JPH0450842B2 - - Google Patents

Info

Publication number
JPH0450842B2
JPH0450842B2 JP63074825A JP7482588A JPH0450842B2 JP H0450842 B2 JPH0450842 B2 JP H0450842B2 JP 63074825 A JP63074825 A JP 63074825A JP 7482588 A JP7482588 A JP 7482588A JP H0450842 B2 JPH0450842 B2 JP H0450842B2
Authority
JP
Japan
Prior art keywords
fiber
perforated plate
waterway
weir
receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63074825A
Other languages
Japanese (ja)
Other versions
JPH01249113A (en
Inventor
Juji Fukuda
Akira Takahashi
Nobuhiro Suzuki
Yoshinori Hisayoshi
Yukio Takeda
Takeo Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Miike Engineering Corp
Original Assignee
Mitsui Miike Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Miike Engineering Corp filed Critical Mitsui Miike Engineering Corp
Priority to JP7482588A priority Critical patent/JPH01249113A/en
Publication of JPH01249113A publication Critical patent/JPH01249113A/en
Publication of JPH0450842B2 publication Critical patent/JPH0450842B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 この発明は、下水路等の水路内において上向水
流により多数の繊維からなる濾過層を形成し、微
細な固形分を含む水路の水を、上昇させて前記濾
過層を通過させることにより、低圧損で大水量の
濾過を行なうことができ、かつ流水量が変化した
場合でも、適当な上向き流速にすることができる
水平濾床型低圧損上向流濾過装置に関するもので
ある。 〔従来の技術〕 従来、浮上性を有する濾材を使用して上向流に
より微細な固形分を含む水を濾過する装置として
は、特開昭48−25259号公報により公表されてい
るように、濾槽内の上部に有孔阻止体を設けると
共に、濾槽内の下側に整流板を設け、かつ前記有
孔阻止体と整流板との間に浮上濾材を収容し、前
記整流板の下部において濾槽内に原水供給管を開
口させ、前記有孔阻止体の下部に洗浄水供給管を
設けた濾過装置が知られている。 〔発明が解決しようとする課題〕 前記従来の濾過装置を水路の水の濾過に使用し
た場合、水路の流水量が大きく変化すると、上向
水流の流速も大きく変化するので、高性能の濾過
を行なうことができないという問題がある。 〔課題を解決するための手段〕 前記目的を達成するために、第1発明の水平濾
床型低圧損上向流濾過装置においては、水路1内
に設けられた上流側堰2と水路底部3との間に通
水用開口部4が設けられ、前記上流側堰2の下流
側において水路1内に設けられた下流側堰5の上
部に溢流部が設けられ、前記上流側堰2と下流側
堰5との間に、それぞれ水中に位置する繊維塊受
止用上部多孔板6と繊維塊受止用下部多孔板7と
が配置され、前記上部多孔板6および下部多孔板
7の間に水路巾方向に延長する固定仕切板11が
設けられ、かつその固定仕切板11の上方に昇降
仕切板12が設けられ、前記繊維塊受止用上部多
孔板6の下部に上向水流により浮上する多数の繊
維塊8からなる繊維塊濾過層9が形成され、その
繊維塊濾過層9の下部と前記繊維塊受止用下部多
孔板7との間に、繊維塊浮遊降下許容用空間10
設けられている。 また第2発明の水平濾床型低圧損上向流濾過装
置においては、水路1内に設けられた上流側堰2
と水路底部3との間に通水用開口部4が設けら
れ、前記上流側堰2の下流側において水路1内に
設けられた下流側堰5の上部に溢流部が設けら
れ、前記上流側堰2と下流側堰5との間に、それ
ぞれ水中に位置する繊維塊受止用上部多孔板6と
繊維塊受止用下部多孔板7とが配置され、水路巾
方向に延長すると共に繊維塊受止用上部多孔板6
から繊維塊受止用下部多孔板7にわたつて延長す
る複数の固定仕切板11が、水路長手方向に間隔
をおいて設けられ、各固定仕切板11の上端のレ
ベルおよび繊維塊受止用上部多孔板6のレベルは
上流側から下流側に向かつて順次低下し、前記繊
維塊受止用上部多孔板6の下部に上向水流により
浮上する多数の繊維塊8からなる繊維塊濾過層9
が形成され、その繊維塊濾過層9の下部と前記繊
維塊受止用下部多孔板7との間に、繊維塊浮遊降
下許容用空間10が設けられている。 また繊維塊の洗浄を行なうために、前記下部多
孔板7の下部の水中に繊維塊洗浄用散気管13を
設ける。 〔作用〕 水路1内の上流側から通水用開口部4を通つて
水路底部3と下部多孔板7の間の下部室37に流
入した水は、下部多孔板7および上部多孔板6を
通つて上向きに流動し、その上向水流によつて各
繊維塊8が上部多孔板6に向かつて浮上して上部
多孔板6の下部に繊維塊濾過層9を形成し、かつ
前記上向水流が繊維塊濾過層9を通過する際に濾
過される。 濾過の進行に伴つて繊維塊濾過層9における下
層の繊維塊8に上向水流中の微細固形物が付着
し、微細固形物が一定量以上付着した繊維塊8
は、見かけ比重が大きくなつて濾過層9を形成す
ることができなくなり、前記繊維塊浮遊降下許容
用空間10内で浮遊するかあるいは下部多孔板7
上に沈降する。したがつて、繊維塊濾過層9の下
部には常に新しい繊維塊8を露出し、水平濾床に
よる低圧損上向流濾過が継続される。 昇降仕切板12を固定仕切板11の上に降ろす
と、水路1における流水量が少なくなつた場合で
も、上向水流の流速が一定以上になる。 また上流側堰2と下流側堰5との間に、水路巾
方向に延長すると共に繊維塊受止用上部多孔板6
から繊維塊受止用下部多孔板7にわたつて延長す
る複数の固定仕切板11を、水路長手方向に間隔
をおいて設け、各固定仕切板11の上端のレベル
および前記上部多孔板6のレベルを上流側から下
流側に向かつて順次低くしておくと、水路の流水
量が非常に多くかつ水路の巾が狭く、しかも流水
量が変化する場合でも、水平濾床による低圧損上
向流濾過を行なうことができる。 さらにまた、前記下部多孔板7の下部の水中に
設けた繊維塊洗浄用散気管13から空気を噴出さ
せることにより、空気混合水の上昇流を発生させ
て、その空気混合水の上昇流により上部多孔板6
と下部多孔板7との間にある繊維塊8を水中で攪
拌して洗浄することができる。 〔実施例〕 次にこの発明を図示の例によつて詳細に説明す
る。 第9図および第10図はこの発明の実施例にお
いて用いられる捲縮繊維塊からなる濾過用繊維塊
8を示すものであつて、例えば20〜200デニール
の合成繊維に2〜10回/インチの捲縮を付与した
多数の捲縮繊維20が束状に集合され、かつその
束状捲縮繊維の中央部が、剛性のある合成繊維
糸、硬質プラスチツクバンドまたはアルミ線等の
耐蝕性金属線からなる結束材21により絞られる
ように結束され、その結束された束状捲縮繊維が
丸められて、直径10〜50mmのほぼ球状に形成され
ている。 前記捲縮繊維20を構成する合成繊維として
は、水よりも高比重の繊維例えばポリ塩化ビニリ
デン系繊維が最適であるが、ポリ塩化ビニル繊
維、ポリエチレン系繊維またはその他の合成繊維
を使用してもよい。 真比重が1よりも大きいポリ塩化ビニリデン系
捲縮繊維を使用した直径約3.5cmの繊維塊の場合、
水中での沈降速度は約90〜100m/hrである。し
たがつて、水中での繊維塊の沈降速度よりも速い
均等上向水流中では、繊維塊が浮上する。 第1図ないし第3図は前記繊維塊8を使用した
第1発明の実施例に係る水平濾床型低圧損上向流
濾過装置を示すものであつて、水路1内に設けら
れた上流側堰2が、水路1の両側壁22に一体に
結合され、その水路1の底部3と上流側堰2の下
端部との間に通水用開口部4が設けられ、かつ上
流側堰2の下流側に、上部に溢流部を有する下流
側堰5が設けられ、その下流側堰5は水路1の底
部3および両側壁22に一体に結合され、さらに
前記上流側堰2と下流側堰5との間に、水路高さ
方向の中間部において水路巾方向に延長する固定
仕切板11が、水路長手方向に間隔をおいて配置
され、各固定仕切板11の巾方向の両端部は、前
記側壁22に固定されている垂直支持部材23に
対しボルトにより固定されている。 前記下流側堰5の上面よりも若干低レベルにお
いて、金網からなる水平な繊維塊受止用上部多孔
板6が、隣り合う各固定仕切板11の間と、上流
側堰2および固定仕切板11の間と、下流側堰5
および固定仕切板11の間とに配置され、各繊維
塊受止用上部多孔板6の周辺部分は、上流側堰
2、下流側堰5、固定仕切板11および側壁22
に固定された上部水平支持部材24に載置されて
ボルトにより固定され、かつ前記水路底部3と繊
維塊受止用上部多孔板6との中間において、金網
からなる水平な繊維塊受止用下部多孔板7が、隣
り合う各固定仕切板11の下部の間と、上流側堰
2の下部および固定仕切板11の下部の間と、下
流側堰5および固定仕切板11の下部の間とに配
置され、各繊維塊受止用下部多孔板7の周辺部分
は、上流側堰2、下流側堰5、固定仕切板11お
よび側壁22に固定された下部水平支持部材25
に載置されてボルトにより固定されている。 前記繊維塊受止用上部多孔板6と繊維塊受止用
下部多孔板7との間に多数の繊維塊8が収容さ
れ、前記上流側堰2と下流側堰5との間において
下方から上方に流動する上向水流により、各繊維
塊8が繊維塊受止用上部多孔板6に向かつて浮上
されて、繊維塊受止用上部多孔板6の下部に多数
の繊維塊8からなる繊維塊濾過層9が形成され、
かつその繊維塊濾過層9の下部と下部多孔板7と
の間に繊維塊浮遊降下許容用空間10が設けられ
る。 前記各固定仕切板11の上部に配置された垂直
な昇降仕切板12は、各側壁22の上部にわたつ
て架設固定された一対のガイドビーム26の間に
挿入され、かつ前記昇降仕切板12の上端部は昇
降用流体シリンダ27に連結され、前記下流側堰
