JPH0451465Y2 - - Google Patents

Info

Publication number
JPH0451465Y2
JPH0451465Y2 JP1983173047U JP17304783U JPH0451465Y2 JP H0451465 Y2 JPH0451465 Y2 JP H0451465Y2 JP 1983173047 U JP1983173047 U JP 1983173047U JP 17304783 U JP17304783 U JP 17304783U JP H0451465 Y2 JPH0451465 Y2 JP H0451465Y2
Authority
JP
Japan
Prior art keywords
current transformer
disconnector
wound
primary winding
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1983173047U
Other languages
Japanese (ja)
Other versions
JPS6081633U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP17304783U priority Critical patent/JPS6081633U/en
Publication of JPS6081633U publication Critical patent/JPS6081633U/en
Application granted granted Critical
Publication of JPH0451465Y2 publication Critical patent/JPH0451465Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Transformers For Measuring Instruments (AREA)

Description

【考案の詳細な説明】 [考案の技術分野] 本考案は変流器に係り、詳しくは、配電盤内の
しや断器用の断路器部を構成する導体の片端側を
一次巻線導体として流用した計測用の巻線形変流
器と保護用の貫通形変流器の組み合せ構造に関す
る。
[Detailed description of the invention] [Technical field of the invention] The invention relates to a current transformer, and more specifically, one end of a conductor constituting a disconnector section for a disconnector in a switchboard is used as a primary winding conductor. This paper relates to a combination structure of a winding current transformer for measurement and a feedthrough current transformer for protection.

[考案の技術的背景] 第1図に配電盤回路の単線結線図を示す。一次
電流は、主回路母線1から分岐し、各給電回路毎
に設けた電源側断路器2、しや断器3および負荷
側断路器4を介して貫通形変流器5および巻線形
変流器6の一次巻線回路を流れる。ここで、しや
断器3の前後に位置する断路器部2および4とし
や断器3との電気的接続は、固定式ではなく、し
や断器3の本体部分の移動により接離しおよび接
続できる引出し式を示している。変流器は用途上
から二次負担として、系統保護用の継電器に接続
される保護用変流器と一次電流計測用の電流計、
電力計、電力量計などの計器に接続される計器用
変流器とに大別される。
[Technical background of the invention] Figure 1 shows a single line diagram of the switchboard circuit. The primary current is branched from the main circuit bus 1, and is passed through a power supply side disconnector 2, a bow disconnector 3, and a load side disconnector 4 provided for each power supply circuit to a through-type current transformer 5 and a winding current transformer. flows through the primary winding circuit of the device 6. Here, the electrical connection between the disconnector parts 2 and 4 located before and after the shield breaker 3 and the shield breaker 3 is not fixed, but can be connected and separated by moving the main body of the shield breaker 3. It shows a pull-out type that can be connected. Current transformers are used as secondary burdens, such as a protective current transformer connected to a relay for system protection, an ammeter for measuring the primary current,
It is broadly divided into instrument current transformers that are connected to meters such as wattmeters and watthour meters.

保護用変流器の変流比あるいは定格一次電流
は、保護用継電器の保護調定上から決定される場
合が多く、また、保護領域が過電流域となること
もあつて一般に負荷電流よりも高い変流比あるい
は定格一次電流の仕様となる。また、母線保護用
などの特殊な保護用では、もれリアクタンスが小
さいことが仕様付けされる場合が多い。一般の巻
線形構成の変流器では、もれリアクタンスは巻回
数、つまり変流比の約2乗に比例して大きくなる
ため、保護用変流器のような高い変流比のもので
はもれリアクタンスを低減させる目的で、二次巻
線を鉄心磁路上全周に渡り均一に分布巻きし、も
れ磁束、つまりもれリアクタンスの発生を抑制で
きる構造にする必要がある。前記構造を実現させ
るため、トロイダル鉄心を用いた貫通形変流器
が、構造および形状が簡単で巻線作業もトロイダ
ル巻線機などにより容易である等の理由により多
く採用されている。
The current transformation ratio or rated primary current of a protective current transformer is often determined from the protection adjustment of the protective relay, and since the protection area is in the overcurrent area, it is generally higher than the load current. Specifications include a high current transformation ratio or rated primary current. Furthermore, for special protection such as busbar protection, low leakage reactance is often specified. In a current transformer with a general winding configuration, the leakage reactance increases in proportion to the number of turns, that is, approximately the square of the current transformation ratio, so it is not suitable for current transformers with a high current transformation ratio such as protection current transformers. In order to reduce leakage reactance, it is necessary to wind the secondary winding uniformly over the entire circumference of the magnetic core to create a structure that can suppress the occurrence of leakage flux, that is, leakage reactance. In order to realize the above structure, a feed-through current transformer using a toroidal iron core is often adopted because the structure and shape are simple and the winding work is easy using a toroidal winding machine or the like.

