JPH0450900B2 - - Google Patents

Info

Publication number
JPH0450900B2
JPH0450900B2 JP60053568A JP5356885A JPH0450900B2 JP H0450900 B2 JPH0450900 B2 JP H0450900B2 JP 60053568 A JP60053568 A JP 60053568A JP 5356885 A JP5356885 A JP 5356885A JP H0450900 B2 JPH0450900 B2 JP H0450900B2
Authority
JP
Japan
Prior art keywords
sheet
layer
weight
composite sheet
thermoplastic resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60053568A
Other languages
Japanese (ja)
Other versions
JPS61213140A (en
Inventor
Takao Yazaki
Kazuhide Hatsutori
Takumi Matsuno
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Petrochemical Co Ltd
Original Assignee
Mitsubishi Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Petrochemical Co Ltd filed Critical Mitsubishi Petrochemical Co Ltd
Priority to JP5356885A priority Critical patent/JPS61213140A/en
Publication of JPS61213140A publication Critical patent/JPS61213140A/en
Publication of JPH0450900B2 publication Critical patent/JPH0450900B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明のガラス繊維補強樹脂複合体シートは、
圧縮成形、真空成形、圧空成形等の方法により賦
型して自動車のボデー材料、エンジンアンダーカ
バー、フエンダー等に用いられる。 〔従来技術〕 自動車の軽量化にともないポリプロピレン、ポ
リアミド、ポリエチレン、FRP等の樹脂素材が
自動車総重量の5〜10%まで使用されている。 従来、耐熱性、耐衝撃性、高剛性が要求される
エンジンアンダーカバーとして、ガラスロービン
グやストランド製マットを芯材とし、このマット
の表裏面に溶融したポリプロピレンシートを圧着
したガラス繊維含量が40重量%、肉厚約2.2mmの
複合体シートをプレス成形したものが使用されて
いる。このものは120℃の温度に耐え、耐衝撃性、
高剛性に優れるものである。 しかし、芯材として長繊維を素材としたマツト
を使用するためガラス繊維の流水性に乏しく、か
つ、ガラス繊維を高含量に含むため真空成形や圧
空成形法では寸法精度(型忠実性)に富む製品を
得ることが困難である。また、製品の比重も1.19
と重い。 型忠実性を改良するために径が0.5〜20ミク
ロン、繊維長が2〜15mmのガラス短繊維を用い、
これを熱可塑性樹脂中に均一に分散したシートを
用いること、および大型の圧縮成形機を用い、
プレス成形することが考えられる。しかし、前記
およびの方法により得られるシートを真空成
形または圧空成形して得られる製品は比重が高い
欠点があるとともに、更に後者のの方法は装置
が高価である。 〔問題点を解決する具体的な手段〕 本発明は、シート構成を複層とすることにより
成形性を向上させ、そのうち肉厚の50%以上を占
める基材層を無機微細粉末を含有する熱可塑性樹
脂発泡体シート層とすることにより複合体シート
の軽量化および耐衝撃性の向上を画るとともに、
ガラス短繊維を含有する熱塑性樹脂層を設けるこ
とにより製品の高剛性も市販品と同等の複合体シ
ートを提供するものである。 即ち、本発明は、ガラス短繊維を10〜45重量%
含有する熱可塑性樹脂シート層Aと、無機微細粉
末を5〜50重量%含有する密度が0.4〜1.1g/cm3
の熱可塑性樹脂発泡体シート基材層Bとを層の構
成単位として含むガラス繊維補強樹脂複合体シー
トを提供するものである。 (熱可塑性樹脂) 複合体シートのシート層Aおよび発泡体シート
基材層Bの素材の熱可塑性樹脂としては、ポリエ
チレン、ポリプロピレン、エチレン・酢酸ビニル
共重合体、ポリスチレン、プロピレン・エチレン
共重合体、スチレン・ブタジエン・スチレンブロ
ツク共重合体またはその水素添加物、無水マレイ
ン酸グラフトポリプロピレン、エチレン・ビニル
シランダム共重合体、ビニルシラングラフトポリ
エチレン、エチレン・アクリル酸共重合体の金属
塩(Na、Li、Zn)、ポリエチレンテレフタレー
ト、ポリアミド等の熱可塑性樹脂が単独で、また
は2種以上併用して用いられる。 (無機微細粉末) 無機微細粉末としては、タルク、ゼオライト、
焼成クレイ、炭酸カルシウム、けいそう土、カオ
リンクレー、酸化チタン等の粒径が100ミクロン
以下、好ましくは20ミクロン以下のもの、及び又
はガラス短繊維等が用いられる。 (ガラス短繊維) ガラス短繊維としては繊維径が0.5〜20ミクロ
ン、繊維長が2〜20mmのものが使用される。この
ガラス短繊維は、シランカツプリング処理、チタ
ンカツプリング処理、ビニルモノマーグラフト処
理されてもよい。 (複合体シート) 複合体シートは、ガラス短繊維を含有する熱可
塑性樹脂シート層Aと発泡体シート基材層Bとの
二層構造であつても、基材層Bの表裏面にシート
層Aが設けられた三層構造であつてもよい。更に
両層〔AとB〕間に接着剤層があつてもよい。別
の態様としてAとB層の他に表面の光沢を良くす
るために無機微細粉末を含有しないホモポリプロ
ピレン表面シート層Cを設けてもよいし、複合体
シートの耐油性を良好とするために表面にポリア
ミド層Cを設けてもよい。 複合体シートは、予じめ、無機微粉体及び発泡
剤を含有する熱可塑性樹脂複合材料と、ガラス短
繊維含有熱可塑性樹脂材料とを各々異なつた押出
機より押出し、共押出法により積層することによ
り多層シートを得ることもできるし、また、予じ
め成形した無機微細粉末を含有する熱可塑性樹脂
発泡体シート基材B上に、必要により接着剤層を
介してガラス短繊維含有熱可塑性樹脂シートAま
たは該シートと他の樹脂シート層Cとを押出ラミ
ネートして連続的に製造できる。また、予じめで
き上つた各シートA,BおよびCを接着剤を用い
て一体化して製造することも可能である。 シートA中のガラス短繊維の含量は10〜45重量
%、好ましくは15〜30重量%である。10重量%未
満では複合体シートの剛性が低い。逆に45重量%
を越えるとシートAの押出成形性が悪くなる。 シート層Aの複合体シート中に占める割合は10
〜50重量%である。その肉厚割合が低いと複合体
シートの剛性は低いものとなるし、高いと真空成
形や圧空成形の成形方法では寸法精度を期待する
ことができない。 発泡体シート基材層B中の無機微細粉末含量は
5〜50重量%である。この無機微細粉末の存在は
複合体シートの剛性を高めるのに約立つ。 しかし、多量の使用は複合体シートの軽量化を
画る上では悪い方に作用する。 発泡体シート基材層Bは、熱可塑性樹脂、無機
微細粉末およびアゾジカーボンアミド、炭酸ソー
ダとクエン酸の混合物等の発泡剤とを押出機内で
