JPH0451559B2 - - Google Patents

Info

Publication number
JPH0451559B2
JPH0451559B2 JP10354385A JP10354385A JPH0451559B2 JP H0451559 B2 JPH0451559 B2 JP H0451559B2 JP 10354385 A JP10354385 A JP 10354385A JP 10354385 A JP10354385 A JP 10354385A JP H0451559 B2 JPH0451559 B2 JP H0451559B2
Authority
JP
Japan
Prior art keywords
oil
range
real number
phosphonitrile
viscosity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10354385A
Other languages
Japanese (ja)
Other versions
JPS61260088A (en
Inventor
Takuro Morimoto
Takefumi Nakanaga
Juji Tada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seisan Kaihatsu Kagaku Kenkyusho
Original Assignee
Seisan Kaihatsu Kagaku Kenkyusho
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seisan Kaihatsu Kagaku Kenkyusho filed Critical Seisan Kaihatsu Kagaku Kenkyusho
Priority to JP10354385A priority Critical patent/JPS61260088A/en
Publication of JPS61260088A publication Critical patent/JPS61260088A/en
Publication of JPH0451559B2 publication Critical patent/JPH0451559B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Lubricants (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

「産業上の利用分野」 本発明は、新規なフルオロアルコキシ環状ホス
ホニトリルエステルに関するものであり、さらに
詳しくは、1,1,1,3,3,3−ヘキサフル
オロ−2−プロポキシ基を有するフルオロアルコ
キシ環状ホスホニトリルエステルと、その用途に
関するものである。 本発明に係る物質(以下、「本件物質」とい
う。)は、ホスホニトリルハライドの環状オリゴ
マ−(3量体もしくは4量体、あるいはそれら、
および5量体以上との混合物)と1,1,1,
3,3,3−ヘキサフルオロ−2−プロパノール
および一種もしくは二種以上の1,1,w−トリ
ヒドロ パーフルオロアルコール(C=3,5,
7,9)を反応させて得られる物質であり、次式
()で示される混合フルオロアルコキシ環状ホ
スホニトリルエステルである。 〔{CF32CHO}l{H(CF2CF2nCH2O}2o-l
(PN)o〕 ……() (式中(PN)oはホスホニトリル環を意味し、
mは1.3≦m≦2.8なる範囲内、nは3≦n≦4.3な
る範囲内、lは1≦l≦2n−1なる範囲内の実
数値を夫々意味する。) 本件物質の用途としては、基本構造とその構成
元素および物性から、不燃性の潤滑油、作動油が
考えられ、特に適用した用途としてロータリーポ
ンプ油を挙げることができる。 「従来の技術」と「発明が解決しようとする問題
点」 ロータリーポンプ油は各種潤滑油の中でも特に
品質の要求がきびしく、低い蒸気圧と、低い粘
度、および適正な粘度指数を有し、氷点下数十度
でも流動性を保ち、酸化安定性と耐熱性にすぐ
れ、かつ、潤滑特性の良好なことが必要とされ
る。 一般のロータリーポンプ油としては、40℃の動
粘度が30ないし150センチストークスの石油潤滑
油留分をさらに分子蒸留等で分別精製した蒸気圧
のきわめて低い、耐熱性の優れた石油系潤滑油が
その要求性能を満足するものとして広く使用され
ている。 然るに近年、真空の応用分野が拡大されるに伴
なつて、ロータリーポンプ油に要求される性能も
高度なものとなり、石油系ロータリーポンプ油で
はその要求を満足させることができないケースが
多くなつている。特に薄膜製造技術への真空の利
用の拡大に伴なつて、ハロゲン化合物等の活性ガ
スに対する優れた耐性を有するロータリーポンプ
油の出現が強く望まれている。例えば、半導体製
造工程におけるドライエツチング装置のロータリ
ーポンプ油は、活性ガスとして、フロン−14と酸
素の混合ガス等が使用されるため、従来の石油系
ロータリーポンプ油では短時間で油の粘度上昇や
スラツジの析出が起り、ひんぱんな油の交換を必
要とし、またロータリーポンプの保守に多大な時
間と労力を費やすことを余儀なくされている。 このため、これらの活性ガスに対して、特に耐
性のあるロータリーポンプ油が要求されている。 現在、活性ガスを使用若しくは排気する必要の
ある装置としては、各種のドライエツチング装置
やイオン注入装置およびプラズマCVD装置等に
代表される半導体製造装置、超硬合金製切削工具
用CVD装置、ハロゲンランプの製造装置、鉄鋼
の脱ガス装置、超電導材料の製造装置等がある。 また、活性ガスとしてはホスフイン、アルシ
ン、ジポラン、セレン化水素、三塩化ヒ素、シラ
ン、四塩化ケイ素、塩化水素、ジクロルシラン、
フロン−14、アンモニア、五フツ化リン、四フツ
化ケイ素、四塩化炭素、酸素等々が用途により、
単独若しくは2種類以上の組合せで使用されてい
る。 上記の装置で使用される、ロータリーポンプ油
は、いずれも前記従来のポンプ油では、活性ガス
との反応等による油の劣化が激しく、例えば塩素
系の活性ガスの場合にはポンプ油の粘度が低下
し、フツ素系の場合には逆に粘度が上昇するなど
の変化やスラツジの析出等が起るため、長時間に
わたつて使用し得ず、これに代る耐活性ガス性の
優れた新規なポンプ油の開発が望まれている。 「問題点を解決するための手段」 本発明者は、本件()式の物質が前記要求を
満しうることを確認し、本発明を完成するに至つ
た。ここで本件物質()において、mが1.3よ
り小なる場合、蒸気圧が高いものとなり、所定の
真空度に至り得ず、2.8より大なる場合、常温で
の粘度が高いものとなり、装置の始動時に過大の
動力を要し、いずれも本目的に対して不都合であ
る。また、lが1より小なる場合、常温での粘度
が高く、さらにフツ素系エラストマーの膨潤を起
こすことがあり、2n−1より大なる場合は常温
で固体であるため、ロータリーポンプ油として非
常に不都合である。尚、本件物質の原料であるホ
スホニトリルハライドは通常の製法において、n
が3未満のものはほとんど生成せず、nが5を越
えるものの割合は高々数%であり、また高粘度と
なるため実質的にnの範囲は前記の値となる。 本件物質である混合フルオロアルコキシ環状ホ
スホニトリルエステルは、適切に調製されたフル
オロアルコールのアルコラートとホスホニトリル
ハライドから、後出の実施例の如く合成できる。 本件物質は、アセトン、メチルエチルケトン等