5の上部に配置された垂直な遮断板28は、各側
壁22の上部にわたつて架設固定された一対のガ
イドビーム29の間に挿入され、さらに前記遮断
板28の上端部は昇降用流体シリンダ30に連結
されている。 前記通水用開口部4の上流側に、藻が下部多孔
板7の下部に侵入するのを防止するための金網か
らなる除藻用多孔板31が配置され、その除藻用
多孔板31は両側壁22に固定された垂直な溝形
断面の保持部材32に嵌挿され、かつ前記下部多
孔板7の下部に多数の散気孔を有する繊維塊洗浄
用散気管13が配置され、その散気管13は送気
管33を介して送風機34に接続され、さらに洗
浄排水排出用ポンプ35の吸水管36における吸
水口は下流側の固定仕切板11と下流側堰5との
間において上部多孔板6の上部に配置されてい
る。 前記繊維塊濾過層9の厚さは例えば200mmに設
定され、かつ上部多孔板6と下部多孔板7との間
隔は繊維塊濾過層9の厚さの2倍程度であれば充
分である。 濾過を行なう場合、水路底部3と下部多孔板7
との間に下部室37から上部多孔板6の上部に向
かつて流れる上向水流の流速が100m/hr以上で
あれば、各繊維塊8を上部多孔板6に向かつて浮
上させて、上部多孔板6の下部に密接する繊維塊
濾過層9を形成することができる。 また比重の異なる材質の結束材21を使用する
ことにより繊維塊8の沈降速度を調節することが
できる。 前記上向水流の流速が100m/hr未満になる場
合は、適当位置の昇降仕切板12を下降して固定
仕切板11の上部に接触させることにより、濾過
面積を適宜減少させて上向水流の流速を100m/
hr以上にすることができる。昇降仕切板12を昇
降する場合、水路の流量を測定装置により測定
し、その測定装置の信号によつて制御装置を介し
て昇降用流体シリンダ27を伸縮させることによ
り、昇降仕切板12を自動的に昇降させてもよ
い。 次に第1発明の実施例に係る水路流水の濾過装
置の作用について説明する。 水路1内の上流側から通水用開口部4を通つて
水路底部3と下部多孔板7の間の下部室37に流
入した水は、下部多孔板7および上部多孔板6を
通つて上向きに流動し、その上向水流によつて各
繊維塊8が上部多孔板6に向かつて浮上して上部
多孔板6の下部に繊維塊濾過層9を形成し、かつ
前記上向水流が繊維塊濾過層9を通過する際に濾
過される。 濾過の進行に伴つて繊維塊濾過層9における下
層の繊維塊8に上向水流中の微細固形物が付着
し、微細固形物が一定量以上付着した繊維塊8
は、見かけ比重が大きくなつて濾槽層9を形成す
ることができなくなり、前記繊維塊浮遊降下許容
用空間10内で浮遊するかあるいは下部多孔板7
上に沈降する。したがつて、繊維塊濾過層9の下
部には常に新しい繊維塊8が露出し、水平濾床に
よる低圧損上向流濾過が継続される。 繊維塊浮遊降下許容用空間10内で浮遊または
沈降した微細固形物付着繊維塊8が多くなつて、
繊維塊8を洗浄する必要が生じた場合は、遮断板
28を下降して下流側堰5の上部に降ろし、かつ
繊維塊洗浄用散気管13から空気を噴出させて、
空気混合水の上昇流を発生させ、その空気混合水
の上昇流により、繊維塊濾過層9を破壊すると共
に、繊維塊8を上部多孔板6と下部多孔板7との
間で空気混合水流により攪拌浮遊させ、繊維塊8
に付着している微細固形物を洗浄除去する。また
洗浄排水を上部多孔板6の上部から洗浄排水排出
用ポンプ35により水路外へ排出する。 洗浄排水を水路外へ排出すると、上流側堰2の
上流側から洗浄用水が自動的に洗浄部に流入す
る。下水処理場においては、沈砂池等の上流部に
洗浄排水を送つて、洗浄排水中の濃縮された微細
固形物を処理する。 第1発明の実施例の水平濾床型低圧損上向流濾
過による水路流水の浄化装置は、例えば下水処理
場において最終沈殿池処理水を収集する中間水路
に設置される。 なお、前記除藻用多孔板31を取外して、その
代りに遮断板を設置することにより、上流側堰2
の部分で水路1を仕切り、下流側堰5の下部の開
口部に設けたゲート(図示を省略した)を開放
し、水路下流側の水を洗浄用水として利用するよ
うに構成してもよい。 次に第1発明の実施例に係る水路流水の濾過装
置の作用を第4図に示す原理図によつて説明す
る。 下部多孔板7側から上部多孔板6に向かう上向
水流(100m/hr以上)を発生させると、第4図
Aに示すように繊維塊8が上部多孔板6に向かつ
て浮上して行き、第4図Bに示すように、その上
部多孔板6の下部に繊維塊濾過層9が形成され
る。 繊維塊濾過層9による上向水流の濾過の進行に
伴つて、一定量以上の微細固形物が付着した繊維
塊8は、前記空間10内で浮遊するかまたは下部
多孔板7上に沈降し、濾過終了時においては、第
4図Cに示すように、上部多孔板6の下部に比較
的薄い繊維塊濾過層9を残しかつ前記空間10の
下部にも繊維塊8が存在する。 次に第4図Dに示すように、散気管13から空
気を噴出させて空気混合水の上昇流を発生させ、
上部多孔板6と下部多孔板7との間で繊維塊8を
攪拌浮遊させ、繊維塊8の洗浄を行なう。洗浄終
了後においては、第4図Eに示すように、多量の
気泡を抱き込んだ繊維塊8Aが上部多孔板6の近
くで浮遊している。この状態から上向水流による
濾過を再開する。 第5図は、水路1の流水量が非常に多くかつ水
路1の巾が狭い場合に実施した第2発明の実施例
を示すものであつて、多数の固定仕切板11の上
縁部および下縁部と、多数の上部多孔板6および
多数の下部多孔板7とがそれぞれ上流側から下流
側に向かつて低くなるように配置され、かつ上流
側堰の下部の通水用開口部4の面積は、圧損を20
〜30mmAq程度に維持できるよう大きく設定され
ている。 第2発明の実施例の場合は、水路流量が減少し
た場合の水位38では、水路下流側の繊維塊濾過
層9によつて濾過が行なわれ、水路流量が漸次増
加して水位が上昇していくと、濾過を行なう繊維
塊濾過層9が上流側に広がつていく。したがつ
て、第2発明の実施例の場合は、水路の流水量が
減少した場合でも、100m/hr以上の上向流速を
得ることができ、第1発明の実施例における昇降
仕切板12を省略することができる。 前述のように上向水流により濾過を行なう場
合、約200mmAq程度の水位差があれば、100〜
300m/hrの上向水流速度を得ることができるの
で、水路の流水中の微細固形物を繊維塊8に付着
させて除去することができる。 下水処理場の最終沈殿池処理水について、この
発明の装置を使用した低圧損上向水流式濾過と下
向水流式濾過とについて比較試験を行なつた結果
を第1表に示す。
[Industrial Application Field] This invention forms a filtration layer made of a large number of fibers by an upward water flow in a waterway such as a sewage channel, and raises water in the waterway containing fine solids to form a filtration layer in the filtration layer. This relates to a horizontal filter bed type low pressure drop upward flow filtration device which is capable of filtering a large amount of water with low pressure drop by passing through the water, and which can maintain an appropriate upward flow velocity even when the flow rate changes. It is. [Prior Art] Conventionally, as a device for filtering water containing fine solids by upward flow using a filter medium having floating properties, as disclosed in Japanese Patent Application Laid-Open No. 48-25259, A perforated blocking body is provided at the upper part of the filter tank, and a current plate is provided at the bottom of the filter tank, and a floating filter material is accommodated between the perforated blocking body and the current plate, and the lower part of the current plate A filtration device is known in which a raw water supply pipe is opened in a filter tank and a wash water supply pipe is provided below the perforated blocking body. [Problems to be Solved by the Invention] When the conventional filtration device is used to filter water in a waterway, if the flow rate of the waterway changes greatly, the flow velocity of the upward water flow also changes greatly, so it is difficult to obtain high-performance filtration. The problem is that it cannot be done. [Means for Solving the Problems] In order to achieve the above object, in the horizontal filter bed type low pressure drop upward flow filtration device of the first invention, an upstream weir 2 provided in a waterway 1 and a waterway bottom 3 are provided. A water passage opening 4 is