一方、計器用変流器は負荷電流の正確な計測が
主目的であるため、負荷電流より若干大き目の変
流比あるいは定格一次電流の仕様となり、負荷容
量により変流比あるいは定格一次電流は多種類と
なる。また、計器用変流器の二次電流回路には、
一般の電流計の他、電力取引用の電力量計のよう
な高精度を要求する負担計器が接続され、誤差精
度は一般にアンペアターンの約2乗に比例して良
くなるため、特に負荷電流の小さな回路用の低変
流比あるいは低い定格一次電流の計器用変流器あ
るいは高変流比でも超高精度を必要とする計器用
変流器では一次巻線を数巻回した巻線形構造が採
用される。
On the other hand, since the main purpose of an instrument current transformer is to accurately measure the load current, the current transformation ratio or rated primary current is specified to be slightly larger than the load current, and the current transformation ratio or rated primary current may vary depending on the load capacity. Become a type. In addition, in the secondary current circuit of the instrument current transformer,
In addition to general ammeters, load meters that require high accuracy, such as wattmeters for power trading, are connected, and the error accuracy generally improves in proportion to the square of the ampere-turns, so it is especially important for load current For instrument current transformers with low current transformation ratios or low rated primary currents for small circuits, or instrument current transformers that require ultra-high accuracy even at high current transformation ratios, a winding structure with several turns of the primary winding is used. Adopted.

第1図に示す回路構成例では、保護用の貫通形
変流器5は、しや断器3の負荷側の回路について
計器用の巻線形変流器6を含めた広範囲な回路を
保護するため、しや断器3の負荷側回路でしや断
器3に最も近い位置、すなわち一般には計器用の
巻線形変流器6よりも電源側に配置される。保護
用と計器用変流器は、一般に変流比が異なり、ま
た用途上の特性保証領域が前者は過電流域であ
り、後者は定格電流以下の領域であるため、それ
ぞれ別個に用いられるのが普通である。
In the circuit configuration example shown in FIG. 1, the protective feedthrough current transformer 5 protects a wide range of circuits on the load side of the shield breaker 3, including the winding type current transformer 6 for meters. Therefore, it is placed at a position closest to the shield breaker 3 in the load side circuit of the shield breaker 3, that is, generally closer to the power source than the winding type current transformer 6 for measuring instruments. Protection current transformers and instrument current transformers generally have different current transformation ratios, and the guaranteed characteristics range for the former is overcurrent range, while the latter is below the rated current range, so they cannot be used separately. is normal.

第2図は配電盤内の保護用貫通形変流器と、計
器用巻線形変流器および断路器兼変流器用の一次
巻線導体の取付構造の従来例を示す側面断面図で
ある。計器用の巻線形変流器6については、鉄心
8上に図示しない絶縁物を介して巻回した二次コ
イル9の外周に、断路器部4を構成する導体の片
端側を一次巻線導体7として流用して数回巻き上
げ、全体をエポキシレジン等の樹脂10によりモ
ールド成形して作られる。断路器部4には図示し
ないしや断器の電極端子が裸状態のまま強制接触
により電器接続されるが、主回路母線の相間ピツ
チ寸法の縮小および主回路母線と対地間などのコ
ロナ電圧特性を改善するため、断路器部4の外周
には絶縁筒部11がエポキシレジン等の樹脂10
により、断路器部4の導体および巻線形変流器6
と同時に一体モールド成形される。更に、このよ
うにして、モールド成形された断路器部4および
巻線形変流器6は、図示しないボルト類により接
地電位にある取付金具12に堅固に固定される。
FIG. 2 is a side cross-sectional view showing a conventional example of a mounting structure for a protective feedthrough current transformer in a switchboard, a winding current transformer for an instrument, and a primary winding conductor for a disconnector/current transformer. Regarding the winding type current transformer 6 for meters, one end of the conductor constituting the disconnector section 4 is connected to the primary winding conductor around the outer periphery of the secondary coil 9 which is wound on the iron core 8 through an insulator (not shown). 7, rolled up several times, and molded the whole with resin 10 such as epoxy resin. Electrical connections are made to the disconnector section 4 by forcible contact with the electrode terminals of the disconnector (not shown) in a bare state, but due to the reduction of the phase-to-phase pitch dimension of the main circuit busbar and the corona voltage characteristics between the main circuit busbar and ground, etc. In order to improve
Therefore, the conductor of the disconnector section 4 and the wound current transformer 6
At the same time, it is integrally molded. Furthermore, the molded disconnector section 4 and wound current transformer 6 are firmly fixed to the mounting bracket 12 at ground potential by bolts (not shown).

一方、トロイダル形状の鉄心13の上に図示し
ない絶縁物を介して二次コイル14を鉄心磁路上
の全周に均一に分布巻きした後、エポキシレジン
等の樹脂15によりモールド成形して作られた貫
通形変流器5は、前記絶縁筒部11の外周部に配
置されて断路器部4の導体を一次巻線導体とし、
図示しないボルト類により接地電位にある取付金
具12に堅固に固定される。
On the other hand, a secondary coil 14 is evenly distributed over the entire circumference of the core magnetic path on a toroidal-shaped core 13 via an insulator (not shown), and then molded with a resin 15 such as epoxy resin. The feedthrough current transformer 5 is disposed on the outer periphery of the insulating cylindrical portion 11 and uses the conductor of the disconnector portion 4 as a primary winding conductor,
It is firmly fixed to the mounting bracket 12 at ground potential by bolts (not shown).