のケトン類、エチルエーテル、イソプロピルエー
テル、テトラヒドロフラン等のエーテル類、エタ
ノール、イソプロピルアルコール等の低級アルコ
ール類、ベンゼン、トルエン等の芳香族類、フロ
ン113等のフツ素系溶媒によく溶解し、水、n−
ヘキサンにはほとんど溶解しない。 「実施例」 実施例 1 冷却器、攪拌装置、温度計を備えた四ツ口フラ
スコに1,1,1,3,3,3−ヘキサフルオロ
イソプロパノール173g(1.03モル)と、1,1,
5−トリヒドロパーフルオロペンタノール240g
(1.03モル)(m=2)とトルエン1000mlを仕込
み、冷却下にナトリウム45.3g(1.97モル)を少
しづつ投入し、40〜50℃で約5時間反応を行なつ
た。この反応液に、トルエン800mlに溶解したホ
スホニトリルクロリドテトラマー89g(0.192モ
ル)の溶液を約50℃で滴下し、還流下に4時間攪
拌反応を行なつた。生成した塩化ナトリウムを除
くため水洗し、脱水、濃縮後、油状の粗製物320
gを得た。これを減圧蒸留し、160〜190℃/0.05
mmHgの留分250gを分取した。微黄色透明のこ
の油状物は、IRスペクトル(第1図)のごとく、
1380cm-1に四量体ホスホニトリル骨格(n=4)
の吸収を有し、1H−NMRスペクトル(第2図)
のプロトン積分値よりl=3.4であることが確認
できた。また、GC分析(第3図)より7成分の
混合物であることも確認した。この混合物(以下
このものを「フルオロホスホニトリレート(A)」と
いう)の物性は、比重:1.78(20℃)、粘度:
250cps(40℃)、蒸気圧:1mmHg/185℃、流動
点:−35℃、屈折率:1.3470(20℃)であつた。 実施例 2 実施例1.と同様に1,1,1,3,3,3−ヘ
キサフルオロイソプロパノール173gと1,1,
5−トリヒドロパーフルオロペンタノール240g
とナトリウム45.3gを用いてアルコラートを調製
し、これに、ホスホニトリルクロリドの混合物
(3量体70%、4量体20%、5量体以上10%)89
gを溶解したトルエン溶液を滴下し、実施例1と
同様に反応、後処理、蒸留を行ない、160〜200
℃/0.05mmHgの留分230gを得た。このものは
31P−NMRスペクトルの−20ppm(n=3)、
7.5ppm(n=4)17ppm(n=5)の強度比14:
5:1よりnが3.35であり、1H−NMRスペクト
ルよりlが1.95であつた。 このもののIRスペクトルを第4図に、1H−
NMRスペクトルを第5図に示した。この混合物
は比重1.77(20℃)、蒸気圧:1mmHg/180で、
粘度:240cps(40℃)、流動点:−35℃、屈折率:
1.3475(20℃)であつた。このものを「フルオロ
ホスホニトリレート(B)」と呼ぶ。 実施例 3 1,1,1,3,3,3−ヘキサフルオロイソ
プロパノール173gと1,1,w,−トリヒドロパ
ーフルオロテロメリツクアルコール{()式の
mの比率がm=1:33%,m=2:42%,m=
3:17%,m=4:5%,m=5:3%(G,C
分析値)であり、水酸基価の測定値より算出した
mの平均値が2.03である}244gを使用して、実
施例1と同様に反応後処理、蒸留を行ない、160
〜200℃/0.05mmHgの留分220gを得た。(この
ものを「フルオロホスホニトリレート(C)」と呼
ぶ。)この混合物は比重:1.77(20℃)、蒸気圧:
1mmHg/185℃、流動点:−30℃、屈折率
1.3472(20℃)であり、第6図のNMRスペクトル
の積分比よりlは1.8であることが判明した。 実施例 4 実施例1に準拠し、1,1,1,3,3,3−
ヘキサフルオロイソプロパノールと1,1,5−
トリヒドロパーフルオロペンタノールおよび1,
1,7−トリヒドロパーフルオロヘプタノールの
等モル混合物(各0.69モル)およびホスホニトリ
ルクロリドトリマー89gを用いて反応を行ない、
後処理、蒸留後、160〜200℃/0.05mmHgの留分
277gを得た。この油状物は比重1.77(20℃)、粘
度186cps(40℃)、屈折率1.3465(20℃)を有して
おり、l,m,nの値は各々、l≒2.85,m≒
2.5,n=3であつた。 実施例 5 1,1,1,3,3,3−ヘキサフルオロイソ
プロパノール0.26モルと1,1,3−トリヒドロ
パーフルオロプロパノール1.26モルと1,1,5
−トリヒドロパーフルオロペンタノール0.54モル
の混合物およびホスホニトリルクロリドテトラマ
ー89gを用い、実施例1に準拠して反応、後処
理、蒸留を行ない沸点155〜170℃/0.05mmHgの
油状物を分取した。この液体は、比重1.78(20
℃)、粘度180cps(40℃)、屈折率1.3460(20℃)で
n=4,m≒1.35,l≒1.1の値を有していた。 実施例 6 ホスホニトリルクロリド(n=4,5,6の比
率が67.5%,20%,10%である)89gのトルエン
溶液に1,1,5−トリヒドロパーフルオロペン
タノール0.07モルと1,1,7−トリヒドロパー
フルオロヘプタノール0.19モルおよびナトリウム
0.26モルより調整したアルコラートを反応させた
後、ナトリウム1,1,1,3,3,3−ヘキサ
フルオロイソプロポキシド1.8モルを反応させて
得た液体は粘度250cps(40℃)、比重1.80(20℃)、
屈折率1.3477(20℃),n=4.3,l=7.5,m=2.8
の値を有する。 実施例 7 厳密に溶剤で洗浄した直結型油回転真空ポンプ
にフルオロホスホニトリレート(A)を注入し、始動
時および一週間、連続運転時の油温、真空度、消
費電力の測定を行なつた。この結果をそれぞれ表
1,2に示す。 これらの結果から、油回転真空ポンプ油として
何ら問題のないことが確認された。
"Industrial Application Field" The present invention relates to a novel fluoroalkoxy cyclic phosphonitrile ester, and more specifically, to a fluoroalkoxy cyclic phosphonitrile ester having a 1,1,1,3,3,3-hexafluoro-2-propoxy group. This article relates to alkoxy cyclic phosphonitrile esters and their uses. The substance according to the present invention (hereinafter referred to as "the substance") is a cyclic oligomer (trimer or tetramer, or
and a mixture of pentamer or more) and 1,1,1,
3,3,3-hexafluoro-2-propanol and one or more 1,1,w-trihydro perfluoroalcohols (C=3,5,
7,9), and is a mixed fluoroalkoxy cyclic phosphonitrile ester represented by the following formula (). [{CF 3 ) 2 CHO}l {H(CF 2 CF 2 ) n CH 2 O} 2o-l
(PN) o ] ...() (In the formula, (PN) o means a phosphonitrile ring,