provided between the upstream weir 2 and the upper part of the downstream weir 5 provided in the waterway 1 on the downstream side of the upstream weir 2. An upper perforated plate 6 for receiving fiber lumps and a lower perforated plate 7 for receiving fiber lumps, which are located underwater, are arranged between the downstream weir 5 and the upper perforated plate 6 and the lower perforated plate 7, respectively. A fixed partition plate 11 extending in the width direction of the waterway is provided, and an elevating partition plate 12 is provided above the fixed partition plate 11. A fiber lump filtration layer 9 consisting of a large number of fiber lumps 8 is formed, and a space 10 for allowing the fiber lumps to float and fall is formed between the lower part of the fiber lump filtration layer 9 and the lower porous plate 7 for receiving fiber lumps.
It is provided. Further, in the horizontal filter bed type low pressure drop upward flow filtration device of the second invention, the upstream weir 2 provided in the water channel 1
A water passage opening 4 is provided between the upstream weir 2 and the water channel bottom 3, and an overflow part is provided at the upper part of the downstream weir 5 provided in the water channel 1 on the downstream side of the upstream weir 2. Between the side weir 2 and the downstream weir 5, an upper perforated plate 6 for receiving fiber lumps and a lower perforated plate 7 for receiving fiber lumps, which are located underwater, are disposed, respectively, and extend in the waterway width direction. Upper perforated plate for receiving lumps 6
A plurality of fixed partition plates 11 are provided at intervals in the longitudinal direction of the water channel and extend from the upper end of the fixed partition plate 11 to the lower perforated fiber block receiving plate 7. The level of the perforated plate 6 gradually decreases from the upstream side to the downstream side, and a fiber agglomerate filtration layer 9 consisting of a large number of fiber agglomerates 8 floating by an upward water flow is formed below the upper perforated plate 6 for receiving the fiber agglomerates.
is formed, and a space 10 for allowing floating and falling of the fiber lumps is provided between the lower part of the fiber lump filtering layer 9 and the lower porous plate 7 for receiving the fiber lumps. Further, in order to wash the fiber lumps, an aeration pipe 13 for washing the fiber lumps is provided in the water below the lower porous plate 7. [Function] Water flowing from the upstream side of the waterway 1 through the water passage opening 4 into the lower chamber 37 between the waterway bottom 3 and the lower perforated plate 7 passes through the lower perforated plate 7 and the upper perforated plate 6. The upward water flow causes each fiber mass 8 to float toward the upper perforated plate 6 to form a fiber mass filtration layer 9 under the upper perforated plate 6, and the upward water flow It is filtered when passing through the fiber mass filtration layer 9. As filtration progresses, fine solid matter in the upward water flow adheres to the lower layer fiber mass 8 in the fiber mass filtration layer 9, resulting in a fiber mass 8 to which a certain amount or more of fine solid matter has adhered.
The apparent specific gravity of the fibers increases and it becomes impossible to form the filtration layer 9, and the fibers float in the space 10 for allowing the floating and falling of the fibers or the lower porous plate 7
sediment to the top. Therefore, a new fiber mass 8 is always exposed at the bottom of the fiber mass filtration layer 9, and low pressure drop upward flow filtration by the horizontal filter bed is continued. When the elevating partition plate 12 is lowered onto the fixed partition plate 11, even when the amount of water flowing in the water channel 1 decreases, the flow velocity of the upward water flow becomes equal to or higher than a certain level. Moreover, between the upstream side weir 2 and the downstream side weir 5, an upper perforated plate 6 extending in the channel width direction and for receiving fiber lumps is provided.
A plurality of fixed partition plates 11 extending from the fiber mass receiving lower perforated plate 7 are provided at intervals in the longitudinal direction of the waterway, and the level of the upper end of each fixed partition plate 11 and the level of the upper perforated plate 6 are If the value is gradually lowered from the upstream side to the downstream side, even if the flow rate of the waterway is very large, the width of the waterway is narrow, and the flow rate changes, low pressure drop upward flow filtration by the horizontal filter bed can be achieved. can be done. Furthermore, by blowing out air from the fiber mass cleaning aeration pipe 13 provided in the water below the lower perforated plate 7, an upward flow of air-mixed water is generated, and the upward flow of the air-mixed water causes the upward flow of the air-mixed water. Perforated plate 6
