JPH0450879B2 - - Google Patents

Info

Publication number
JPH0450879B2
JPH0450879B2 JP6480184A JP6480184A JPH0450879B2 JP H0450879 B2 JPH0450879 B2 JP H0450879B2 JP 6480184 A JP6480184 A JP 6480184A JP 6480184 A JP6480184 A JP 6480184A JP H0450879 B2 JPH0450879 B2 JP H0450879B2
Authority
JP
Japan
Prior art keywords
limestone
fresh water
carbon dioxide
generated
produced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6480184A
Other languages
Japanese (ja)
Other versions
JPS60206490A (en
Inventor
Satoshi Ihara
Michio Miura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sasakura Engineering Co Ltd
Original Assignee
Sasakura Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sasakura Engineering Co Ltd filed Critical Sasakura Engineering Co Ltd
Priority to JP6480184A priority Critical patent/JPS60206490A/en
Publication of JPS60206490A publication Critical patent/JPS60206490A/en
Publication of JPH0450879B2 publication Critical patent/JPH0450879B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、淡水化装置で得られた淡水を水道水
に適した水質に転換するための小形の石灰石焼成
炉を備えた後処理方法および装置に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a post-treatment method and device equipped with a small limestone kiln for converting fresh water obtained by a desalination device into water quality suitable for tap water.

石灰石の石灰の一部が苦士で入れ替つた白雲石
(ドロマイト)系を含んでも全く同軌の反応とな
るので、本発明では一々の説明は省略するが、
Caで示される部分はすべてCa+Mgである場合
を含むものとする。
Even if some of the lime in limestone contains dolomite (dolomite), which is replaced by dolomite, the reaction will be exactly the same, so a detailed explanation will be omitted in the present invention.
All portions indicated by Ca include cases where Ca+Mg is present.

淡水化装置によつて得られた淡水はミネラル成
分を殆んど含んでいないから、以後の給水系統の
配管材料を腐食させ、また飲料水としては味覚に
乏しいものであつた。これらの欠点を補うため、
淡水に炭酸カルシウムや消石灰と炭酸ガスとを添
加して製造水とする方法が採用されており、一般
には石灰石を充填した容器、いわゆるライムスト
ンフイルターが設置され、これに炭酸ガスを吸収
した淡水が通過して下記反応により炭酸水素カル
シウムが生成し硬度を増す。
Since the fresh water obtained by the desalination equipment contains almost no mineral components, it corrodes the piping materials of the subsequent water supply system and has a poor taste as drinking water. To compensate for these shortcomings,
The method used is to add calcium carbonate or slaked lime and carbon dioxide gas to fresh water to make manufactured water.Generally, a container filled with limestone, a so-called limestone filter, is installed, and the fresh water that has absorbed carbon dioxide gas is passed through it. After passing through, calcium hydrogen carbonate is produced by the following reaction and hardness increases.

CaCO3+H2O+CO2→Ca(HCO32 ……(1) このライムストンフイルターには通常入手し易
く安価な2〜20mm粒度の石灰石を充填して使用し
ているが、多くの場合純度が低く不純物を含み、
また溶解速度が遅く、硬度が附与されても水質が
劣ることもあり、このライムストンフイルターは
容量の割に淡水の処量は低く、よつて大型淡水化
装置では該フイルターを数十基も併設することと
なり、設備費が高くなりかつ石灰石は各フイルタ
ーに投入しなければならず、この補充作業は不溶
解スライムの排出作業とともに仲々煩雑であつ
た。
CaCO 3 + H 2 O + CO 2 → Ca (HCO 3 ) 2 ...(1) This limestone filter is usually filled with readily available and inexpensive limestone with a particle size of 2 to 20 mm, but in many cases the purity is low and contains impurities,
In addition, the dissolution rate is slow, and even if hardness is added, the quality of the water may be poor.This limestone filter has a low throughput of fresh water despite its capacity, and large-scale desalination equipment requires dozens of such filters. Since these filters were to be installed together, equipment costs were high, and limestone had to be added to each filter, and this replenishment work, along with the work of discharging insoluble slime, was quite complicated.