m means a real number within the range of 1.3≦m≦2.8, n means a real number within the range of 3≦n≦4.3, and l means a real number within the range of 1≦l≦2n-1. ) Considering the basic structure, constituent elements, and physical properties, the substance may be used in nonflammable lubricating oils and hydraulic oils, and rotary pump oil is a particularly applicable application. ``Prior art'' and ``Problems to be solved by the invention'' Rotary pump oil has particularly stringent quality requirements among various lubricating oils, and has low vapor pressure, low viscosity, and appropriate viscosity index, and has a temperature below freezing. It is required to maintain fluidity even at temperatures of several tens of degrees, have excellent oxidation stability and heat resistance, and have good lubrication properties. General rotary pump oil is a petroleum-based lubricating oil with extremely low vapor pressure and excellent heat resistance, which is obtained by fractionating and refining a petroleum lubricating oil fraction with a kinematic viscosity of 30 to 150 centistokes at 40°C using molecular distillation, etc. It is widely used as it satisfies the required performance. However, in recent years, as the field of vacuum applications has expanded, the performance required of rotary pump oil has also become more advanced, and there are many cases where petroleum-based rotary pump oil is unable to meet these demands. . In particular, with the expansion of the use of vacuum in thin film manufacturing technology, there is a strong desire for a rotary pump oil that has excellent resistance to active gases such as halogen compounds. For example, rotary pump oil for dry etching equipment used in the semiconductor manufacturing process uses a mixed gas of Freon-14 and oxygen as the active gas, so conventional petroleum-based rotary pump oil can quickly increase the viscosity of the oil. Sludge deposition occurs, requiring frequent oil changes and requiring a great deal of time and effort to maintain the rotary pump. Therefore, a rotary pump oil that is particularly resistant to these active gases is required. Currently, equipment that requires the use or exhaust of active gas includes semiconductor manufacturing equipment such as various dry etching equipment, ion implantation equipment, and plasma CVD equipment, CVD equipment for cemented carbide cutting tools, and halogen lamps. manufacturing equipment, steel degassing equipment, superconducting material manufacturing equipment, etc. In addition, active gases include phosphine, arsine, diporan, hydrogen selenide, arsenic trichloride, silane, silicon tetrachloride, hydrogen chloride, dichlorosilane,
Freon-14, ammonia, phosphorus pentafluoride, silicon tetrafluoride, carbon tetrachloride, oxygen, etc.