尚、歴史的には当初計器用の巻線形変隆流器は
断路器部とは別置き且つ単独取付け形としてエポ
キシレジン等の樹脂によりモールド成形された一
般の変流器を用い、この巻線形変流器と断路器部
とを高圧絶縁導体を介して電気接続を行なう構成
をとつていたが、モールド技術の進歩および配電
盤の小型、軽量化および保守点検の簡素化が要求
される中で、断路器部と巻線形変流器とが一体モ
ールド成形されるようになつたいきさつがある。
保護用貫通形変流器は、断路器部と巻線形変流器
とがそれぞれ別置きされていた時代にも、既に断
路器の絶縁筒部の外周部に配置される構造として
用いられていた。その主な理由は貫通形変流器を
絶縁筒部の外周部に配置することにより、高圧の
一次巻線回路に対する耐電圧特性がほとんど絶縁
筒部によつて負担されるため、貫通形変流器とし
ては一次巻線回路に対する耐電圧特性をほとんど
負担しなくてもよいからである。つまり、単なる
低圧用の貫通形構造にて対処でき、小形、軽量で
安価に制作できる利点があるからであつた。しか
も貫通形変流器の取付け作業が容易な利点もあ
る。また、保護用の貫通形変流器を絶縁筒部の外
周に配置する構成は貫通形変流器の保護範囲をで
きる限り広く取るため、しや断器の電極端子に可
能な限り近づける要望に充分対処できるばかりか
断路器部側におけるしや断器の引出し操作に支障
を与えない。
Historically, winding type current transformers for instruments were originally installed separately from the disconnector section and were installed separately using general current transformers molded with resin such as epoxy resin. The current transformer and disconnector section were electrically connected via a high-voltage insulated conductor, but as molding technology progressed and switchboards were required to be smaller, lighter, and easier to maintain and inspect, There is a history of how the disconnector part and the wound current transformer came to be integrally molded.
Protective feed-through current transformers were already used as structures placed on the outer periphery of the insulating cylindrical part of the disconnector even in the era when the disconnector part and the wound type current transformer were placed separately. . The main reason for this is that by placing the feed-through current transformer on the outer periphery of the insulating tube, most of the withstand voltage characteristics for the high-voltage primary winding circuit are borne by the insulating tube. This is because the device does not have to bear much burden on the withstand voltage characteristics of the primary winding circuit. In other words, it has the advantage that it can be handled with a simple through-type structure for low pressure, and can be made small, lightweight, and inexpensively. Moreover, there is an advantage that the installation work of the through-type current transformer is easy. In addition, the configuration in which the protective feedthrough current transformer is placed on the outer periphery of the insulating cylindrical part is designed to ensure that the protection range of the feedthrough current transformer is as wide as possible, in response to the desire to place it as close as possible to the electrode terminal of the shield breaker. Not only can this be handled satisfactorily, but it does not impede the draw-out operation of the disconnector on the disconnector unit side.

[背景技術の問題点] しかしながら、第2図に示す従来の変流器の構
造では、次のような問題点があつた。
[Problems with Background Art] However, the structure of the conventional current transformer shown in FIG. 2 has the following problems.

(1) 巻線形変流器6の一次巻線導体7が垂直方向
に立上るため、一次巻線導体7の高電位部と、
これに近接する取付金具12の接地電位部およ
び貫通形変流器5の樹脂15表面の低電位部と
の間の電界分布が問題となつていた。即ち、耐
電圧特性に優れる樹脂10,15の内部の電界
分布は比較的ゆるやかで、また必要により、モ
ールド形状等の最適選定により調整できる。し
かしながら、取付金具12の切断端部および取
付金具12と樹脂10表面との間および貫通形
変流器5の樹脂15表面と巻線形変流器用の樹
脂10表面との間に生ずる微少な空隙部は、空
気の誘電率が樹脂のそれに比べ低いため、静電
分圧的に電界が集中し、最弱点部となつてい
た。耐電圧特性、特に対地間コロナ電圧特性
は、樹脂10,15の形状、厚さ等を変更する
ことにより、調整できるが、それだけでは限度
があり顕著な効果が望めない。その対策として
微小な空隙部へ導電塗料を塗布することも行な
われているが、付帯作業を必要とし、また、こ
れらの対策方法はある程度の効果をもたらすも
のの、未だ不十分であつた。
(1) Since the primary winding conductor 7 of the wire-wound current transformer 6 rises vertically, the high potential part of the primary winding conductor 7 and
The electric field distribution between the ground potential portion of the mounting bracket 12 and the low potential portion of the surface of the resin 15 of the through-type current transformer 5 has been a problem. That is, the electric field distribution inside the resins 10 and 15, which have excellent withstand voltage characteristics, is relatively gentle, and can be adjusted by optimally selecting the mold shape, etc., if necessary. However, minute gaps are formed between the cut end of the mounting bracket 12, between the mounting bracket 12 and the surface of the resin 10, and between the surface of the resin 15 of the through-type current transformer 5 and the surface of the resin 10 for the wound type current transformer. Because the dielectric constant of air is lower than that of resin, the electric field concentrates due to electrostatic partial pressure, making it the weakest point. The withstand voltage characteristics, particularly the ground-to-ground corona voltage characteristics, can be adjusted by changing the shape, thickness, etc. of the resins 10 and 15, but this alone has a limit and no significant effect can be expected. As a countermeasure, applying conductive paint to minute voids has been carried out, but this requires additional work, and although these countermeasures have some effect, they are still insufficient.