The fiber mass 8 between the lower porous plate 7 and the lower porous plate 7 can be stirred and washed in water. [Example] Next, the present invention will be explained in detail using illustrated examples. FIGS. 9 and 10 show a filtering fiber mass 8 made of a crimped fiber mass used in an embodiment of the present invention. A large number of crimped fibers 20 are assembled into a bundle, and the center portion of the bundle of crimped fibers is made of a rigid synthetic fiber thread, a hard plastic band, or a corrosion-resistant metal wire such as an aluminum wire. The bundled crimped fibers are bundled so as to be squeezed by a binding material 21, and the bundled crimped fibers are rolled into a substantially spherical shape with a diameter of 10 to 50 mm. The synthetic fibers constituting the crimped fibers 20 are optimally fibers with a higher specific gravity than water, such as polyvinylidene chloride fibers, but polyvinyl chloride fibers, polyethylene fibers, or other synthetic fibers may also be used. good. In the case of a fiber mass with a diameter of approximately 3.5 cm using polyvinylidene chloride crimped fibers with a true specific gravity greater than 1,
The sedimentation rate in water is approximately 90-100 m/hr. Therefore, in a uniform upward water flow that is faster than the settling speed of the fiber mass in water, the fiber mass floats to the surface. 1 to 3 show a horizontal filter bed type low pressure loss upward flow filtration device according to an embodiment of the first invention using the fiber mass 8, which is installed on the upstream side of the water channel 1. A weir 2 is integrally connected to both side walls 22 of the waterway 1, and a water passage opening 4 is provided between the bottom 3 of the waterway 1 and the lower end of the upstream weir 2. A downstream weir 5 having an overflow part at the upper part is provided on the downstream side, and the downstream weir 5 is integrally connected to the bottom part 3 and both side walls 22 of the waterway 1, and further connected to the upstream weir 2 and the downstream weir. 5, fixed partition plates 11 extending in the width direction of the waterway are arranged at intervals in the longitudinal direction of the waterway at the middle part in the height direction of the waterway, and both ends of each fixed partition plate 11 in the width direction are arranged as follows. It is fixed by bolts to a vertical support member 23 fixed to the side wall 22. At a level slightly lower than the upper surface of the downstream weir 5, a horizontal fiber mass receiving upper perforated plate 6 made of wire mesh is installed between each adjacent fixed partition plate 11, and between the upstream side weir 2 and the fixed partition plate 11. between and the downstream weir 5
and the fixed partition plate 11, and the peripheral portion of each fiber mass receiving upper perforated plate 6 includes the upstream weir 2, the downstream weir 5, the fixed partition plate 11, and the side wall 22.
A horizontal fiber mass receiving lower part made of a wire mesh is placed on an upper horizontal support member 24 fixed to the upper horizontal support member 24 and fixed with bolts, and is located between the water channel bottom 3 and the fiber mass receiving upper perforated plate 6. The porous plate 7 is provided between the lower parts of the adjacent fixed partition plates 11, between the lower part of the upstream weir 2 and the lower parts of the fixed partition plate 11, and between the lower parts of the downstream weir 5 and the fixed partition plate 11. The lower horizontal support member 25 fixed to the upstream side weir 2, the downstream side weir 5, the fixed partition plate 11, and the side wall 22 is arranged around the lower perforated plate 7 for receiving fiber agglomerates.
It is placed on and fixed with bolts. A large number of fiber lumps 8 are accommodated between the upper perforated plate for receiving fiber lumps 6 and the lower perforated plate for receiving fiber lumps 7, and between the upstream side weir 2 and the downstream side weir 5, from below to above. Due to the upward water flow, each fiber mass 8 is floated toward the upper perforated fiber mass receiving plate 6, and a fiber mass consisting of a large number of fiber masses 8 is placed under the upper perforated fiber mass receiving plate 6. A filtration layer 9 is formed,
