbidity due to the sliding material, but there was no change in the pump body or physical properties such as viscosity, and it was found that compounds A, B, C, and D
was confirmed to be suitable as rotary pump oil.

〔発明の効果〕〔Effect of the invention〕

本発明は、脱フツ化水素を起し易い1,1,3
−トリヒドロパーフルオロブタノールであつて
も、脱フツ化水素を起すことなく、環状ホスホニ
トリルクロリドと反応させることができ、しかも
完全置換のフルオロアルコキシ環状ホスホニトリ
レートを高収率で得ることのできる製法を見い出
し、これによつて、ロータリーポンプ油として適
切な、新規なフルオロアルコキシ環状ホスホニト
リレートの提供を可能にしたものであつて、産業
への利用度の高いものである。
The present invention uses 1, 1, 3, which are likely to cause dehydrofluorination.
- Even trihydroperfluorobutanol can be reacted with cyclic phosphonitrile chloride without dehydrofluorination, and fully substituted fluoroalkoxy cyclic phosphonitrile can be obtained in high yield. We have discovered a manufacturing method, which has made it possible to provide a new fluoroalkoxy cyclic phosphonitrilate suitable as a rotary pump oil, which has high industrial applicability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、実施例1で得た化合物の赤外吸収ス
ペクトル、第2図は同化合物のプロトン核磁気共
鳴スペクトルである。第3図は実施例2で得た化
合物の赤外吸収スペクトル、第4図は同化合物の
プロトン核磁気共鳴スペクトルである。第5図
は、実施例4で得た化合物の赤外吸収スペクト
ル、第6図は同化合物のプロトン核磁気共鳴スペ
クトルである。第7図は実施例5で得た化合物の
赤外吸収スペクトル、第8図は同化合物のプロト
ン核磁気共鳴スペクトルである。
FIG. 1 shows an infrared absorption spectrum of the compound obtained in Example 1, and FIG. 2 shows a proton nuclear magnetic resonance spectrum of the same compound. FIG. 3 shows an infrared absorption spectrum of the compound obtained in Example 2, and FIG. 4 shows a proton nuclear magnetic resonance spectrum of the same compound. FIG. 5 shows an infrared absorption spectrum of the compound obtained in Example 4, and FIG. 6 shows a proton nuclear magnetic resonance spectrum of the same compound. FIG. 7 shows an infrared absorption spectrum of the compound obtained in Example 5, and FIG. 8 shows a proton nuclear magnetic resonance spectrum of the same compound.

Claims (1)

【特許請求の範囲】 1 式 〔(CF3CFHCF2CH2O)n(HCF2CF2CF2CF2
CH2O)2o-n(PN)o〕 (式中nは3又は4、mは1≦m≦2n−1の
整数を意味する。)で表わされるフルオロアルコ
キシ環状ホスホニトリレート。 1,1,3−トリヒドロパーフルオロブタノ
ールと1,1,5−トリヒドロパーフルオロペ
ンタノールとホスホニトリルクロリドトリマー
又は/及びホスホニトリルクロリドテトラマー
とを、水素化ナトリウムを徐々に添加しつつ反
応させることを特徴とする、式 〔(CF3CFHCF2CH2O)n(HCF2CF2CF2CF2
CH2O)2o-n(PN)o〕 (式中nは3又は4、mは1≦m≦2n−1の
整数を意味する。)で表わされるフルオロアルコ
キシ環状ホスホニトリレートの製造法。 式 〔(CF3CFHCF2CH2O)n(HCF2CF2CF2CF2
CH2O)2o-n(PN)o〕 (式中nは3又は4、mは1≦m≦2n−1の
整数を意味する。)で表わされるフルオロアルコ
キシ環状ホスホニトリレートを主成分とするロー
タリーポンプ油。
[Claims] 1 Formula [(CF 3 CFHCF 2 CH 2 O) n (HCF 2 CF 2 CF 2 CF 2
CH 2 O) 2o-n (PN) o ] (wherein n means 3 or 4, m means an integer of 1≦m≦2n-1). Reacting 1,1,3-trihydroperfluorobutanol, 1,1,5-trihydroperfluoropentanol, and phosphonitrile chloride trimer or/and phosphonitrile chloride tetramer while gradually adding sodium hydride. The formula [(CF 3 CFHCF 2 CH 2 O) n (HCF 2 CF 2 CF 2 CF 2
A method for producing a fluoroalkoxy cyclic phosphonitrite represented by CH 2 O) 2o-n (PN) o ] (in the formula, n is 3 or 4, and m is an integer of 1≦m≦2n-1). Formula [(CF 3 CFHCF 2 CH 2 O) n (HCF 2 CF 2 CF 2 CF 2
CH 2 O) 2o-n (PN) o ] (where n is 3 or 4, m is an integer of 1≦m≦2n-1) as the main component. rotary pump oil.
JP14527285A 1985-07-01 1985-07-01 Fluoroalkoxy cyclic phosphonitrilate, production of said substance and rotary pump oil consisting essentially of said substance Granted JPS624296A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14527285A JPS624296A (en) 1985-07-01 1985-07-01 Fluoroalkoxy cyclic phosphonitrilate, production of said substance and rotary pump oil consisting essentially of said substance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14527285A JPS624296A (en) 1985-07-01 1985-07-01 Fluoroalkoxy cyclic phosphonitrilate, production of said substance and rotary pump oil consisting essentially of said substance