(2) 絶縁筒部11の外周と貫通形変流器5の貫通
窓との空隙部分に塵埃などが推積し易く、保守
点検時の清掃作業に長時間を用した。
(2) Dust and the like easily accumulate in the gap between the outer periphery of the insulating cylindrical portion 11 and the through window of the feed-through current transformer 5, and cleaning work during maintenance and inspection takes a long time.

(3) 断路器部4を含めた巻線形変流器6および貫
通形変流器5の取付金具12への固定作業の簡
素化のため、図示しないボルト類は共用化がは
かられ部品点数は低減されるものの、断路器部
4を含めた巻線形変流器6と貫通形変流器5の
樹脂の一部に設けたボルト用の取付けあるいは
挿入用の穴などの寸法ピツチの精度向上、強調
が要求され、モールド金型および治工具類に高
精度品を必要とし、また、モールド成形作業お
よび配電盤への組込み固定作業に慎重を要し長
時間を要した。
(3) In order to simplify the work of fixing the wound current transformer 6 and the through-type current transformer 5, including the disconnector section 4, to the mounting bracket 12, bolts (not shown) are shared, reducing the number of parts. Although this will reduce the amount of damage, it will improve the accuracy of the dimensional pitch of holes for mounting or inserting bolts provided in a part of the resin of the wound type current transformer 6 including the disconnector part 4 and the through type current transformer 5. , high-precision molds and jigs were required, and the molding work and assembly and fixing work to the switchboard required careful and time-consuming work.

(4) 貫通形変流器5の貫通窓径は、絶縁筒部11
の外周寸法によつて決定され、絶縁筒部11の
外周寸法自体、しや断器の電極端子寸法および
高圧回路の電圧値により標準化され決定されて
いる。一方、貫通形変流器5の外径寸法は主回
路母線の相間ピツチにより決められるため、保
護上過電流定数nを大きく取る必要がある場合
には、鉄心13は鉄心積厚が前記のように制限
されるため、鉄心巾寸法の増大により対処する
ことが必要となる。しかし、あまりにも鉄心巾
を広く取ると貫通形変流器5が絶縁筒部4の長
さよりはみ出る結果となり、貫通形変流器5は
低圧構造のため取付けが不可能となつたり、代
りに回路電圧に適合した高圧構造の変流器を別
置き取付けとして採用したり、また、絶縁筒部
11の長さ寸法を延長するため、新しく非標準
で制作するなど、いずれも高価な製品となつて
しまう。また、絶縁筒部11の長さは断路器部
4から低電位部の貫通形変流器5の樹脂15表
面に至るまでの沿面距離によつて決まり、貫通
形変流器5の巾寸法が多種類となることを見込
んで比較的長く選定しておく必要がある等の問
題点があつた。
(4) The diameter of the through window of the through type current transformer 5 is
The outer circumferential dimension of the insulating cylindrical portion 11 itself, the electrode terminal dimension of the insulation breaker, and the voltage value of the high voltage circuit are standardized and determined. On the other hand, since the outer diameter of the feed-through current transformer 5 is determined by the phase-to-phase pitch of the main circuit busbar, if it is necessary to take a large overcurrent constant n for protection, the core 13 has a core thickness as described above. Therefore, it is necessary to deal with this by increasing the core width. However, if the core width is made too wide, the feed-through current transformer 5 will protrude beyond the length of the insulating tube 4, and the feed-through current transformer 5 may become impossible to install due to its low voltage structure, or the circuit may be damaged instead. A current transformer with a high-voltage structure suitable for the voltage was installed separately, and a new non-standard one was manufactured to extend the length of the insulating cylinder 11, all of which resulted in an expensive product. Put it away. Further, the length of the insulating cylindrical portion 11 is determined by the creepage distance from the disconnector portion 4 to the surface of the resin 15 of the feedthrough current transformer 5 in the low potential section, and the width dimension of the feedthrough current transformer 5 is There were problems such as the need to keep selecting for a relatively long time in anticipation of the large number of types.

[考案の目的] 本考案は上述した問題点を解消し、電界分布の
不均衡をなくし、絶縁特性の優れた貫通形変流器
と巻線形変流器の組み合せ構造による変流器を提
供することを主な目的とする。
[Purpose of the invention] The present invention solves the above-mentioned problems, eliminates imbalance in electric field distribution, and provides a current transformer with a combination structure of a feed-through current transformer and a wound current transformer with excellent insulation properties. The main purpose is to

[考案の概要] このため、本考案は巻線形変流器から断路器部
に至る一次巻線導体の直線部分と取付金具との中
間位置で巻線形変流器の側方に貫通形変流器を配
置し、全体をモールド成形して一体化したことを
特徴としている。
[Summary of the invention] For this reason, the present invention provides a through-type current transformer to the side of the wound current transformer at an intermediate position between the straight part of the primary winding conductor from the wound current transformer to the disconnector section and the mounting bracket. It is characterized by arranging the vessels and molding the whole into one piece.

[考案の実施例] 以下、本考案の実施例を図面に基づいて説明す
る。
[Embodiments of the invention] Hereinafter, embodiments of the invention will be described based on the drawings.