溶融混練させ、これをシート状に押出してついで
冷却して得る。発泡剤としてトリクロロフロロエ
タン、トリクロロメタン、ブタン等の揮発性膨張
剤を用い、これを押出機の途中に導き物理発況さ
せ製造してもよい。 複合体シートの密度は0.5〜1.1g/cm3であり、
肉厚は1〜4mm程度が好ましい。 (発泡体シートの成形) シートの成形は、圧縮成形は勿論のこと、真空
成形、圧空成形でも行うことができる。複合体シ
ートは加熱により軟化もしくは溶融せられ、つい
で成形され、フエンダー、エンジンアンダーシー
ト、サイドモール等に成形される。 以下、実施例により更に本発明を詳細に説明す
る。 実施例 1 (1) 三菱油化(株)製ホモポリプロピレン“MA−
6”(商品名)55重量部、ポリスチレン25重量
部、タクル20重量部およびアゾジカルボン酸ア
ミド1重量部よりなる混合物を押出機で溶融混
練し、210℃でダイよりシート状に押し出し発
泡させ、60℃に冷却し、密度が0.84g/cm3の発
泡体シートを得た。 (2) ホモポリプロピレン“MA−3”80重量部、
繊維径10〜15μ、繊維長が5〜7mmのシランカ
ツプリング処理ガラス短繊維20重量部、安定剤
1重量部よりなる混合物を2台の押出機を用い
て溶融混練し、220℃でダイよりシート状に押
し出し、(1)で得た発泡体シートの表裏面にラミ
ネートし、ロールで押圧冷却して表裏層の肉厚
が各々0.3mm、発泡体シート層の肉厚が1.16mm
(すなわち複合体シートの肉厚が1.76mm)、密度
が0.91g/cm3の複合体シートを得た。 この複合体シートの物性を表1に示す。 比較例 1 ホモポリプロピレン“MA−3”79重量部、実
施例1で用いたガラス短繊維20重量部および安定
剤1重量部との混合物を押出機で溶融混練し、
220℃でダイよりシート状に押し出し、60℃のロ
ールで押圧冷却して密度が1.03g/cm3、肉厚が
1.76mmの単層シートを得た。 このシートの物性を表1に示す。 参考例 A社市販の、シランカツプリング処理ガラス繊
維マツトを芯材とし、この芯材の表裏面にポリプ
ロピレン溶融シートをプレス成形して得たガラス
繊維含有率が40重量%、肉厚が2.2mmの複合体シ
ートの物性を表1に示す。 実施例 2 複合体シートの素材として表1に示す組成のも
のを用いる他は同様にして肉厚が1.75mm、密度が
0.92g/cm3の三層複合体シートを得た。 この複合体シートの物性を表1に示す。 実施例 3 (1) 実施例1と同様にして発泡体シートBを得
た。 (2) ホモポリプロピレン“MA−6”Cと、ホモ
ポリプロピレン“MA−3”79重量部、実施例
1で用いたガラス短繊維20重量部および安定剤
1重量部との混合物Aとをそれぞれ別々の押出
機で溶融混練して、これを一台のダイに供給
し、ダイ内でラミネートした後、これをダイよ
り220℃で共押出し、上記(1)で得た発泡体シー
トBの表裏面に(A)層側が接着するように溶融ラ
ミネートし、次いで60℃のロールで圧縮、冷却
して内厚1.90mm、密度0.90g/cm3の5層の複合
体シートを得た。 この複合体シートの物性を表1に示す。 実施例 4〜5 表1に示す組成の樹脂組成物を用いる他は実施
例1と同様にして同表に示す肉厚、物性の三層複
合体シートを得た。 比較例 2 表1に示す組成の樹脂組成物を用いる他は比較
例1と同様にして同表に示す物性のシートを得
た。
[Industrial Application Field] The glass fiber reinforced resin composite sheet of the present invention is
It is shaped by methods such as compression molding, vacuum forming, and pressure forming and is used for automobile body materials, engine undercovers, fenders, etc. [Prior Art] As automobiles become lighter, resin materials such as polypropylene, polyamide, polyethylene, and FRP are used to account for 5 to 10% of the total weight of automobiles. Conventionally, engine undercovers that require heat resistance, impact resistance, and high rigidity have been made with glass roving or strand mats as the core material, and molten polypropylene sheets are crimped onto the front and back surfaces of this mat, with a glass fiber content of 40%. %, a press-molded composite sheet with a wall thickness of approximately 2.2 mm is used. This one can withstand temperatures of 120℃, impact resistance,
It has excellent high rigidity. However, since pine made of long fibers is used as the core material, the water flow properties of glass fiber are poor, and since it contains a high content of glass fiber, vacuum forming and pressure forming methods have high dimensional accuracy (mold fidelity). It is difficult to obtain the product. In addition, the specific gravity of the product is 1.19
It's heavy. To improve mold fidelity, short glass fibers with a diameter of 0.5 to 20 microns and a fiber length of 2 to 15 mm are used.
By using a sheet uniformly dispersed in thermoplastic resin and by using a large compression molding machine,