They are used alone or in combination of two or more types. The conventional rotary pump oils used in the above equipment are subject to severe oil deterioration due to reactions with active gases, and for example, in the case of chlorine-based active gases, the viscosity of the pump oil is reduced. However, in the case of fluorine-based products, changes such as an increase in viscosity and precipitation of sludge occur, making it impossible to use them for long periods of time. Development of new pump oil is desired. "Means for Solving the Problems" The present inventors have confirmed that the substance of the present formula () can satisfy the above requirements, and have completed the present invention. Here, in this substance (), if m is smaller than 1.3, the vapor pressure will be high and the specified degree of vacuum cannot be reached, and if it is larger than 2.8, the viscosity at room temperature will be high and the device will not start. Sometimes excessive power is required, which is inconvenient for the purpose. Also, if l is less than 1, the viscosity at room temperature is high and may cause swelling of the fluorine-based elastomer, while if it is greater than 2n-1, it is solid at room temperature, so it is very difficult to use as a rotary pump oil. It is inconvenient for In addition, the phosphonitrile halide, which is the raw material for this substance, is
Those with n of less than 3 are hardly produced, and those with n of more than 5 are only a few percent at most, and since the viscosity is high, the range of n is substantially the above value. The mixed fluoroalkoxy cyclic phosphonitrile ester of the present invention can be synthesized from an appropriately prepared alcoholate of a fluoroalcohol and a phosphonitrile halide as in the Examples below. The substances in question are ketones such as acetone and methyl ethyl ketone, ethers such as ethyl ether, isopropyl ether, and tetrahydrofuran, lower alcohols such as ethanol and isopropyl alcohol, aromatics such as benzene and toluene, and fluorine-based substances such as Freon 113. Soluble in solvents, water, n-
Almost insoluble in hexane. "Example" Example 1 In a four-necked flask equipped with a condenser, a stirrer, and a thermometer, 173 g (1.03 mol) of 1,1,1,3,3,3-hexafluoroisopropanol and 1,1,
5-trihydroperfluoropentanol 240g
(1.03 mol) (m=2) and 1000 ml of toluene were charged, and while cooling, 45.3 g (1.97 mol) of sodium was added little by little, and the reaction was carried out at 40 to 50°C for about 5 hours. A solution of 89 g (0.192 mol) of phosphonitrile chloride tetramer dissolved in 800 ml of toluene was added dropwise to this reaction solution at about 50° C., and the reaction was stirred under reflux for 4 hours. After washing with water to remove the generated sodium chloride, dehydrating, and concentrating, the oily crude product 320
I got g. Distill this under reduced pressure to 160-190℃/0.05
A fraction of 250 g of mmHg was collected. This slightly yellow transparent oil has the following IR spectrum (Figure 1):
Tetrameric phosphonitrile skeleton (n=4) at 1380 cm -1
1 H-NMR spectrum (Figure 2)
It was confirmed from the proton integral value that l = 3.4. Furthermore, it was confirmed by GC analysis (Figure 3) that it was a mixture of seven components. The physical properties of this mixture (hereinafter referred to as "fluorophosphonitrilate (A)") are: specific gravity: 1.78 (20°C), viscosity:
250 cps (40°C), vapor pressure: 1 mmHg/185°C, pour point: -35°C, and refractive index: 1.3470 (20°C). Example 2 In the same manner as in Example 1, 173 g of 1,1,1,3,3,3-hexafluoroisopropanol and 1,1,
5-trihydroperfluoropentanol 240g
An alcoholate was prepared using 45.3 g of sodium and a mixture of phosphonitrile chloride (70% trimer, 20% tetramer, 10% pentamer or higher) 89