一方、炭酸ガスは淡水化装置における海水中の
重炭酸成分の分解抽気により取得できる場合もあ
るから、これを使用すれば合理的であるが、その
際アンモニア、油分、臭素等の不純物が含有する
危険性があり、また該抽気エゼクタ用蒸気のボイ
ラー用脱酸素剤としてヒドラジンを使用した場
合、抽気中の炭酸ガスにはヒドラジン等が混入す
る恐れがあり問題である。
On the other hand, carbon dioxide gas can sometimes be obtained by decomposing and extracting bicarbonate components in seawater in desalination equipment, so it is reasonable to use this gas, but in this case, it may contain impurities such as ammonia, oil, and bromine. This is dangerous, and if hydrazine is used as a deoxidizing agent for the boiler of steam for the bleed ejector, there is a risk that hydrazine or the like will be mixed into the carbon dioxide gas in the bleed gas, which is a problem.

また炭酸ガスの入手は油またはガスを燃焼して
生成する炭酸ガスをエタノールアミンなどの溶剤
を使用して回収するプロセスから取得する方法、
あるいは購入液化炭酸ガスの使用も考えられる
が、前者では装置が大規模の場合と同型式となり
複雑となつてポンプ等の動力が増大するばかりで
なく、機器の数も多く建設コストも高価なものと
なり、保健上も問題が残る。後者は価格(ランニ
ングコスト)の高騰を招き実用的でない。即ちこ
の場合の数+Nm3/H(CO2として)程度の要求
に対して、前者は無理なスケールダウンであり、
後者では消費量がやや多過ぎるとともに供給切れ
の不安をも伴うものである。
In addition, carbon dioxide gas can be obtained through the process of recovering carbon dioxide gas produced by burning oil or gas using a solvent such as ethanolamine;
Alternatively, it is possible to use purchased liquefied carbon dioxide, but in the former case, the equipment would be of the same type as a large-scale device, which would not only be complicated and require more power for pumps, etc., but also require a large number of equipment and be expensive to construct. Therefore, health problems remain. The latter is impractical as it causes a rise in price (running costs). In other words, in this case, the former is an unreasonable scale-down for the requirement of about number + Nm 3 /H (as CO 2 ).
In the latter case, the amount consumed is a little too high and there is also the fear of running out of supply.

上記のとおり炭酸ガスの必要量は数+Nm3
H(CO2として)の能力であり、石灰石としても
100Kg/H程度の微々たる取扱数量となり、此の
量に見合う小径の石灰石を連続的に処理すること
となり、工業規模の石灰炉で使われる数+mmφ以
上の石灰石に比して分解時間も桁違いに短かく、
従つて滞留量も僅かなものとなり、一般石灰炉と
は桁違いに小さい特殊な炉で加熱するに適する程
度となるなど、従来の石灰炉とは全く概念が異な
るため、本発明は新たに開発した小型の石灰石分
解炉と、これに淡水化装置とを有機的に組合わせ
て、若干低品位の石灰石の場合であつても、より
高純度の消石灰溶液または微粒を含む石灰乳を生
成させ、次いで該液に石灰石焼成炉から発生した
炭酸ガス、必要ある場合は他から得た炭酸ガスを
吸収させることによつて淡水に炭酸水素カルシウ
ムを効率よく生成させる。
As mentioned above, the required amount of carbon dioxide gas is number + Nm 3 /
H (as CO 2 ), and also as limestone.
The handling quantity is only about 100Kg/H, and the small-diameter limestone corresponding to this quantity has to be continuously processed, and the decomposition time is an order of magnitude higher than that for limestone larger than the number + mmφ used in industrial-scale lime furnaces. In short,
Therefore, the retention amount is small, and it is suitable for heating in a special furnace that is orders of magnitude smaller than a general lime furnace.As the concept is completely different from that of conventional lime furnaces, the present invention is a newly developed lime furnace. By organically combining a small-scale limestone decomposition furnace with a desalination device, even in the case of slightly low-grade limestone, a higher purity slaked lime solution or lime milk containing fine particles can be produced, Next, by absorbing carbon dioxide gas generated from the limestone kiln and, if necessary, carbon dioxide gas obtained from other sources, into the liquid, calcium hydrogen carbonate is efficiently produced from the fresh water.