Moreover, a space 10 for allowing floating and falling of the fiber lumps is provided between the lower part of the fiber lump filtering layer 9 and the lower porous plate 7. A vertical elevating partition plate 12 disposed above each of the fixed partition plates 11 is inserted between a pair of guide beams 26 fixedly installed across the upper part of each side wall 22, and A vertical blocking plate 28 whose upper end is connected to a lifting fluid cylinder 27 and which is disposed at the upper part of the downstream weir 5 is placed between a pair of guide beams 29 that are fixedly installed across the upper part of each side wall 22. The upper end of the blocking plate 28 is connected to a lifting fluid cylinder 30. A perforated algae removal plate 31 made of a wire mesh is disposed upstream of the water passage opening 4 to prevent algae from entering the lower part of the lower perforated plate 7. A fiber mass cleaning aeration pipe 13 is fitted into a holding member 32 having a vertical groove-shaped cross section fixed to both side walls 22 and has a large number of aeration holes at the lower part of the lower perforated plate 7. 13 is connected to a blower 34 via an air pipe 33, and furthermore, a water intake port in a water suction pipe 36 of a pump 35 for discharging cleaning waste water is connected to the upper perforated plate 6 between the fixed partition plate 11 on the downstream side and the downstream weir 5. placed at the top. The thickness of the fiber agglomerate filtration layer 9 is set to, for example, 200 mm, and it is sufficient that the distance between the upper perforated plate 6 and the lower perforated plate 7 is about twice the thickness of the agglomerate filtration layer 9. When performing filtration, the water channel bottom 3 and the lower perforated plate 7
If the flow velocity of the upward water flow flowing from the lower chamber 37 to the upper part of the upper perforated plate 6 is 100 m/hr or more, each fiber mass 8 is floated toward the upper perforated plate 6 and A fiber mass filtration layer 9 can be formed in close contact with the lower part of the plate 6. Further, by using binding materials 21 made of materials with different specific gravity, the settling speed of the fiber mass 8 can be adjusted. If the flow velocity of the upward water flow is less than 100 m/hr, the ascending/lowering partition plate 12 at an appropriate position is lowered and brought into contact with the upper part of the fixed partition plate 11 to reduce the filtration area appropriately and reduce the flow rate of the upward water flow. Flow velocity 100m/
It can be more than hr. When raising and lowering the lifting partition plate 12, the flow rate of the waterway is measured by a measuring device, and the lifting fluid cylinder 27 is expanded and contracted via a control device based on a signal from the measuring device, so that the lifting partition plate 12 is automatically moved. It may be raised and lowered. Next, the operation of the waterway water filtration device according to the embodiment of the first invention will be explained. Water flowing from the upstream side of the waterway 1 through the water passage opening 4 into the lower chamber 37 between the waterway bottom 3 and the lower perforated plate 7 passes upward through the lower perforated plate 7 and the upper perforated plate 6. The upward water flow causes each fiber mass 8 to float toward the upper perforated plate 6 to form a fiber mass filtration layer 9 under the upper perforated plate 6, and the upward water flow causes the fiber mass filtration layer to form a fiber mass filtration layer 9 under the upper perforated plate 6. It is filtered as it passes through layer 9. As filtration progresses, fine solid matter in the upward water flow adheres to the lower layer fiber mass 8 in the fiber mass filtration layer 9, resulting in a fiber mass 8 to which a certain amount or more of fine solid matter has adhered.
The apparent specific gravity of the fibers increases and it becomes impossible to form the filter layer 9, and the fibers float in the space 10 for allowing the floating and falling of the fibers or the lower porous plate 7
sediment to the top. Therefore, a new fiber mass 8 is always exposed at the bottom of the fiber mass filtration layer 9, and low pressure drop upward flow filtration by the horizontal filter bed is continued. As the number of fine solid matter adhering fiber lumps 8 floating or settling in the space 10 for allowing floating/falling of fiber lumps increases,
When it becomes necessary to wash the fiber mass 8, the blocking plate 28 is lowered to the upper part of the downstream weir 5, and air is blown out from the fiber mass cleaning aeration pipe 13.