第3図は本考案の一実施例に係る変流器につい
て示したもので、配電盤内での保護用貫通形変流
器と計器用巻線形変流器および断路器兼変流器用
の一次巻線導体の取付構造を示す側面断面図であ
る。図中、第2図と同一符号は同一又は相当部分
を示し、計器用の巻線形変流器6は、鉄心8上に
図示しない絶縁物を介して巻回した二次コイル9
の外周に、断路器部4の導体を一次巻線導体7と
して流用して数回巻き上げて形成する。一方、貫
通形変流器5は、巻線形変流器6の一次巻線導体
7の巻回部から断路器部4に至る導体の直線部分
に、トロイダル形状の鉄心13の上に図示しない
絶縁物を介して二次コイル14を鉄心磁路上の全
周に均一に分布巻きしたものを貫通させて形成す
る。更に、巻線形変流器6、貫通形変流器5およ
び断路器部4を含めた全体をエポキシレジン等の
樹脂10によつて一体にモールド成形していわゆ
る変流器を作る。この場合、変流器の断路器部4
には、図示しないしや断器3の電極端子が裸状態
のまま強制接続により電気接続されるので、この
部における主回路母線の相間ピツチ寸法の縮小お
よび主回路母線と対地間などのコロナ電圧特性を
改善するため、断路器部4の外周には絶縁筒部1
1がエポキシレジン等の樹脂10により前記変流
器と同時に一体モールド成形される。このモール
ド成形した変流器は、図示しないボルト類によ
り、接地電位にある取付金具12に堅固に固定さ
れる。
Figure 3 shows a current transformer according to an embodiment of the present invention, including a protective feedthrough current transformer, a winding current transformer for meters, and a primary winding for a disconnector/current transformer in a switchboard. FIG. 3 is a side sectional view showing a wire conductor mounting structure. In the figure, the same reference numerals as in FIG. 2 indicate the same or equivalent parts, and the winding type current transformer 6 for measuring instruments has a secondary coil 9 wound around an iron core 8 via an insulator (not shown).
The conductor of the disconnector section 4 is used as the primary winding conductor 7 and wound several times around the outer periphery thereof. On the other hand, the feed-through current transformer 5 has an insulator (not shown) on a toroidal-shaped iron core 13 in a straight line portion of the conductor from the winding part of the primary winding conductor 7 of the wound type current transformer 6 to the disconnector part 4. The secondary coil 14 is formed by passing through the secondary coil 14 evenly distributed around the entire circumference on the magnetic path of the iron core. Furthermore, the entire structure including the wound current transformer 6, the through-type current transformer 5, and the disconnector section 4 is integrally molded with a resin 10 such as epoxy resin to form a so-called current transformer. In this case, the disconnector section 4 of the current transformer
In this case, the electrode terminals of the disconnector 3 (not shown) are electrically connected by forced connection while being bare, so the pitch between phases of the main circuit bus in this part is reduced and the corona voltage between the main circuit bus and ground is reduced. In order to improve the characteristics, an insulating cylinder part 1 is provided on the outer periphery of the disconnector part 4.
1 is integrally molded with a resin 10 such as epoxy resin at the same time as the current transformer. This molded current transformer is firmly fixed to the mounting bracket 12 at ground potential by bolts (not shown).

ここで、貫通形変流器5は保護用として、所要
の過電流定数nを維持するため、従来構造と同一
の鉄心断面積を有するものであるが、二次コイル
14の巻上り寸法が、巻線形変流器6の一次巻線
導体のでき上り寸法とほぼ同じようになるように
鉄心3の積厚および鉄心巾を選択し、巻線形変流
器6の側方に配置する。
Here, the feedthrough current transformer 5 has the same core cross-sectional area as the conventional structure in order to maintain the required overcurrent constant n for protection, but the winding dimension of the secondary coil 14 is The stacking thickness and core width of the iron core 3 are selected so as to be approximately the same as the finished dimensions of the primary winding conductor of the winding current transformer 6, and the iron core 3 is placed on the side of the winding current transformer 6.

このように構成した変流器によれば、次のよう
な作用効果が得られる。
According to the current transformer configured in this way, the following effects can be obtained.

高電位にある巻線形変流器6の一次巻線導体
7および断路器部4用の導体と接地電位にある
取付金具12との中間位置に貫通形変流器5の
鉄心13および二次コイル14を配置し、全体
をレジン等の樹脂によつて一体にモールド成形
したため、 (1) 取付金具12と、巻線形変流器6の一次巻
線導体7および断路器部4用の導体との電界
は、貫通形変流器5の二次コイル14に端子
間電圧が数ボルト例えば二次負担40VA、二
次定格電流5Aでは約8ボルトしか発生しな
いこと、あるいは、二次端子の片側が接地さ
れて使用されることにより、低電位にある貫
通形変流器5の二次コイル14が鉄心磁路上
全周に渡つて均一に分布巻きされていること
と相俟つて静電シールドとして作用し、電界
の集中を防ぎ、均等な分布を得ることができ
る。すなわち、電界のほとんどは高電位の一
次巻線導体7と二次コイル14間に分布し、
高電位の一次巻線導体7と二次コイル14と
の間は耐電圧特性の優れた樹脂10のみによ
つて構成されるから、耐電圧特性、特に対地
間コロナ電圧特性が良好な高レベルの電圧で
しかも安定した特性が得られる。
The iron core 13 and secondary coil of the through-type current transformer 5 are placed at intermediate positions between the primary winding conductor 7 of the wound type current transformer 6 and the conductor for the disconnector section 4 which are at high potential, and the mounting bracket 12 which is at ground potential. 14 and the entire body is integrally molded with resin or the like. The electric field is caused by the fact that the voltage between the terminals of the secondary coil 14 of the feedthrough current transformer 5 is several volts, for example, when the secondary load is 40VA and the secondary rated current is 5A, only about 8 volts is generated, or if one side of the secondary terminal is grounded. By being used as an electrostatic shield, the secondary coil 14 of the feedthrough current transformer 5, which is at a low potential, is evenly distributed over the entire circumference of the magnetic core of the iron core, and in combination with this, it acts as an electrostatic shield. , it is possible to prevent concentration of electric field and obtain uniform distribution. That is, most of the electric field is distributed between the high potential primary winding conductor 7 and the secondary coil 14,
The space between the high-potential primary winding conductor 7 and the secondary coil 14 is made of only the resin 10 with excellent withstand voltage characteristics. Stable characteristics can be obtained regardless of voltage.