A toluene solution containing 160 to 200 g of
230 g of a fraction of °C/0.05 mmHg was obtained. This thing is
-20ppm (n=3) of 31P-NMR spectrum,
Intensity ratio of 7.5ppm (n=4) and 17ppm (n=5) 14:
From 5:1, n was 3.35, and from 1 H-NMR spectrum, l was 1.95. The IR spectrum of this product is shown in Figure 4, 1 H-
The NMR spectrum is shown in FIG. This mixture has a specific gravity of 1.77 (20℃) and a vapor pressure of 1 mmHg/180.
Viscosity: 240cps (40℃), Pour point: -35℃, Refractive index:
It was 1.3475 (20℃). This substance is called "fluorophosphonitrilate (B)." Example 3 173 g of 1,1,1,3,3,3-hexafluoroisopropanol and 1,1,w,-trihydroperfluorotelomeric alcohol {ratio of m in formula () is m=1:33%, m=2:42%, m=
3:17%, m=4:5%, m=5:3% (G, C
analysis value), and the average value of m calculated from the measured value of hydroxyl value is 2.03} Using 244 g, post-reaction treatment and distillation were performed in the same manner as in Example 1, and 160
220g of fraction at ~200°C/0.05mmHg was obtained. (This substance is called "fluorophosphonitrilate (C).") This mixture has a specific gravity of 1.77 (20℃) and a vapor pressure of:
1mmHg/185℃, pour point: -30℃, refractive index
1.3472 (at 20° C.), and l was found to be 1.8 from the integral ratio of the NMR spectrum shown in FIG. Example 4 Based on Example 1, 1,1,1,3,3,3-
Hexafluoroisopropanol and 1,1,5-
trihydroperfluoropentanol and 1,
The reaction was carried out using an equimolar mixture of 1,7-trihydroperfluoroheptanol (0.69 mol each) and 89 g of phosphonitrile chloride trimer,
After post-treatment and distillation, 160-200℃/0.05mmHg fraction
Obtained 277g. This oil has a specific gravity of 1.77 (20°C), a viscosity of 186 cps (40°C), and a refractive index of 1.3465 (20°C), and the values of l, m, and n are l≒2.85 and m≒
2.5, n=3. Example 5 0.26 mol of 1,1,1,3,3,3-hexafluoroisopropanol and 1.26 mol of 1,1,3-trihydroperfluoropropanol and 1,1,5
- Using a mixture of 0.54 mol of trihydroperfluoropentanol and 89 g of phosphonitrile chloride tetramer, reaction, post-treatment, and distillation were carried out according to Example 1, and an oily substance with a boiling point of 155 to 170°C/0.05 mmHg was separated. . This liquid has a specific gravity of 1.78 (20
), viscosity 180 cps (40°C), refractive index 1.3460 (20°C), and values of n=4, m≒1.35, and l≒1.1. Example 6 In a toluene solution of 89 g of phosphonitrile chloride (n = 4, 5, 6 ratios are 67.5%, 20%, 10%), 0.07 mol of 1,1,5-trihydroperfluoropentanol and 1, 0.19 mol of 1,7-trihydroperfluoroheptanol and sodium
After reacting alcoholate prepared from 0.26 mol, reacting with 1.8 mol of sodium 1,1,1,3,3,3-hexafluoroisopropoxide, the liquid obtained had a viscosity of 250 cps (40°C) and a specific gravity of 1.80 ( 20℃),
Refractive index 1.3477 (20℃), n=4.3, l=7.5, m=2.8
has the value of Example 7 Fluorophosphonitrite (A) was injected into a direct-coupled oil rotary vacuum pump that had been thoroughly cleaned with solvent, and the oil temperature, degree of vacuum, and power consumption were measured at startup and during continuous operation for one week. Ta. The results are shown in Tables 1 and 2, respectively. From these results, it was confirmed that there were no problems as an oil rotary vacuum pump oil.