Press molding may be considered. However, the product obtained by vacuum forming or pressure forming the sheet obtained by the above methods has a drawback of having a high specific gravity, and furthermore, the latter method requires expensive equipment. [Specific means for solving the problem] The present invention improves formability by making the sheet structure multi-layered, and the base material layer, which accounts for 50% or more of the wall thickness, is made of a heat-resistant material containing inorganic fine powder. By using a plastic resin foam sheet layer, we can reduce the weight of the composite sheet and improve its impact resistance.
By providing a thermoplastic resin layer containing short glass fibers, a composite sheet with high rigidity equivalent to that of commercially available products can be provided. That is, in the present invention, short glass fibers are contained in an amount of 10 to 45% by weight.
The density of the thermoplastic resin sheet layer A containing 5 to 50% by weight of inorganic fine powder is 0.4 to 1.1 g/cm 3
The object of the present invention is to provide a glass fiber reinforced resin composite sheet containing a thermoplastic resin foam sheet base layer B as a structural unit of the layer. (Thermoplastic resin) Thermoplastic resins for the sheet layer A of the composite sheet and the foam sheet base layer B include polyethylene, polypropylene, ethylene/vinyl acetate copolymer, polystyrene, propylene/ethylene copolymer, Styrene/butadiene/styrene block copolymer or its hydrogenated product, maleic anhydride grafted polypropylene, ethylene/vinylsilundum copolymer, vinylsilane grafted polyethylene, metal salt of ethylene/acrylic acid copolymer (Na, Li, Zn) , polyethylene terephthalate, polyamide, and the like may be used alone or in combination of two or more. (Inorganic fine powder) Examples of inorganic fine powder include talc, zeolite,
Used are calcined clay, calcium carbonate, diatomaceous earth, kaolin clay, titanium oxide, etc. having a particle size of 100 microns or less, preferably 20 microns or less, and/or short glass fibers. (Short Glass Fiber) The short glass fiber used has a fiber diameter of 0.5 to 20 microns and a fiber length of 2 to 20 mm. This short glass fiber may be subjected to silane coupling treatment, titanium coupling treatment, or vinyl monomer graft treatment. (Composite sheet) Even if the composite sheet has a two-layer structure of a thermoplastic resin sheet layer A containing short glass fibers and a foam sheet base layer B, the composite sheet has a sheet layer on the front and back surfaces of the base layer B. It may be a three-layer structure in which A is provided. Furthermore, an adhesive layer may be provided between both layers [A and B]. In another embodiment, in addition to layers A and B, a homopolypropylene surface sheet layer C containing no inorganic fine powder may be provided in order to improve the surface gloss, and in order to improve the oil resistance of the composite sheet. A polyamide layer C may be provided on the surface. The composite sheet is prepared by extruding a thermoplastic resin composite material containing inorganic fine powder and a blowing agent and a thermoplastic resin material containing short glass fibers from different extruders in advance, and then laminating them by a coextrusion method. Alternatively, a thermoplastic resin containing short glass fibers can be formed on a pre-formed thermoplastic resin foam sheet base material B containing inorganic fine powder via an adhesive layer if necessary. It can be manufactured continuously by extrusion laminating the sheet A or the sheet and another resin sheet layer C. It is also possible to manufacture the sheets A, B, and C, which have been produced in advance, by integrating them using an adhesive. The content of short glass fibers in sheet A is 10-45% by weight, preferably 15-30% by weight. If it is less than 10% by weight, the rigidity of the composite sheet will be low. Conversely, 45% by weight