(2) 従来構造で電界分布の最弱点部分であつた
接地電位にある取付金具12付近の微小空隙
部分は、貫通形変流器5の二次コイル14の
背後に位置し、低電位にある二次コイル14
との電位差に伴なう電界のみしか印加されな
い。従つて、微小空隙部分にコロナを発生さ
せる電界には全然達しないため、耐電圧、特
に対地間コロナ電圧特性の弱点部をなくすこ
とができるので、従来構造のように微小空隙
部分に導電塗料を塗布するなどの付帯作業を
なくすことができる。
(2) The microgap near the mounting bracket 12, which is at ground potential and is the weakest point in the electric field distribution in the conventional structure, is located behind the secondary coil 14 of the feedthrough current transformer 5 and is at a low potential. Secondary coil 14
Only the electric field associated with the potential difference between the two is applied. Therefore, since the electric field that generates corona does not reach the micro-gaps at all, it is possible to eliminate weak points in the withstand voltage, especially the corona-to-earth voltage characteristics. Incidental work such as coating can be eliminated.

(3) 従来構造のものが上記(2)項で述べた微小空
隙部分に加わる電界の低減、緩和のため、取
付金具12と巻線形変流器6の一次巻線導体
7との間の距離、つまり樹脂10の耐電圧特
性より決まる値より比較的大きく選定してい
たのに比べ、本実施例では上記(1)項で述べた
ように電界分布の樹脂10内への集中化、お
よび、上記(2)項で述べたように電界の弱点が
なくなるなどにより、樹脂10厚さは樹脂1
0の耐電圧特性より回路電圧に合せて決まる
最小最適値に選定できる。このため、樹脂量
の低減、小形、軽量で低価格化が促進でき
る。
(3) The distance between the mounting bracket 12 and the primary winding conductor 7 of the wire-wound current transformer 6 in order to reduce and alleviate the electric field applied to the microgap portion described in item (2) above in the conventional structure. , that is, compared to the case where the value was selected to be relatively larger than the value determined by the withstand voltage characteristics of the resin 10, in this example, as described in the above item (1), the electric field distribution is concentrated within the resin 10, and As mentioned in item (2) above, the thickness of resin 10 is reduced to 1
The minimum optimum value determined according to the circuit voltage can be selected from the withstand voltage characteristic of 0. Therefore, the amount of resin can be reduced, the size and weight can be reduced, and the price can be reduced.

貫通形変流器5と巻線形変流器6とを一体モ
ールド成形したため、 (1) 従来構造のような貫通形変流器5の貫通窓
と、断路器部4の絶縁筒部11の外周との隙
間などの小寸法の凹部形状が少なくでき、変
流器部分のモールド形状は円筒または箱形な
どの簡素な形状に選定できる。このため、塵
埃の堆積に対して清掃作業が容易で保守点検
を簡素化できる。
Since the through-type current transformer 5 and the wound type current transformer 6 are integrally molded, (1) the through-hole of the through-type current transformer 5 and the outer periphery of the insulating cylinder part 11 of the disconnector part 4, as in the conventional structure; The shape of small-sized recesses such as gaps between the current transformer and the current transformer can be reduced, and the mold shape of the current transformer portion can be selected to be a simple shape such as a cylinder or a box shape. Therefore, cleaning work for dust accumulation is easy and maintenance and inspection can be simplified.

(2) 一体モールド成形品の一度の取付作業で、
巻線形および貫通形変流器6,5の取付けが
同時に完了するため、従来に比べ、取付け作
業を簡素化できると共に、変流器の取付穴の
寸法ピツチの精度向上および協調を取ること
が不要となり、モールド金型の寸法精度を高
くする必要がないので、製造が容易となる。
(2) One-time installation of integrally molded products,
Since the installation of the wound wire and through-type current transformers 6 and 5 is completed at the same time, the installation work can be simplified compared to conventional methods, and the precision of the dimensional pitch of the current transformer mounting holes is improved, and coordination is not required. Since there is no need to increase the dimensional accuracy of the mold, manufacturing becomes easy.