即ち、上記反応式(1)の前に一部は下記 Ca(OH)2+CO2→CaCO3+H2O ……(2) の反応によつて炭酸ガスと反応して炭酸カルシ
ウムを生成するが、この炭酸カルシウムは生成と
同時に溶解されてゆく條件下にあるので粒径が極
めて小さく、同時に淡水と炭酸ガスを(1)式で反応
させて炭酸水素カルシウムを淡水に溶解させる方
法であつて、経済的であり、装置の小型化連続化
および水質基準に合格する安定した飲料水の取得
を目的としてなされたものである。
That is, before the above reaction formula (1), a part of it reacts with carbon dioxide gas to produce calcium carbonate through the following reaction Ca(OH) 2 + CO 2 → CaCO 3 + H 2 O...(2). Since this calcium carbonate is under conditions where it is dissolved at the same time as it is produced, its particle size is extremely small, and at the same time, fresh water and carbon dioxide gas are reacted according to equation (1), and calcium hydrogen carbonate is dissolved in fresh water. This was done for the purpose of being economical, downsizing and continuous equipment, and obtaining stable drinking water that passes water quality standards.

以下本発明を添付の図面を参照して説明する。 The present invention will now be described with reference to the accompanying drawings.

淡水化装置、例えば海水淡水化蒸発装置1の設
置場所に近接して内部直接加熱石灰石焼成炉2が
設けられており、蒸発器3から生成した淡水であ
る蒸留水はTDSを数ppmしか含まず、このまま
では飲料に適しないので、管4を経て詳細を後述
するカルシウム溶解装置5に導入して硬度を附与
する。
An internal direct heating limestone calcining furnace 2 is installed close to the installation location of a desalination device, for example, a seawater desalination evaporation device 1, and the distilled water, which is fresh water produced from the evaporator 3, contains only a few ppm of TDS. Since it is not suitable for drinking as it is, it is introduced into a calcium dissolving device 5, which will be described in detail later, through a pipe 4 to impart hardness.

一方、拡大して示された石灰石焼成炉2は内部
直接加熱方式であつて、ホツパー6から炉内に装
入された石灰石7は、例えば燃料油を管8から導
入して燃焼させる内部加熱用バーナー9によつて
900℃以上に直接加熱され、石灰石は生石灰と炭
酸ガスに分解し、生石灰は炉下部の冷却ゾーン1
0を通過する間に、ブロア11から管12を経て
導入された冷空気流により直接接触冷却されたの
ち、下部の生石灰消化器13に落下する。燃焼用
空気は、焼成炉2上部の間接冷却器14及び前述
の下方の冷却ゾーン10でそれぞれ適宜熱交換し
予熱され使用に供される。なお上下部の冷却操作
については直接または間接接触いずれでも可能で
ある。焼成炉は図示の方式に限るものではなく独
楽型、国井式等小型化に適する方式よりモデイフ
アイしても達成し得るものである。
On the other hand, the limestone kiln 2 shown in an enlarged manner is of an internal direct heating type, and the limestone 7 charged into the kiln from the hopper 6 is used for internal heating, for example, by introducing fuel oil from a pipe 8 and burning it. by burner 9
The limestone is directly heated to over 900℃, decomposing it into quicklime and carbon dioxide gas, and the quicklime is cooled in the cooling zone 1 at the bottom of the furnace.
0, it is directly contacted and cooled by the cold air flow introduced from the blower 11 through the pipe 12, and then falls into the quicklime digester 13 in the lower part. The combustion air is preheated by appropriately exchanging heat in the indirect cooler 14 in the upper part of the kiln 2 and the cooling zone 10 in the lower part mentioned above, and then used. Note that the cooling operation for the upper and lower parts can be performed by either direct or indirect contact. The firing furnace is not limited to the method shown in the drawings, but can also be modified from a top-type, Kunii-type, or other suitable method for miniaturization.