【表】【table】

【表】 実施例 8 厳密に溶剤で洗浄した直結型油回転真空ポンプ
にフルオロホスホニトリレート(B)を注入し、フロ
ン−14と水素との混合ガスを使用する試験用プラ
ズマ発生装置の運転を行なつた。30日間の運転に
於てモーター電流値に異常は認められなかつた。
油を抜いて調べた結果、油の上部に少量の赤褐色
の液体物が認められたが、粘度は40℃において
230cpsであり、新油の同温度における粘度240cps
と比較してほとんど変化が認められなかつた。使
用後の油のIR,NMR,MS(マススペクトル)各
分析結果はいずれも使用前の油のスペクトルと比
較して差が認められなかつた。赤褐色液状物はプ
ラズマもしくは被エツチング物に由来するものと
思われるがロータリーポンプの運転に支障をきた
すほどのものではなかつた。 比較例 1 油回転真空ポンプに市販の鉱油系真空油(エー
スバツク68,40℃の動粘度68cst)を注入し、フ
ロン−14と水素との混合ガスを使用する試験用プ
ラズマ発生装置の運転を行なつた。10日間を経過
したところでモーター電流が異常を示したため、
運転を止め油を調べたところ、スラツジが生成
し、40℃の粘度が160cstになつていた。 実施例 9 半導体製造工程で、フロン−14と酸素ガスの混
合ガスを使用してケイ素基板のエツチング作業を
行なつているドライエツチング装置の直結型油回
転真空ポンプ(排気速度960/min、油量2.2
)にフルオロホスホニトリレート(C)を注入して
運転を行なつた。 3週間運転を行なつた後、油を抜いて調べた結
果、油はにごり、赤褐色の混入物が油の上部に若
干浮遊しているのが認められたが、油そのものの
粘度は240cps(40℃)で、新油の250cps(40℃)と
比較してほとんど変化がなく、IR,NMR,MS
の各スペクトルの結果も使用前のものと差がな
く、上記活性ガスに対し「フルオロホスホニトリ
レート(C)」が極めて優れた耐性を有することが認
められた。 尚、にごりと赤褐色浮遊物は、エツチング物等
外部からの混入物に起因するものと判定された。 比較例 2 市販の鉱油系ロータリーポンプ油(ネオバツク
ST−200)を使用し、実施例9の条件下で装置の
運転を行なつた。使用前に78cst(40℃)であつた
粘度は、一週間後108cst(40℃)、3週間で488cst
(100℃)となり、常温でグリース状となつてい
た。 実施例10 (エラストマー適合性) 本件物質を各種機械装置の潤滑油として使用す
る場合、そのシール材との適合性が重要である。
ここでは化学機器に多用されているバイトンOリ
ング(V#4640 4DG−30旭ケミカル製)を80℃
に維持した下記試料中に15日間静置浸漬し、バイ
トンの重量変化を測定した。 試 料 名 重量変化 (1) フルオロホスホニトリレート(A) 4.9% (2) ヘキサキス(1,1,5−トリヒドロパーフ
ルオロペンチルオキシ)シクロトリホスホニト
リル(比較物質) 17.1% (3) テトラキス(1,1,3−トリヒドロパーフ
ルオロプロポキシテトラキス(1,1,5−ト
リヒドロパーフルオロペンチル(比較物質)
7.0% オキシ)シクロテトラホスホニトリル 「発明の効果」 本発明は、以上の如く潤滑油、作動油として有
用な新規物質を提供するものであり、特に、下記
する点で、ロータリーポンプ油としての利用の期
待されるものである。 不燃性で活性ガスに対し耐性の高い潤滑油を
提供した。 実施例10に示したように既知のフルオロホス
フアゼン油(特開昭58−164698)のフツ素ゴム
膨潤性を改善した。 原料選択の自由度を大幅に拡大した。即ち、
アスル トランスアクシヨン(ASLE
TRANSACTI−ONS)7=389〜397(1964)に
示されているように、ロータリーポンプ油とし
て適用可能な物性を有するものは、n=3でm
=1.5およびn=3でm=2(m=1とm=3の
1:1混合物も含む)であり無理をして使つた
としても、m=3とm=5が使用できる程度で
ある。 今回長鎖テロメリツクアルコールの使用が可
能となつた以外に、ホスホニトリル4量体以上
の使用が可能となり、また原料的に安定したヘ
キサフルオロイソプロパノールを使用できるた
め、原料選択の自由度が大幅に拡大された。
[Table] Example 8 Fluorophosphonitrite (B) was injected into a direct-coupled oil rotary vacuum pump that had been thoroughly cleaned with solvent, and a test plasma generator using a mixed gas of Freon-14 and hydrogen was operated. I did it. No abnormality was observed in the motor current value during 30 days of operation.
When the oil was removed and examined, a small amount of reddish brown liquid was found on the top of the oil, but the viscosity was low at 40℃.
The viscosity of new oil is 240cps at the same temperature.
Almost no changes were observed compared to . No difference was observed in the IR, NMR, and MS (mass spectrum) analysis results of the oil after use compared to the spectrum of the oil before use. The reddish-brown liquid appears to have originated from plasma or the material to be etched, but it did not interfere with the operation of the rotary pump. Comparative Example 1 A commercially available mineral oil-based vacuum oil (Aceback 68, kinematic viscosity 68 cst at 40°C) was injected into an oil rotary vacuum pump, and a test plasma generator using a mixed gas of Freon-14 and hydrogen was operated. Summer. After 10 days, the motor current showed an abnormality, so
When the operation was stopped and the oil was checked, sludge had formed and the viscosity at 40°C was 160 cst. Example 9 A direct-coupled oil rotary vacuum pump (pumping speed 960/min, oil volume 2.2