(3) 従来は巻線形および貫通形変流器6,5毎
に別々に設けていた二次端子が最適な位置に
一ケ所にまとめて設けることができるため、
配電盤内のダクトなどの配線用品および配線
作業が簡素化できる。
(3) The secondary terminals, which were conventionally provided separately for each winding and feedthrough current transformer 6, 5, can now be provided in one place at an optimal location.
Wiring supplies such as ducts in the switchboard and wiring work can be simplified.

(4) 前記の(1)項で述べたように、電界の弱点
部分への電界緩和のため、比較的広く選定さ
れていた取付金具12と巻線形変流器6およ
び断路器部4用導体との間の樹脂10空間に
貫通形変流器5を配置して有効に利用してい
るので、貫通形変流器5を樹脂10内に配置
したことによつて従来のモールド金型の形状
を大巾に改造したり、寸法が増加したりする
ことはない。
(4) As mentioned in item (1) above, the mounting bracket 12, the wire-wound current transformer 6, and the conductor for the disconnector section 4, which were selected from a relatively wide range, were used to reduce the electric field to weak points. Since the through-type current transformer 5 is placed in the space between the resin 10 and the resin 10, it is effectively utilized. It will not be modified to a larger width or its dimensions will be increased.

貫通形変流器5を比較的小寸法の断路器部用
導体を一次巻線導体として利用してその外周に
近接して配置していたため、 (1) 貫通形変流器5に用いる鉄心13の内径寸
法を低減でき、平均磁路長の低減、鉄心重量
の低減および消費される励磁電流も低減で
き、したがつて誤差特性も向上できる。場合
によつては従来構造の貫通形変流器に比べ、
鉄心断面積を低減できる。
Because the through-type current transformer 5 was arranged close to the outer periphery using a relatively small-sized conductor for the disconnector section as the primary winding conductor, (1) the iron core 13 used in the through-type current transformer 5 was used as the primary winding conductor; The inner diameter dimension of the magnet can be reduced, the average magnetic path length can be reduced, the iron core weight can be reduced, the excitation current consumed can also be reduced, and the error characteristics can also be improved. In some cases, compared to conventional structure through-type current transformers,
The core cross-sectional area can be reduced.

(2) 断路器部4の絶縁筒部11は、外周部に貫
通形変流器を設けないので、断路器部4の導
体と取付金具12との間に必要な沿面距離を
とればよく、従つて、軸方向の突出寸法を縮
小できる。しかも従来のような貫通形変流器
の仕様によつてモールド金型を改造または新
しく制作する必要がないので、一体個、標準
された寸法、形状に統一でき、安価な変流器
が得られる。
(2) Since the insulating cylindrical portion 11 of the disconnector section 4 does not have a through-type current transformer on its outer periphery, it is only necessary to provide a necessary creepage distance between the conductor of the disconnector section 4 and the mounting bracket 12. Therefore, the axial protrusion dimension can be reduced. Moreover, there is no need to modify or create a new mold according to the specifications of conventional through-type current transformers, so it is possible to unify the current transformers into one piece with standardized dimensions and shapes, resulting in inexpensive current transformers. .

(3) 保護用として過電流定数nの大きい貫通形
変流器5に対しても容易に鉄心寸法が増大で
き、また、鉄心寸法の増大に伴なうモールド
金型等も、変流器部分のモールド金型の形状
が簡素化できるため迅速且つ安価に対応でき
る。
(3) The core size can be easily increased for the through-type current transformer 5 with a large overcurrent constant n for protection, and the molding die etc. associated with the increase in the core size can also be used for the current transformer part. Since the shape of the mold can be simplified, it can be handled quickly and at low cost.

尚、上記実施例ではしや断器の負荷側に配置さ
れる変流器を例にとつて説明したが、異なる主母
線間を電気的に接続するためのしや断器または断
路器回路のように、電源側に変流器が配置される
場合にも本考案は適用できる。
In the above embodiments, the current transformer placed on the load side of the disconnector was explained as an example. As shown, the present invention can also be applied when a current transformer is placed on the power source side.