生石灰消化器13には淡水化装置1で生成した
一部の淡水が管15を経て装入されて消石灰溶液
もしくは石灰乳が生成し、不純物がある場合は該
消化器13内に設けられたシツクナー16により
不純物は沈泥となつて下部17から排出される。
生石灰消化器13は、装入される生石灰の純度が
高いときは容器を用いず長い配管で代用すること
もできる。
A part of the fresh water generated in the desalination device 1 is charged into the quicklime digester 13 via a pipe 15 to produce a slaked lime solution or lime milk, and if there are impurities, a thickener installed in the digester 13 16, impurities are turned into silt and discharged from the lower part 17.
In the quicklime digester 13, when the purity of the quicklime to be charged is high, a long pipe can be used instead of a container.

このようにして精製された消石灰溶液または石
灰乳はポンプ18、管19を経て、例えば0.5%
程度の濃度でカルシウム溶解装置5に到つて、分
岐管20によつてここを通過する淡水に混合す
る。
The slaked lime solution or milk of lime purified in this way passes through a pump 18 and a pipe 19, for example 0.5%
It reaches the calcium dissolving device 5 at a certain concentration and is mixed with the fresh water passing through the branch pipe 20.

上記の説明では生成淡水の一部を生石灰消化器
13に導入したが、場合によつては管20を省い
て生成淡水の全量を導入してもよい。この場合も
石灰石の純度が良く不純物が殆んどなければ容器
13を用いず長い配管で代用することもできる。
In the above description, a portion of the produced fresh water is introduced into the quicklime digester 13, but in some cases, the pipe 20 may be omitted and the entire amount of produced fresh water may be introduced. In this case as well, if the limestone is of high purity and contains almost no impurities, the container 13 may be omitted and a long pipe may be used instead.

石灰石焼成炉2で石灰石の分解によつて生じた
炭酸ガスは燃焼ガス中に炭酸ガス以外に空気等が
混入して純度は幾分劣るが、管21を経てカルシ
ウム溶解装置5に入つて淡水に溶解し、前記反応
式(1,2)により反応は進行しCaCO3を生成
しても、更に(1)式に従い該溶解装置5内で
CaCO3、H2O、CO2が反応してCa(HCO32が溶
解生成するので、CaCO3の粒径は微小で成長す
る暇もなく速やかに溶解して、淡水に硬度を与え
管22から処理水として取出される。
The carbon dioxide gas generated by the decomposition of limestone in the limestone kiln 2 has a somewhat inferior purity due to the presence of air in addition to the carbon dioxide in the combustion gas, but it enters the calcium dissolving device 5 through the pipe 21 and becomes fresh water. Even if CaCO 3 is dissolved and the reaction proceeds according to the reaction equations (1, 2) and generates CaCO 3 , the reaction proceeds in the dissolving device 5 according to the equation (1).
CaCO 3 , H 2 O, and CO 2 react to form Ca(HCO 3 ) 2 by dissolution.The particle size of CaCO 3 is minute and dissolves quickly without any time to grow, giving hardness to fresh water and forming pipes. 22 as treated water.

この際、CaCO3は前述のとおり粒径が小さい
ので反応速度は大きく、従来のライムストンフイ
ルターのような大規模な装置を必要としない。管
22から取出す処理後の淡水に要求される硬度は
炭酸水素イオンとして数+ppm程度であるから、
管19を流れる0.5%程度のCaCO3よりこの程度
の炭酸水素イオンの生成は、使用炭酸ガスの純度
が高く溶解し易いことと相俟つて、その反応時間
は短かくなり、カルシウム溶解装置5は小形にで
き、内部機構は極めて簡単となり、この実施例で
は側方の邪魔板23を突出させて流路に変化を与
えたが、このような構成は省略し簡単な装置とす
ることもできる。また、もしも他から容易にCO2
が取得できる場合はこれを利用してもよいことは
勿論である。
At this time, since CaCO 3 has a small particle size as described above, the reaction rate is high, and a large-scale device such as a conventional limestone filter is not required. The hardness required for the fresh water taken out from the pipe 22 after treatment is approximately several ppm in terms of hydrogen carbonate ions,
The production of this level of bicarbonate ions from the approximately 0.5% CaCO 3 flowing through the pipe 19 is coupled with the fact that the carbon dioxide used is highly pure and easily dissolved, and the reaction time is shortened. It can be made small and the internal mechanism is extremely simple, and although in this embodiment the side baffle plates 23 are protruded to change the flow path, such a configuration can be omitted and the device can be made simple. Also, if CO 2 is easily removed from other sources,
Of course, if it can be obtained, it may be used.