) was injected with fluorophosphonitrilate (C). After three weeks of operation, the oil was drained and examined. The oil was cloudy and some reddish-brown contaminants were observed floating on the top of the oil, but the viscosity of the oil itself was 240 cps (40 cps). ℃), there is almost no change compared to 250 cps (40℃) of new oil, and IR, NMR, MS
There was no difference in the results of each spectrum from those before use, and it was recognized that "fluorophosphonitrilate (C)" had extremely excellent resistance to the above-mentioned active gas. It was determined that the cloudiness and reddish-brown floating matter were caused by external contaminants such as etchings. Comparative Example 2 Commercially available mineral oil-based rotary pump oil (Neobac
ST-200), and the apparatus was operated under the conditions of Example 9. The viscosity was 78cst (40℃) before use, but after one week it was 108cst (40℃), and after 3 weeks it was 488cst.
(100℃), and it was like grease at room temperature. Example 10 (Elastomer Compatibility) When the subject substance is used as a lubricant for various mechanical devices, compatibility with the sealing material is important.
Here we will introduce Viton O-rings (V#4640 4DG-30 manufactured by Asahi Chemical), which are often used in chemical equipment, at 80°C.
Viton was immersed for 15 days in the following sample maintained at a constant temperature, and the weight change of Viton was measured. Sample name Weight change (1) Fluorophosphonitrilate (A) 4.9% (2) Hexakis (1,1,5-trihydroperfluoropentyloxy)cyclotriphosphonitrile (comparative substance) 17.1% (3) Tetrakis ( 1,1,3-trihydroperfluoropropoxytetrakis (1,1,5-trihydroperfluoropentyl (comparative substance)
7.0% oxy)cyclotetraphosphonitrile "Effects of the Invention" As described above, the present invention provides a new substance useful as a lubricating oil and a hydraulic oil, and in particular, the following points make it suitable for use as a rotary pump oil. This is what is expected. We have provided a lubricating oil that is nonflammable and highly resistant to active gases. As shown in Example 10, the fluororubber swelling property of the known fluorophosphazene oil (Japanese Unexamined Patent Publication No. 58-164698) was improved. The degree of freedom in selecting raw materials has been greatly expanded. That is,
ASLE Transaction (ASLE)
TRANSACTI-ONS) 7 = 389-397 (1964), oils with physical properties applicable as rotary pump oils are m
= 1.5 and n = 3, m = 2 (including a 1:1 mixture of m = 1 and m = 3), so even if you use it forcibly, m = 3 and m = 5 can be used. . This time, in addition to being able to use long-chain telomeric alcohols, it is also possible to use phosphonitrile tetramers or higher, and hexafluoroisopropanol, which is stable as a raw material, can be used, so there is a great deal of freedom in selecting raw materials. Expanded.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、実施例1で得た本発明の物質のIR
スペクトル、第2図は同物質の1H−NMRスペ
クトル、第3図は同物質のGC分析図である。第
4図は、実施例2で得た本発明の物質のIRスペ
クトル、第5図は同物質の1H−NMRスペクト
ルである。第6図は、実施例3で得た本発明の物
質の1H−NMRスペクトルである。
Figure 1 shows the IR of the substance of the present invention obtained in Example 1.
Fig. 2 is a 1 H-NMR spectrum of the same substance, and Fig. 3 is a GC analysis diagram of the same substance. FIG. 4 shows the IR spectrum of the substance of the present invention obtained in Example 2, and FIG. 5 shows the 1 H-NMR spectrum of the same substance. FIG. 6 is a 1 H-NMR spectrum of the substance of the present invention obtained in Example 3.