[考案の効果] 以上のように本考案によれば、巻線形変流器か
ら断路器部に至る一次巻線導体の直線部分と取付
金具との中間で巻線形変流器の側方に貫通形変流
器を配置し、全体をモールド成形したので、電界
分布が均等化し、絶縁特性に優れ、小形、軽量、
安価にして、製造、取付、保守点検作業の容易な
変流器が得られる。
[Effects of the invention] As described above, according to the invention, the wire-wound current transformer is penetrated to the side between the straight part of the primary winding conductor from the wire-wound current transformer to the disconnector section and the mounting bracket. As the shape current transformer is arranged and the entire body is molded, the electric field distribution is uniform, the insulation properties are excellent, and the product is small, lightweight,
A current transformer that is inexpensive and easy to manufacture, install, and maintain and inspect can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は配電盤回路の一例を示す単線結線図、
第2図は従来構造の配電盤内の保護用貫通形変流
器と計器用巻線形変流器および断路器兼変流器用
の一次巻線導体の取付構造を示す側面断面図、第
3図は本考案の一実施例に係る配電盤内での保護
用貫通形変流器と計器用巻線形変流器および断路
器兼変流器用の一次巻線導体の取付構造を示す側
面断面図である。 1……主回路母線、2……電源側断路器部、3
……しや断器、4……負荷側断路器部、5……貫
通形変流器、6……巻線形変流器、7……一次巻
線導体、8,13……鉄心、9,14……二次コ
イル、10,15……樹脂、11……絶縁筒部、
12……取付金具。
Figure 1 is a single line diagram showing an example of a switchboard circuit.
Figure 2 is a side sectional view showing the mounting structure of a protective feedthrough current transformer, an instrument winding current transformer, and a primary winding conductor for a disconnector/current transformer in a conventional switchboard. FIG. 2 is a side cross-sectional view showing a mounting structure of a protective feedthrough current transformer, an instrument winding current transformer, and a primary winding conductor for a disconnector/current transformer in a switchboard according to an embodiment of the present invention. 1... Main circuit bus bar, 2... Power supply side disconnector section, 3
...Shipping disconnector, 4...Load side disconnector section, 5...Through current transformer, 6...Wound type current transformer, 7...Primary winding conductor, 8, 13...Iron core, 9 , 14...Secondary coil, 10, 15...Resin, 11...Insulating cylinder part,
12...Mounting bracket.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 配電盤内のしや断器用断路器部を構成する導体
を一次巻線導体として利用し、この一次巻線導体
が二次コイルを巻回した鉄心に巻回されてなる巻
線形変流器と、前記一次巻線導体が二次コイルを
巻回した鉄心を貫通してなる貫通形変流器を組合
せて、接地電位にある取付金具に取付ける変流器
において、前記巻線形変流器から断路器部に至る
一次巻線導体の直線部分の外周に前記貫通形変流
器を配置してこれら一次巻線導体と貫通形変流器
および巻線形変流器を含めた全体を一体にモール
ド成形し、かつ前記貫通形変流器を前記一次巻線
導体と取付金具との中間位置に配置したことを特
徴とする変流器。
A wound type current transformer that uses a conductor constituting a disconnector section in a switchboard as a primary winding conductor, and this primary winding conductor is wound around an iron core around which a secondary coil is wound; In a current transformer in which a through-type current transformer in which the primary winding conductor passes through an iron core around which a secondary coil is wound is combined, and the current transformer is attached to a mounting bracket at ground potential, a disconnector is connected to the wound current transformer. The through-type current transformer is arranged on the outer periphery of the linear portion of the primary winding conductor that reaches the part, and the entire body including the primary winding conductor, the through-type current transformer, and the wound type current transformer is integrally molded. , and the through-type current transformer is disposed at an intermediate position between the primary winding conductor and the mounting bracket.
JP17304783U 1983-11-10 1983-11-10 Current transformer Granted JPS6081633U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17304783U JPS6081633U (en) 1983-11-10 1983-11-10 Current transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17304783U JPS6081633U (en) 1983-11-10 1983-11-10 Current transformer

Publications (2)

Publication Number Publication Date
JPS6081633U JPS6081633U (en) 1985-06-06
JPH0451465Y2 true JPH0451465Y2 (en) 1992-12-03

Family

ID=30377069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17304783U Granted JPS6081633U (en) 1983-11-10 1983-11-10 Current transformer

Country Status (1)

Country Link
JP (1) JPS6081633U (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS431586Y1 (en) * 1965-10-21 1968-01-24

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6114258Y2 (en) * 1979-01-30 1986-05-02

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS431586Y1 (en) * 1965-10-21 1968-01-24

Also Published As

Publication number Publication date
JPS6081633U (en) 1985-06-06

Similar Documents

Publication Publication Date Title
US5982265A (en) Current-detection coil for a current transformer
US7969139B2 (en) Rogowski sensor and method for measuring a current
US5272460A (en) Current and voltage transformer for a metal-encapsulated, gas-insulated high-voltage installation
US7027280B2 (en) Gas insulating apparatus and method for locating fault point thereof
US6850399B1 (en) Gas insulated device and failure rating method
US20140306786A1 (en) Current transformer
US20120001645A1 (en) Combined electrical variable detection device
JP4622839B2 (en) Rogowski coil, Rogowski coil production method, and current measuring device
US9472337B2 (en) Electrostatic shield for a transformer
EP2051084B1 (en) Electrical quantity measuring device for energy transport lines
EP1624311A1 (en) Combined current and voltage measurement transformer of the capacitor bushing type
JPH0451465Y2 (en)
KR102563389B1 (en) Structure Design and Fabrication Techniques of a Rogowski Current Sensor Embedded inside the Spacer of GISs
US2679026A (en) Bushing test structure
CN106158335A (en) A kind of three-phase resonance-eleminating type voltage inductor
Eckholz et al. HVDC-transformers-a technical challenge
EP0510426A2 (en) Current transformer for medium or high tension
KR100915653B1 (en) Current measuring device of high voltage instrument insulated using electromagnetic induction
EP0809115A2 (en) Voltage measuring instrument and voltage measuring method using the same
KR101035080B1 (en) High accuracy electric power metering sensor with a rogowski coil
EP1376621B1 (en) Insulator
KR20210044462A (en) Current measuring and gas insulated switchgear having the same
Goodeve et al. Experience with compact epoxy-mica capacitors for rotating machine partial discharge detection
KR100508391B1 (en) Metering out fit have a current transformer within bushing
Schüpferling et al. Cable connection bushing type c with integrated rogowski coil current sensor and capacitive voltage sensor