If it exceeds this value, the extrusion moldability of Sheet A will deteriorate. The proportion of sheet layer A in the composite sheet is 10
~50% by weight. If the wall thickness ratio is low, the rigidity of the composite sheet will be low, and if it is high, dimensional accuracy cannot be expected with vacuum forming or pressure forming. The content of inorganic fine powder in the foam sheet substrate layer B is 5 to 50% by weight. The presence of this inorganic fine powder approximately increases the stiffness of the composite sheet. However, the use of a large amount has a negative effect on reducing the weight of the composite sheet. Foam sheet base layer B is prepared by melt-kneading a thermoplastic resin, inorganic fine powder, and a foaming agent such as azodicarbonamide and a mixture of soda carbonate and citric acid in an extruder, and then extruding this into a sheet. Obtain by cooling. A volatile blowing agent such as trichlorofluoroethane, trichloromethane, butane, etc. may be used as a blowing agent, and the blowing agent may be introduced into an extruder and subjected to physical expansion. The density of the composite sheet is 0.5-1.1 g/ cm3 ,
The wall thickness is preferably about 1 to 4 mm. (Formation of foam sheet) The sheet can be formed not only by compression molding but also by vacuum forming and pressure forming. The composite sheet is softened or melted by heating and then molded into fenders, engine underseats, side moldings, and the like. Hereinafter, the present invention will be explained in further detail with reference to Examples. Example 1 (1) Homopolypropylene “MA-” manufactured by Mitsubishi Yuka Co., Ltd.
A mixture consisting of 55 parts by weight of 6'' (trade name), 25 parts by weight of polystyrene, 20 parts by weight of Thakur and 1 part by weight of azodicarboxylic acid amide was melt-kneaded in an extruder, extruded into a sheet form through a die at 210°C, and foamed. It was cooled to 60°C to obtain a foam sheet with a density of 0.84 g/cm 3. (2) 80 parts by weight of homopolypropylene “MA-3”;
A mixture consisting of 20 parts by weight of silane coupled short glass fibers with a fiber diameter of 10 to 15 μm and a fiber length of 5 to 7 mm and 1 part by weight of a stabilizer was melt-kneaded using two extruders, and then extruded through a die at 220°C. Extrude it into a sheet, laminate it on the front and back sides of the foam sheet obtained in (1), and press and cool it with a roll so that the thickness of the front and back layers is 0.3 mm each, and the thickness of the foam sheet layer is 1.16 mm.
(ie, the thickness of the composite sheet was 1.76 mm) and the density was 0.91 g/cm 3 . Table 1 shows the physical properties of this composite sheet. Comparative Example 1 A mixture of 79 parts by weight of homopolypropylene "MA-3", 20 parts by weight of the short glass fibers used in Example 1, and 1 part by weight of the stabilizer was melt-kneaded in an extruder,