An upward flow of air-mixed water is generated, and the upward flow of the air-mixed water destroys the fiber mass filtration layer 9, and the fiber mass 8 is transferred between the upper perforated plate 6 and the lower perforated plate 7 by the air-mixed water flow. Stir and float, fiber mass 8
Wash and remove fine solid matter adhering to the Further, the cleaning drainage water is discharged from the upper part of the upper porous plate 6 to the outside of the water channel by the cleaning drainage discharge pump 35. When the cleaning wastewater is discharged to the outside of the waterway, cleaning water automatically flows into the cleaning section from the upstream side of the upstream weir 2. In a sewage treatment plant, washing wastewater is sent to an upstream part such as a settling basin to treat concentrated fine solids in the washing wastewater. The horizontal filter bed-type low-pressure-drop upward flow filtration purifying device for channel water according to the embodiment of the first invention is installed, for example, in an intermediate channel that collects final sedimentation tank treated water in a sewage treatment plant. Note that by removing the algae removal perforated plate 31 and installing a blocking plate in its place, the upstream weir 2
It may be configured such that the water channel 1 is partitioned at a portion, a gate (not shown) provided at the lower opening of the downstream weir 5 is opened, and water on the downstream side of the water channel is used as cleaning water. Next, the operation of the water filtration apparatus according to the embodiment of the first invention will be explained with reference to the principle diagram shown in FIG. When an upward water flow (100 m/hr or more) is generated from the lower perforated plate 7 side toward the upper perforated plate 6, the fiber mass 8 floats toward the upper perforated plate 6 as shown in FIG. 4A. As shown in FIG. 4B, a fiber mass filtration layer 9 is formed under the upper perforated plate 6. As the filtration of the upward water flow through the fiber mass filtration layer 9 progresses, the fiber mass 8 to which a certain amount or more of fine solid matter has adhered floats within the space 10 or settles on the lower porous plate 7, At the end of the filtration, as shown in FIG. 4C, a relatively thin fibrous mass filtration layer 9 remains under the upper porous plate 6, and the fibrous mass 8 also exists under the space 10. Next, as shown in FIG. 4D, air is ejected from the diffuser pipe 13 to generate an upward flow of air-mixed water,
The fiber mass 8 is stirred and suspended between the upper perforated plate 6 and the lower perforated plate 7, and the fiber mass 8 is washed. After the cleaning is completed, the fiber mass 8A containing a large amount of air bubbles is floating near the upper perforated plate 6, as shown in FIG. 4E. From this state, filtration using upward water flow is resumed. FIG. 5 shows an embodiment of the second invention implemented when the water flow rate of the waterway 1 is very large and the width of the waterway 1 is narrow. The edge, a large number of upper perforated plates 6, and a large number of lower perforated plates 7 are arranged so as to become lower from the upstream side to the downstream side, and the area of the water passage opening 4 at the lower part of the upstream weir. The pressure drop is 20
It is set large enough to maintain around ~30mmAq. In the case of the embodiment of the second invention, at the water level 38 when the waterway flow rate decreases, filtration is performed by the fiber mass filtration layer 9 on the downstream side of the waterway, and the waterway flow rate gradually increases and the water level rises. As the flow progresses, the fiber mass filtration layer 9 that performs filtration spreads toward the upstream side. Therefore, in the case of the embodiment of the second invention, even if the flow rate of the waterway decreases, an upward flow velocity of 100 m/hr or more can be obtained, and the lifting partition plate 12 in the embodiment of the first invention can be obtained. Can be omitted. When performing filtration using upward water flow as mentioned above, if there is a water level difference of about 200 mmAq, the
Since an upward water flow velocity of 300 m/hr can be obtained, fine solids in the flowing water of the waterway can be attached to the fiber mass 8 and removed. Table 1 shows the results of a comparative test of low pressure drop upward water flow filtration and downward water flow filtration using the apparatus of the present invention for treated water from a final sedimentation tank of a sewage treatment plant.