本発明は淡水化装置の近傍に内部直接加熱石灰
石焼成炉を設置し、生成淡水の一部または全部を
石灰石焼成炉側に導き生成生石灰と混合して消石
灰溶液または石灰乳となし、これと上記石灰石焼
成炉から発生した炭酸ガス、必要ある場合は他か
ら得た炭酸ガスとを生成淡水に混合吸収させるこ
とによつて生成淡水に硬度を附与することを特徴
とする生成淡水後処理方法であるから、直接加熱
石灰石焼成炉で得られる分解炭酸ガス及び燃焼ガ
ス中の炭酸ガスの両方を利用でき、またカルシウ
ム溶解装置は従来のライムストンフイルターのよ
うに石灰石の充填補充のような断続する煩雑な作
業はなく連続的となるから作業能率は向上でき
る。炉の條件または管8の燃料の種類により該焼
成炉のみよりの炭酸ガス量が不足する場合であつ
て、逆浸透法による淡水化時のように膜の種類に
より透過水が炭酸ガスを余り含まないとき、或は
近傍に燃焼排ガスまたは抽気ガス等の炭酸ガス源
のない時には、Ca(OH)2の強い反応性により、
空気中の数百ppmの炭酸ガスを吸収塔を設けて捕
捉して不足分を補うこともできる。また燃料中に
硫黄分があればCaSO4等となつて捕捉された分も
有効なカルシウム源となり得る。
In the present invention, an internal direct heating limestone calcining furnace is installed near the desalination equipment, and part or all of the generated fresh water is guided to the limestone calcining furnace side and mixed with the generated quicklime to form a slaked lime solution or lime milk. A method for after-treatment of produced fresh water, characterized by imparting hardness to the produced fresh water by mixing and absorbing carbon dioxide gas generated from a limestone kiln, and if necessary, carbon dioxide obtained from other sources, into the produced fresh water. Because of this, it is possible to utilize both the decomposed carbon dioxide gas obtained in a direct heating limestone kiln and the carbon dioxide gas in the combustion gas, and the calcium dissolving device does not require intermittent troubles such as limestone filling and replenishment, unlike conventional limestone filters. Work efficiency can be improved because there is no repetitive work and the work is continuous. In cases where the amount of carbon dioxide from the firing furnace alone is insufficient due to the conditions of the furnace or the type of fuel in the tube 8, the permeated water may contain too much carbon dioxide depending on the type of membrane, such as during desalination by reverse osmosis. When there is no carbon dioxide gas source such as combustion exhaust gas or bleed gas nearby, due to the strong reactivity of Ca(OH) 2 ,
It is also possible to make up for the shortage by installing an absorption tower to capture several hundred ppm of carbon dioxide gas in the air. Furthermore, if there is sulfur in the fuel, the amount captured as CaSO 4 etc. can also be an effective source of calcium.