It is extruded into a sheet form from a die at 220℃, pressed and cooled with a roll at 60℃ to a density of 1.03g/cm 3 and a wall thickness of
A 1.76 mm single layer sheet was obtained. Table 1 shows the physical properties of this sheet. Reference example: Using a silane coupling-treated glass fiber mat commercially available from Company A as a core material, a polypropylene fused sheet was press-molded on the front and back sides of the core material, with a glass fiber content of 40% by weight and a wall thickness of 2.2 mm. Table 1 shows the physical properties of the composite sheet. Example 2 A material with a wall thickness of 1.75 mm and a density of
A three-layer composite sheet of 0.92 g/cm 3 was obtained. Table 1 shows the physical properties of this composite sheet. Example 3 (1) Foam sheet B was obtained in the same manner as in Example 1. (2) Homopolypropylene "MA-6" C and mixture A of 79 parts by weight of homopolypropylene "MA-3", 20 parts by weight of the short glass fibers used in Example 1, and 1 part by weight of stabilizer were each separately prepared. This is melt-kneaded in an extruder, supplied to one die, laminated in the die, and then coextruded from the die at 220°C to form the front and back surfaces of the foam sheet B obtained in (1) above. The (A) layer was melt-laminated so that the layer (A) side was adhered, and then compressed with a roll at 60°C and cooled to obtain a five-layer composite sheet with an inner thickness of 1.90 mm and a density of 0.90 g/cm 3 . Table 1 shows the physical properties of this composite sheet. Examples 4 to 5 A three-layer composite sheet having the thickness and physical properties shown in Table 1 was obtained in the same manner as in Example 1, except that a resin composition having the composition shown in Table 1 was used. Comparative Example 2 A sheet having the physical properties shown in Table 1 was obtained in the same manner as in Comparative Example 1, except that a resin composition having the composition shown in Table 1 was used.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 ガラス短繊維を10〜45重量%含有する熱可塑
性樹脂シート層Aと、無機微細粒末を5〜50重量
%含有する密度が0.4〜1.1g/cm3の熱可塑性樹脂
発泡体シート基材層Bとを層の構成単位として含
むガラス繊維補強樹脂複合体シート。 2 発泡体シート基材層Bの複合体シート中に占
める肉厚割合が50〜90重量%であることを特徴と
する特許請求の範囲第1項記載の複合体シート。 3 シート層Aおよび発泡体シート基材層Bの構
成熱可塑性樹脂がポリオレフインであることを特
徴とする特許請求の範囲第1項記載の複合体シー
ト。
[Scope of Claims] 1. A thermoplastic resin sheet layer A containing 10 to 45% by weight of short glass fibers and a thermoplastic resin sheet having a density of 0.4 to 1.1 g/cm 3 and containing 5 to 50% by weight of inorganic fine particles. A glass fiber-reinforced resin composite sheet comprising a resin foam sheet base layer B as a structural unit of the layer. 2. The composite sheet according to claim 1, wherein the thickness proportion of the foam sheet base layer B in the composite sheet is 50 to 90% by weight. 3. The composite sheet according to claim 1, wherein the thermoplastic resin constituting the sheet layer A and the foam sheet base layer B is polyolefin.
JP5356885A 1985-03-18 1985-03-18 Glass fiber reinforced resin composite body sheet Granted JPS61213140A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5356885A JPS61213140A (en) 1985-03-18 1985-03-18 Glass fiber reinforced resin composite body sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5356885A JPS61213140A (en) 1985-03-18 1985-03-18 Glass fiber reinforced resin composite body sheet