〔発明の効果〕〔Effect of the invention〕

この発明は、前述のように構成されているの
で、以下に記載したような効果を奏する。 水路1内の上流側から通水用開口部4を通つて
水路底部3と下部多孔板7の間の下部室37に流
入した水は、下部多孔板7および上部多孔板6を
通つて上向きに流動し、その上向水流によつて各
繊維塊8が上部多孔板6に向かつて浮上するの
で、上部多孔板6の下部に繊維塊濾過層9を自動
的に形成して上向水流濾過を行なうことができ、
かつ濾過の進行に伴つて繊維塊濾過層9における
下層の繊維塊8に上向水流中の微細固形物が付着
し、微細固形物が一定量以上付着した繊維塊8
は、見かけ比重が大きくなつて濾過層9を形成す
ることができなくなり、前記繊維塊浮遊降下許容
用空間10内で浮遊するかあるいは下部多孔板7
上に沈降するので、繊維塊濾過層9の下部に常に
新しい繊維塊8を露出させて、水平濾床による低
圧損上向流濾過を長時間継続して行なうことがで
きると共に、繊維塊濾過層9を構成する繊維塊全
体を有効に利用することができる。 また第1発明の場合は、昇降仕切板12を固定
仕切板11の上に降ろすことにより、流水量が少
なくなつた場合でも、上向水流の流速を一定以上
にすることができるので、高性能の濾過を行なう
ことができる。 また第2発明の場合は、上流側堰2と下流側堰
5との間に、水路巾方向に延長すると共に繊維塊
受止用上部多孔板6から繊維塊受止用下部多孔板
7にわたつて延長する複数の固定仕切板11を、
水路長手方向に間隔をおいて設け、各固定仕切板
11の上端のレベルおよび前記上部多孔板6のレ
ベルを上流側から下流側に向かつて順次低くした
ので、水路の流水量が非常に多くかつ水路の巾が
狭く、しかも流水量が変化する場合でも、低圧損
上向水流濾過を行なうことができるので、高性能
の濾過を行なうことができる。 さらにまた、第1発明または第2発明におい
て、下部多孔板7の下部の水中に設けた繊維塊洗
浄用散気管13から空気を噴出させることによ
り、空気混合水の上昇流を発生させて、その空気
混合水の上昇流により上部多孔板6と下部多孔板
7との間にある繊維塊8を水中で攪拌して容易に
かつ迅速に洗浄することができる。
Since the present invention is configured as described above, it produces the effects described below. Water flowing from the upstream side of the waterway 1 through the water passage opening 4 into the lower chamber 37 between the waterway bottom 3 and the lower perforated plate 7 passes upward through the lower perforated plate 7 and the upper perforated plate 6. As each fiber mass 8 floats toward the upper perforated plate 6 due to the upward water flow, a fiber mass filtration layer 9 is automatically formed under the upper perforated plate 6 to perform upward water flow filtration. can be done,
In addition, as the filtration progresses, fine solids in the upward water flow adhere to the lower layer fiber lumps 8 in the fiber lump filtration layer 9, and the fiber lumps 8 to which a certain amount or more of fine solids have adhered
The apparent specific gravity of the fibers increases and it becomes impossible to form the filtration layer 9, and the fibers float in the space 10 for allowing the floating and falling of the fibers or the lower porous plate 7
Since the fiber lumps 8 settle upward, new fiber lumps 8 are constantly exposed at the bottom of the fiber lump filtration layer 9, and low pressure drop upward flow filtration can be performed continuously for a long time using the horizontal filter bed. The entire fiber mass constituting 9 can be effectively utilized. In addition, in the case of the first invention, by lowering the elevating partition plate 12 onto the fixed partition plate 11, even when the flow rate decreases, the flow velocity of the upward water flow can be kept above a certain level, resulting in high performance. can be filtered. In the case of the second invention, there is a groove extending in the waterway width direction between the upstream weir 2 and the downstream weir 5 and extending from the upper perforated plate 6 for receiving fiber lumps to the lower perforated plate 7 for receiving fiber lumps. A plurality of fixed partition plates 11 extending along the
The water channels are provided at intervals in the longitudinal direction, and the level of the upper end of each fixed partition plate 11 and the level of the upper perforated plate 6 are gradually lowered from the upstream side to the downstream side, so that the flow rate of the water channel is very large and Even when the width of the waterway is narrow and the flow rate changes, low pressure drop upward flow filtration can be performed, so high performance filtration can be performed. Furthermore, in the first or second invention, air is jetted out from the fiber mass cleaning aeration pipe 13 provided in the water below the lower perforated plate 7 to generate an upward flow of the air-mixed water. The fiber mass 8 between the upper perforated plate 6 and the lower perforated plate 7 is stirred in the water by the upward flow of the air-mixed water, and can be easily and quickly washed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ないし第3図は第1発明の実施例を示す
ものであつて、第1図は水平濾床型低圧損上向流
濾過装置の縦断側面図、第2図はその縦断正面
図、第3図は第2図の一部を拡大して示す縦断正
面図である。第4図は上向水流浄化および繊維塊
洗浄を行なう場合の原理図、第5図は第2発明の
実施例に係る水平濾床型低圧損上向流濾過装置を
示す縦断側面図、第6図は洗浄排水の排出手段の
第1変形例を示す縦断側面図、第7図は洗浄排水
の排出手段の第2変形例を示す縦断正面図、第8
図はその縦断側面図、第9図は繊維塊の正面図、
第10図はその断面図である。 図において、1は水路、2は上流側堰、3は水
路底部、4は通水用開口部、5は下流側堰、6は
繊維塊受止用上部多孔板、7は繊維塊受止用下部
多孔板、8は繊維塊、9は繊維塊濾過層、10は
繊維塊浮遊降下許容用空間、11は固定仕切板、
12は昇降仕切板、13は繊維塊洗浄用散気管、
20は捲縮繊維、21は結束材、22は側壁、2
3は垂直支持部材、24は上部水平支持部材、2
5は下部水平支持部材、26はガイドビーム、2
7は昇降用流体シリンダ、28は遮断板、29は
ガイドビーム、30は昇降用流体シリンダ、31
は除藻用多孔板、33は送気管、34は送風機、
35は洗浄排水排出用ポンプ、36は吸水管、3
9は筒状箱体、40は排水導入筒、41は排水
管、42は排水路、43は開閉弁である。
1 to 3 show an embodiment of the first invention, in which FIG. 1 is a longitudinal sectional side view of a horizontal filter bed type low pressure drop upward flow filtration device, FIG. 2 is a longitudinal sectional front view thereof, FIG. 3 is a longitudinal sectional front view showing an enlarged part of FIG. 2. FIG. FIG. 4 is a principle diagram for performing upward water flow purification and fiber mass washing, FIG. FIG. 7 is a longitudinal sectional side view showing a first modification of the cleaning drainage discharge means, FIG. 7 is a longitudinal sectional front view showing a second modification of the cleaning drainage discharge means, and FIG.
The figure is a longitudinal side view, and Figure 9 is a front view of the fiber mass.
FIG. 10 is a sectional view thereof. In the figure, 1 is a water channel, 2 is an upstream weir, 3 is a bottom of a channel, 4 is an opening for water passage, 5 is a downstream weir, 6 is an upper perforated plate for receiving fiber lumps, and 7 is for receiving fiber lumps. Lower porous plate, 8 is a fiber mass, 9 is a fiber mass filter layer, 10 is a space for allowing the fiber mass to float and fall, 11 is a fixed partition plate,
12 is an elevating partition plate, 13 is a diffuser pipe for cleaning fiber lumps,
20 is a crimped fiber, 21 is a binding material, 22 is a side wall, 2
3 is a vertical support member, 24 is an upper horizontal support member, 2
5 is a lower horizontal support member, 26 is a guide beam, 2
7 is a lifting fluid cylinder, 28 is a blocking plate, 29 is a guide beam, 30 is a lifting fluid cylinder, 31
is a perforated plate for algae removal, 33 is an air pipe, 34 is a blower,
35 is a cleaning drainage discharge pump, 36 is a water suction pipe, 3
9 is a cylindrical box body, 40 is a drainage introduction tube, 41 is a drain pipe, 42 is a drainage channel, and 43 is an on-off valve.

Claims (1)