しかも、この炭酸ガスの添加によつて粒径の小
さいCaCO3が生成するので以後のカルシウム溶
解装置における溶け易い高純度炭酸ガスとの反応
速度は大となる。因みに数mm程度の石灰石のライ
ムストンフイルターに比べて本発明の炭酸カルシ
ウム微粒は数百乃至数万倍の比表面積を有するの
で該溶解装置は小形で形状は単純化でき、淡水の
通過速度は大となし得て処理能力が増大し、更に
は配管長に若干のゆとりがあればその一部を利用
する等小形にできるなどの効果があり、更に純度
の劣る石灰石を原料としても可能であり、砂の混
入した石灰石でも対象として考えられ、また一方
炭酸ガスの濃度が低くても、生成CaCO3は高品
位のものに変換でき、式(2)の反応のところまでは
低濃度の炭酸ガス、極端な場合は大気さえも使用
可能で、式(1)の炭酸ガスは自給自足できるから、
淡水の後処理において各成分はバランスがよくと
れて無駄がなくなり、淡水化装置の近くに石灰石
採石場があれば、たとえ低品位の石灰石しか採掘
できなくても有効に利用でき、特にその効果は大
である。
Moreover, since CaCO 3 having a small particle size is generated by adding carbon dioxide gas, the reaction rate with easily soluble high purity carbon dioxide gas in the subsequent calcium dissolving device increases. Incidentally, since the calcium carbonate fine particles of the present invention have a specific surface area several hundred to tens of thousands of times larger than that of a limestone filter made of limestone, which is about several millimeters in size, the dissolving device can be small and simple in shape, and the passing speed of fresh water can be increased. This has the effect of increasing the processing capacity, and if there is some extra space in the pipe length, it can be made smaller by using a part of it, and it is also possible to use limestone, which has lower purity, as a raw material. Limestone mixed with sand can also be considered as a target; on the other hand, even if the concentration of carbon dioxide gas is low, the generated CaCO 3 can be converted into a high-grade one, and up to the reaction of equation (2), low concentration carbon dioxide gas, In extreme cases, even the atmosphere can be used, and the carbon dioxide in equation (1) can be self-sufficient, so
In the post-treatment of fresh water, each component is well balanced and there is no waste, and if there is a limestone quarry near the desalination equipment, it can be used effectively even if only low-grade limestone can be mined. It's large.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の一実施例における一部を拡大して
示したフローシートである。 1……海水淡水化蒸発装置、2……内部直接加
熱石灰石焼成炉、3……蒸発器、4……管、5…
…カルシウム溶解装置、6……ホツパー、7……
石灰石、8……管、9……内部加熱用バーナー、
10……冷却ゾーン、11……ブロア、12……
管、13……生石灰消化器、14……間接冷却
器、15……管、16……シツクナー、17……
下部、18……ポンプ、19……管、20……分
岐管、21……管、22……管、23……邪魔
板。
The figure is a flow sheet showing an enlarged part of one embodiment of the present invention. 1...Seawater desalination evaporator, 2...Internal direct heating limestone calcining furnace, 3...Evaporator, 4...Pipe, 5...
...Calcium dissolving device, 6...Hopper, 7...
limestone, 8... tube, 9... burner for internal heating,
10...Cooling zone, 11...Blower, 12...
Pipe, 13...Quicklime digester, 14...Indirect cooler, 15...Pipe, 16...Sickener, 17...
Lower part, 18...Pump, 19...Pipe, 20...Branch pipe, 21...Pipe, 22...Pipe, 23...Baffle plate.

Claims (1)

【特許請求の範囲】 1 淡水化装置の近傍に内部直接加熱石灰石また
は苦土分を含む石灰石(以下石灰石と称する)焼
成炉を設置し、生成淡水の一部は石灰石焼成炉側
に導き、生成生石灰と混合して石灰乳または消石
灰溶液となし、これと上記石灰石焼成炉から発生
した炭酸ガス、必要ある場合は他から得た炭酸ガ
スとを残りの生成淡水に混合吸収させることによ
つて生成淡水に硬度を附与することを特徴とする
生成淡水後処理方法。 2 淡水化装置の近傍に内部直接加熱石灰石焼成
炉を設置し、生成淡水は石灰石焼成炉側に導き、
生成生石灰と混合して該混合溶液に上記石灰石焼
成炉から発生した炭酸ガス、必要ある場合は他か
ら得た炭酸ガスを混合吸収させることによつて淡
水に硬度を附与することを特徴とする生成淡水後
処理方法。 3 淡水化装置の生成淡水の一部がホツパーと装
入弁及び排出弁を有する加熱分解塔に連なる生石
灰消化器に配管等により導かれ、ポンプを介しカ
ルシウム溶解装置に配管等により導かれ、残部は
カルシウム溶解装置に配管等により導かれること
によつてなる生成淡水後処理装置。 4 カルシウム溶解装置は側方より複数の邪魔板
を突出させた容器である特許請求の範囲第3項記
載の生成淡水後処理装置。
[Claims] 1. A calcining furnace for internally directly heated limestone or limestone containing magnesium (hereinafter referred to as limestone) is installed near the desalination equipment, and a part of the generated fresh water is guided to the limestone calcining furnace to It is produced by mixing with quicklime to form lime milk or slaked lime solution, and mixing and absorbing this with carbon dioxide gas generated from the limestone kiln, and carbon dioxide gas obtained from other sources if necessary, into the remaining fresh water produced. A method for post-treatment of produced fresh water, characterized by imparting hardness to the fresh water. 2. An internal direct heating limestone calcining furnace is installed near the desalination equipment, and the generated fresh water is guided to the limestone calcining furnace.
It is characterized by imparting hardness to fresh water by mixing with generated quicklime and allowing the mixed solution to mix and absorb carbon dioxide gas generated from the limestone kiln, and if necessary, carbon dioxide obtained from other sources. Method for post-treatment of generated fresh water. 3. A part of the fresh water produced by the desalination equipment is led by piping, etc. to a quicklime digester connected to a thermal decomposition tower having a hopper, a charging valve, and a discharge valve, and is led to a calcium dissolving device by piping, etc. via a pump. is a post-treatment device for freshwater generated by guiding it to a calcium dissolving device through piping, etc. 4. The produced freshwater after-treatment device according to claim 3, wherein the calcium dissolution device is a container with a plurality of baffle plates projecting from the side.
JP6480184A 1984-03-30 1984-03-30 Method and apparatus for post-treatment of prepared fresh water Granted JPS60206490A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6480184A JPS60206490A (en) 1984-03-30 1984-03-30 Method and apparatus for post-treatment of prepared fresh water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6480184A JPS60206490A (en) 1984-03-30 1984-03-30 Method and apparatus for post-treatment of prepared fresh water