Publications (2)

Publication Number Publication Date
JPS61213140A JPS61213140A (en) 1986-09-22
JPH0450900B2 true JPH0450900B2 (en) 1992-08-17

Family

ID=12946429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5356885A Granted JPS61213140A (en) 1985-03-18 1985-03-18 Glass fiber reinforced resin composite body sheet

Country Status (1)

Country Link
JP (1) JPS61213140A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CZ263998A3 (en) * 1996-02-23 1999-01-13 The Dow Chemical Company Polymer foam
JP4857454B2 (en) * 1999-10-29 2012-01-18 東レ株式会社 Manufacturing method of heat insulating plastic molding for unit bath
JP2006240408A (en) * 2005-03-02 2006-09-14 Hirotani:Kk Light/sound-absorbing under-cover for automobile

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50108366A (en) * 1974-02-01 1975-08-26
JPS5134424A (en) * 1974-09-17 1976-03-24 Babcock Hitachi Kk BENTOGASUNO SHORIHOHO
JPS5675837A (en) * 1979-11-27 1981-06-23 Kurabo Ind Ltd Fiber reinforced composite foamed material and its preparation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50108366A (en) * 1974-02-01 1975-08-26
JPS5134424A (en) * 1974-09-17 1976-03-24 Babcock Hitachi Kk BENTOGASUNO SHORIHOHO
JPS5675837A (en) * 1979-11-27 1981-06-23 Kurabo Ind Ltd Fiber reinforced composite foamed material and its preparation

Also Published As

Publication number Publication date
JPS61213140A (en) 1986-09-22

Similar Documents

Publication Publication Date Title
JP5532522B2 (en) Sandwich panel, sandwich panel core molding method, and sandwich panel molding method
US4044188A (en) Stampable thermoplastic sheet reinforced with multilength fiber
WO1996026822A1 (en) Stampable sheet made by papermaking technique and method for manufacturing lightweight molded stampable sheet
US6454974B1 (en) Method for vacuum pressure forming reinforced plastic articles
JPH05138784A (en) Composite molding of shock absorbing propylene polymer
JP4381941B2 (en) Laminate for automotive interior ceiling materials
EP0296611B1 (en) Stamping-moldable material
JPH0450900B2 (en)
JP3017960B2 (en) Thermoplastic polymer composite panel for plywood replacement
JPS6234336B2 (en)
KR101305391B1 (en) A manufacturing method of composite substrate using a extruding sheet for an automobile
JPH025176B2 (en)
JPH0999511A (en) Synthetic resin composite material and production thereof
JPH0742715Y2 (en) Laminated sheet
JP3215846U (en) Multilayer sheet
JP3574209B2 (en) Lightweight stampable sheet skin bonded product
JP2579568B2 (en) Method for producing glass fiber reinforced sheet
KR200166707Y1 (en) Vehicle ceiling material
KR100755102B1 (en) An automobile interior headliner molding or forming member and an automobile interior headliner member using the same
CA2355641C (en) Method for vacuum pressure forming reinforced plastic articles
JP3176733B2 (en) Laminated resin sheet and method for producing the same
JP3070960B2 (en) Laminates and molded articles from them
JPH0520608Y2 (en)
CN217622548U (en) Automobile interior panel, ceiling air duct, coat and hat rack and three-compartment vehicle spare board
JP3079007B2 (en) Laminated material