【特許請求の範囲】 1 水路1内に設けられた上流側堰2と水路底部
3との間に通水用開口部4が設けられ、前記上流
側堰2の下流側において水路1内に設けられた下
流側堰5の上部に溢流部が設けられ、前記上流側
堰2と下流側堰5との間に、それぞれ水中に位置
する繊維塊受止用上部多孔板6と繊維塊受止用下
部多孔板7とが配置され、前記上部多孔板6およ
び下部多孔板7の間に水路巾方向に延長する固定
仕切板11が設けられ、かつその固定仕切板11
の上方に昇降仕切板12が設けられ、前記繊維塊
受止用上部多孔板6の下部に上向水流により浮上
する多数の繊維塊8からなる繊維塊濾過層9が形
成され、その繊維塊濾過層9の下部と前記繊維塊
受止用下部多孔板7との間に、繊維塊浮遊降下許
容用空間10設けられている水平濾床型低圧損上
向流濾過装置。 2 水路1内に設けられた上流側堰2と水路底部
3との間に通水用開口部4が設けられ、前記上流
側堰2の下流側において水路1内に設けられた下
流側堰5の上部に溢流部が設けられ、前記上流側
堰2と下流側堰5との間に、それぞれ水中に位置
する繊維塊受止用上部多孔板6と繊維塊受止用下
部多孔板7とが配置され、水路巾方向に延長する
と共に繊維塊受止用上部多孔板6から繊維塊受止
用下部多孔板7にわたつて延長する複数の固定仕
切板11が、水路長手方向に間隔をおいて設けら
れ、各固定仕切板11の上端のレベルおよび繊維
塊受止用上部多孔板6のレベルは上流側から下流
側に向かつて順次低下し、前記繊維塊受止用上部
多孔板6の下部に上向水流により浮上する多数の
繊維塊8からなる繊維塊濾過層9が形成され、そ
の繊維塊濾過層9の下部と前記繊維塊受止用下部
多孔板7との間に、繊維塊浮遊降下許容用空間1
0が設けられている水平濾床型低圧損上向流濾過
装置。 3 前記繊維塊受止用下部多孔板7の下部の水中
に繊維塊洗浄用散気管13が設けられている請求
項1または請求項2記載の水平濾床型低圧損上向
流濾過装置。
[Claims] 1. A water passage opening 4 is provided between an upstream weir 2 provided in the waterway 1 and a waterway bottom 3, and a water passage opening 4 is provided in the waterway 1 on the downstream side of the upstream weir 2. An overflow part is provided at the upper part of the downstream weir 5, and between the upstream weir 2 and the downstream weir 5, an upper perforated plate 6 for receiving fiber lumps and an upper perforated plate 6 for receiving fiber lumps, which are located underwater, are provided. A fixed partition plate 11 extending in the channel width direction is provided between the upper perforated plate 6 and the lower perforated plate 7, and the fixed partition plate 11
An elevating partition plate 12 is provided above, and a fiber lump filtration layer 9 consisting of a large number of fiber lumps 8 floating by an upward water flow is formed below the fiber lump receiving upper perforated plate 6. A horizontal filter bed type low pressure drop upward flow filtration device in which a space 10 for allowing floating and falling of fiber lumps is provided between the lower part of layer 9 and the lower perforated plate 7 for receiving fiber lumps. 2. A water passage opening 4 is provided between the upstream weir 2 provided in the waterway 1 and the waterway bottom 3, and a downstream weir 5 provided in the waterway 1 on the downstream side of the upstream weir 2. An overflow part is provided at the upper part of the dam, and between the upstream weir 2 and the downstream weir 5, there are an upper perforated plate 6 for receiving fiber lumps and a lower perforated plate 7 for receiving fiber lumps, which are located underwater, respectively. are arranged, and a plurality of fixed partition plates 11 extending in the width direction of the waterway and extending from the upper perforated plate 6 for receiving fiber lumps to the lower perforated plate 7 for receiving fiber lumps are arranged at intervals in the longitudinal direction of the waterway. The level of the upper end of each fixed partition plate 11 and the level of the upper perforated plate 6 for receiving the fiber lumps gradually decrease from the upstream side to the downstream side, and the lower part of the upper perforated plate 6 for receiving the fiber lumps gradually decreases from the upstream side to the downstream side. A fiber lump filtration layer 9 consisting of a large number of fiber lumps 8 floating by the upward water flow is formed, and between the lower part of the fiber lump filtration layer 9 and the lower porous plate 7 for receiving fiber lumps, the fiber lumps floating are formed. Space for descent allowance 1
0 horizontal filter bed type low pressure drop upward flow filtration device. 3. The horizontal filter bed type low pressure drop upward flow filtration device according to claim 1 or 2, wherein a fiber agglomerate cleaning aeration pipe 13 is provided in the water below the fiber agglomerate receiving lower porous plate 7.
JP7482588A 1988-03-30 1988-03-30 Horizontal filter bed type upward flow filter device with low pressure loss Granted JPH01249113A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7482588A JPH01249113A (en) 1988-03-30 1988-03-30 Horizontal filter bed type upward flow filter device with low pressure loss

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7482588A JPH01249113A (en) 1988-03-30 1988-03-30 Horizontal filter bed type upward flow filter device with low pressure loss

Publications (2)

Publication Number Publication Date
JPH01249113A JPH01249113A (en) 1989-10-04
JPH0450842B2 true JPH0450842B2 (en) 1992-08-17

Family

ID=13558479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7482588A Granted JPH01249113A (en) 1988-03-30 1988-03-30 Horizontal filter bed type upward flow filter device with low pressure loss

Country Status (1)

Country Link
JP (1) JPH01249113A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03232504A (en) * 1990-02-07 1991-10-16 Ishigaki Kiko Kk Filter using floating filter medium
JP3734227B2 (en) * 1991-10-18 2006-01-11 三井造船株式会社 Upflow type high-speed filter
US5558763A (en) * 1993-06-24 1996-09-24 Hitachi Plant Engineering & Construction Co., Ltd. Sewage treatment system with air jetting means
US20030111431A1 (en) 1996-12-10 2003-06-19 Schreiber Corporation High rate filtration system
JP4724688B2 (en) * 2007-05-23 2011-07-13 株式会社トーケミ Filtration device
JP6132104B2 (en) * 2014-06-13 2017-05-24 株式会社石垣 How to clean the filter
JP6265170B2 (en) * 2015-05-20 2018-01-24 住友金属鉱山株式会社 Wastewater treatment facility

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4825259A (en) * 1971-08-07 1973-04-02
JPS53129381A (en) * 1977-04-19 1978-11-11 Seisan Gijiyutsu Kaihatsu Kenk Method of removing suspended fine material from liquid and apparatus therefor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4825259A (en) * 1971-08-07 1973-04-02
JPS53129381A (en) * 1977-04-19 1978-11-11 Seisan Gijiyutsu Kaihatsu Kenk Method of removing suspended fine material from liquid and apparatus therefor

Also Published As

Publication number Publication date
JPH01249113A (en) 1989-10-04

Similar Documents

Publication Publication Date Title
US4743382A (en) Method and apparatus for separating suspended solids from liquids
US3433359A (en) Installations for the purification of liquids
US6641737B2 (en) Vertical filter
JPH0450842B2 (en)
US4190543A (en) Waste water treatment apparatus
US4725367A (en) Buoyant filter media
EP0626932B1 (en) Dissolved air flotation
US5154824A (en) Granular media filtration system with improved backwashing
KR102367543B1 (en) Rapid sand filter with underdrain block
JPH0663321A (en) Inclined plate type settling chamber
GB1589600A (en) Separating solid particles from a liquid suspension
JP3191559B2 (en) Solid-liquid separation device
KR860002199B1 (en) Sand filtration apparatus
JP3391498B2 (en) Gravity filtration device
JP4299396B2 (en) Air-water distribution device and water treatment device using the air-water distribution device
CN220443257U (en) Filter tank back flush anti-running filter material U-shaped weir plate mechanism
US6149827A (en) Device for separating particles from a particle containing liquid and a method for cleaning such a device
US3864264A (en) Apparatus for the tertiary treatment of liquids
JP2950399B2 (en) Raw water inflow pipe for gravity filtration equipment
CN220656750U (en) Sedimentation tank with filtering function
JPS6223604B2 (en)
JPH078001Y2 (en) Settling equipment for sludge treatment
JP4699981B2 (en) Filtration apparatus and filtration method
JPH0520126B2 (en)
SU905201A1 (en) Water clarification plant

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080817

Year of fee payment: 16