Claims (1)

【特許請求の範囲】 1 下記()式で示される混合フルオロアルコ
キシ環状ホスホニトリルエステル 〔{CF32CHO}l{H(CF2CF2nCH2O}2o-l
(PN)o〕 ……() (式中(PN)oはホスホニトリル環を意味し、
mは1.3≦m≦2.8なる範囲内、nは3≦n≦4.3な
る範囲内、lは1≦l≦2n−1なる範囲内の実
数値を夫々意味する。) 2 ()式の(CF2CF2nがm=2の単一鎖長
のセグメントからなり、nが4であり、lが1≦
l≦2n−1の範囲内の実数値である特許請求の
範囲第1項記載の混合フルオロアルコキシ環状テ
トラホスホニトリルエステル。 3 下記()式で示される混合フルオロアルコ
キシ環状ホスホニトリルエステルを主成分とする
ロータリーポンプ油。 〔{CF32CHO}l{H(CF2CF2nCH2O}2o-l
(PN)o〕 ……() (式中(PN)oはホスホニトリル環を意味し、
mは1.3≦m≦2.8なる範囲内、nは3≦n≦4.3な
る範囲内、lは1≦l≦2n−1なる範囲内の実
数値を夫々意味する。) 4 ()式の(CF2CF2nがm=2の単一鎖長
のセグメントからなり、nが4であり、lが1≦
l≦2n−1の範囲内の実数値である、特許請求
の範囲第3項記載のロータリーポンプ油。
[Claims] 1 Mixed fluoroalkoxy cyclic phosphonitrile ester represented by the following formula () [{CF 3 ) 2 CHO} l {H(CF 2 CF 2 ) n CH 2 O} 2o-l
(PN) o ] ...() (In the formula, (PN) o means a phosphonitrile ring,
m means a real number within the range of 1.3≦m≦2.8, n means a real number within the range of 3≦n≦4.3, and l means a real number within the range of 1≦l≦2n-1. ) 2 () in the formula (CF 2 CF 2 ) where n consists of a segment with a single chain length of m=2, n is 4, and l is 1≦
The mixed fluoroalkoxy cyclic tetraphosphonitrile ester according to claim 1, which is a real number within the range of l≦2n-1. 3 A rotary pump oil whose main component is a mixed fluoroalkoxy cyclic phosphonitrile ester represented by the following formula (). [{CF 3 ) 2 CHO} l {H(CF 2 CF 2 ) n CH 2 O} 2o-l
(PN) o ] ...() (In the formula, (PN) o means a phosphonitrile ring,
m means a real number within the range of 1.3≦m≦2.8, n means a real number within the range of 3≦n≦4.3, and l means a real number within the range of 1≦l≦2n-1. ) 4 In the formula (CF 2 CF 2 ), n consists of a segment with a single chain length of m=2, n is 4, and l is 1≦
The rotary pump oil according to claim 3, which has a real value within the range of l≦2n-1.
JP10354385A 1985-05-14 1985-05-14 Fluoroalkoxy cyclic phosphonitrile ester and rotary pump oil containing said ester as principal component Granted JPS61260088A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10354385A JPS61260088A (en) 1985-05-14 1985-05-14 Fluoroalkoxy cyclic phosphonitrile ester and rotary pump oil containing said ester as principal component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10354385A JPS61260088A (en) 1985-05-14 1985-05-14 Fluoroalkoxy cyclic phosphonitrile ester and rotary pump oil containing said ester as principal component

Publications (2)

Publication Number Publication Date
JPS61260088A JPS61260088A (en) 1986-11-18
JPH0451559B2 true JPH0451559B2 (en) 1992-08-19

Family

ID=14356752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10354385A Granted JPS61260088A (en) 1985-05-14 1985-05-14 Fluoroalkoxy cyclic phosphonitrile ester and rotary pump oil containing said ester as principal component

Country Status (1)

Country Link
JP (1) JPS61260088A (en)

Also Published As

Publication number Publication date
JPS61260088A (en) 1986-11-18

Similar Documents

Publication Publication Date Title
KR100292024B1 (en) Novel phosphazene derivatives and their use as stabilizers for oils and greases based on perfluoropolyethers
EP1479753B1 (en) Perfluoropolyether additives
US4097388A (en) Linear fluorinated polyether lubricant compositions containing perfluoroalkylether substituted phosphines
EP0203347B1 (en) Stabilizers with arylphosphinic structure for perfluoropolyether oils and greases
US4043926A (en) Lubricant composition
JPH0572916B2 (en)
US4438007A (en) Perfluorinated aliphatic polyalkylether lubricant with an additive composed of an aromatic phosphine substituted with perfluoroalkylether groups
EP0230920B1 (en) Fluid for traction drive
JP5659422B2 (en) Alkylated diphenyl ether and lubricating oil containing the compound
JPH0451559B2 (en)
US2727054A (en) Method of preparing silicate esters
US2914548A (en) Process for producing aryloxyphenyl silanes
US4438006A (en) Perfluorinated aliphatic polyalkylether lubricant with an additive composed of an aromatic phosphine substituted with perfluoroalkylether groups
EP0224259B1 (en) A working fluid for traction drive
Tamborski et al. Synthesis and properties of silahydrocarbons, a class of thermally stable, wide liquid range fluids
JPS6046154B2 (en) Active gas resistant rotary pump oil
US2995592A (en) Alkoxydisiloxanes
CN109337729B (en) Fluorine-containing organosilicon lubricating oil base oil and preparation method thereof
US3223642A (en) Fluorinated reaction product useful as a functional fluid
US5194652A (en) Oxidation-resistant cyclophosphazene fluid including triarylphosphine or phosphine oxide
EP0245046B1 (en) Methylalkylcyclosiloxanes
CN113913226B (en) Oil-soluble modified graphene oxide compound and preparation method and application thereof
US5326910A (en) Monophospha-S-triazines of improved hydrolytic and thermal oxidative stability
US6326337B1 (en) Perfluoropolyalkylether lubricant formulation with improved stability
JPH0586835B2 (en)