Publications (2)

Publication Number Publication Date
JPS60206490A JPS60206490A (en) 1985-10-18
JPH0450879B2 true JPH0450879B2 (en) 1992-08-17

Family

ID=13268704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6480184A Granted JPS60206490A (en) 1984-03-30 1984-03-30 Method and apparatus for post-treatment of prepared fresh water

Country Status (1)

Country Link
JP (1) JPS60206490A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6359392A (en) * 1986-08-28 1988-03-15 Nippon Kentetsu Co Ltd Drinking water production system

Also Published As

Publication number Publication date
JPS60206490A (en) 1985-10-18

Similar Documents

Publication Publication Date Title
US5100633A (en) Method for scrubbing pollutants from an exhaust gas stream
CN101797466B (en) Wet flue gas desulphurizing method utilizing carbide slag slurry and device thereof
US9895661B2 (en) Process and device for desulphurization and denitration of flue gas
KR930012036B1 (en) Waste gas cleaning method and apparatus
US4915914A (en) System for simultaneously scrubbing cement kiln exhaust gas and producing useful by-products therefrom
CN100531867C (en) Method and apparatus for combined removing sulfur-dioxide and nitrogen oxide by mixed solution
US20160206994A1 (en) Method and apparatus for removing carbon dioxide from flue gas
US10875785B2 (en) Recovery of valuable resources from produced water and coal combustion products
Hlabela et al. Barium carbonate process for sulphate and metal removal from mine water
CN103974757A (en) Process and system for capturing carbon dioxide from a gas stream
CN107922213A (en) The control method of water treatment system, power plant and water treatment system
CN106587231A (en) FGD wastewater zero discharge system
CN102395417A (en) System, apparatus and method for carbon dioxide sequestration
KR101860295B1 (en) Treatment Apparatus of FGD Wastewater by using Vacuum Evaporation and Method Thereof
WO2019225202A1 (en) Treatment method for reducing carbon dioxide discharge amount of combustion exhaust gas
EP3405275B1 (en) Method and apparatus for removing carbon dioxide from flue gas
US4141961A (en) Production of H2 S from SO2 obtained from flue gas
EP2221101B1 (en) Method for softening water for use in a scrubber
JPH1157397A (en) Gas purifying method
Mourad et al. Carbon dioxide capture through reaction with potassium hydroxide and reject brine: A kinetics study
WO2015052325A1 (en) Capture of carbon dioxide
CN111672879A (en) Waste salt recycling system and method based on energy conservation and environment protection integration of thermal power plant
EP3363523B1 (en) A method for limiting the emissions of co2 in soda processes
JPH0472597B2 (en)
JPH0450879B2 (en)