Publications (2)

Publication Number Publication Date
JPS624296A JPS624296A (en) 1987-01-10
JPH0451560B2 true JPH0451560B2 (en) 1992-08-19

Family

ID=15381296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14527285A Granted JPS624296A (en) 1985-07-01 1985-07-01 Fluoroalkoxy cyclic phosphonitrilate, production of said substance and rotary pump oil consisting essentially of said substance

Country Status (1)

Country Link
JP (1) JPS624296A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63240245A (en) * 1987-03-27 1988-10-05 Sharp Corp Calling system using telephone terminal set
JPH02135402U (en) * 1989-04-17 1990-11-09

Also Published As

Publication number Publication date
JPS624296A (en) 1987-01-10

Similar Documents

Publication Publication Date Title
US3535388A (en) 1-chloro-2,2,2-trifluoroethyl difluoromethyl ether
JP2525426B2 (en) Process for producing fluoroaliphatic ether-containing carbonyl fluoride composition
EP0388114B1 (en) Process for production of 1,2,2,2,- Tetrafluoro-ethyl difluoromethyl ether
US2671799A (en) Perhalocarbon compounds and method of preparing them
US2490764A (en) Fluorinated organic compounds
HOFFMANN ALIPHATIC FLUORIDES. II. 1-HALOGENO-ι-FLUOROALKANES1
US2549988A (en) Manufacture of organic fluorine compounds
Riley et al. The synthesis of fluoroether-fluorosilicone hybrid polymers
Krespan Fluoroalkyl azide chemistry
US4033984A (en) Process for the manufacture of perfluoralkoxy-propionic acid fluoride
JPH0451560B2 (en)
US3527813A (en) 1,1,2 - trifluoro - 2 - chloroethyl difluoromethyl ether and its method of preparation
JPS5940376B2 (en) Production method of difluoromalonyl fluoride
JP4804762B2 (en) Method for producing fluorohalogen ether
US3080428A (en) Polyhalopropyl ethers and process for making them
US3666864A (en) Compositions and methods for producing anesthesia
Zheng et al. Synthesis of 1, 1-difluoro-2-azaperhalo-1-butenes and their conversion to oxaziridines
US2546997A (en) Perfluoro carbon compounds
US3609196A (en) Ether compounds
US2751414A (en) Perhalocarbon compounds and method of preparing them
US3047610A (en) Process for preparing highly fluorinated acid chlorides and novel esters useful therein
US3869519A (en) Fluorinated ether
US3758538A (en) (CF{11 ){11 {11 CFO{116 Ag{115
Kvíčala et al. Ionic telomerization of chlorofluoropropionyl fluorides with hexafluoropropene oxide
JPH06279331A (en) Perfluoro-4-methyl-2-pentane with high purity, preparation thereof and use thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees