JPH0450553B2 - - Google Patents

Info

Publication number
JPH0450553B2
JPH0450553B2 JP58157110A JP15711083A JPH0450553B2 JP H0450553 B2 JPH0450553 B2 JP H0450553B2 JP 58157110 A JP58157110 A JP 58157110A JP 15711083 A JP15711083 A JP 15711083A JP H0450553 B2 JPH0450553 B2 JP H0450553B2
Authority
JP
Japan
Prior art keywords
pressure vessel
reactor
reactor pressure
radiant heat
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58157110A
Other languages
Japanese (ja)
Other versions
JPS6049293A (en
Inventor
Yasuo Oosawa
Takao Asaumi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP58157110A priority Critical patent/JPS6049293A/en
Publication of JPS6049293A publication Critical patent/JPS6049293A/en
Publication of JPH0450553B2 publication Critical patent/JPH0450553B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)
  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、高温ガス炉の後備冷却装備に係り、
特に原子炉圧力容器から放出される輻射熱を吸収
して原子炉圧力容器を有効に冷却する冷却装置に
関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to back-up cooling equipment for a high-temperature gas reactor,
In particular, the present invention relates to a cooling device that effectively cools a reactor pressure vessel by absorbing radiant heat emitted from the reactor pressure vessel.

〔従来の技術〕[Conventional technology]

高温ガス炉は、他の原子炉では得ることのでき
ない約1000℃にも達する原子炉出口冷却材温度が
得られることで注目され、原子力発電はもとよ
り、製鉄用還元ガス製造などの工業用熱源として
も利用することを目的として、実験・開発が進め
られている原子炉である。
High-temperature gas reactors are attracting attention because they can obtain reactor outlet coolant temperatures of approximately 1000°C, which cannot be obtained with other nuclear reactors, and are used not only for nuclear power generation but also as a heat source for industrial purposes such as producing reducing gas for steel manufacturing. This is a nuclear reactor that is being experimented and developed with the aim of also being used in nuclear power plants.

この原子力利用においては、特に安全性の確保
が最も重要な課題である。このため、原子炉の故
障及び事故に十分対処し得る後備冷却系の装置が
必要である。
Ensuring safety is the most important issue in this use of nuclear power. Therefore, there is a need for a backup cooling system that can adequately deal with reactor failures and accidents.

一般に、他の原子炉、例えば軽水炉などの後備
冷却系には、水スプレイ冷却系が多く用いられて
いる。水スプレイ冷却系は、原子炉に異常が発生
した場合、ポンプにより所定の貯水槽の水を原子
炉炉心上部に配置したノズルから炉心にスプレイ
したり、原子炉を格納する格納容器にも同様にス
プレイして、原子炉やその他の構造物の温度上昇
を阻止する装置である。
In general, water spray cooling systems are often used in back-up cooling systems for other nuclear reactors, such as light water reactors. The water spray cooling system uses a pump to spray water from a designated water tank into the reactor core from a nozzle placed above the reactor core when an abnormality occurs in the reactor, and also sprays water into the containment vessel housing the reactor. This is a device that sprays water to prevent temperature rises in nuclear reactors and other structures.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、高温ガス炉においては、前記の
如く高温状態で稼働しており、原子炉圧力容器
(燃料材、減速材、冷却材、炉心構造材などを収
容して原子炉を構成する機密性の優れた容器)の
温度が約400℃に達することから、上記の如く、
水スプレイによる注水を行なうと、急激な温度変
化が生じて燃料材や構造物が破損する危険があ
る。
However, high-temperature gas reactors operate at high temperatures as mentioned above, and the reactor pressure vessel (which contains the fuel, moderator, coolant, core structural materials, etc. that constitutes the reactor) has excellent confidentiality. As mentioned above, since the temperature of the container (container) reaches approximately 400℃,
If water is injected using a water spray, there is a risk of sudden temperature changes that could damage fuel materials and structures.

また、炉心部に水が侵入すると核分裂反応が急
増し、原子炉の許容温度以上の高温になる可能性
がある。これらの理由から、高温ガス炉には従来
の水スプレイ系を後備冷却系に使用することがで
きない。
Additionally, if water enters the reactor core, nuclear fission reactions will rapidly increase, potentially reaching temperatures higher than the reactor's allowable temperature. For these reasons, conventional water spray systems cannot be used as back-up cooling systems in high temperature gas reactors.

本発明の目的は、前述のような高温ガス炉の特
殊性に鑑み、原子炉圧力容器から放出される輻射
熱を効率良く吸収し得る冷却装置を提供すること
にある。
An object of the present invention is to provide a cooling device that can efficiently absorb radiant heat released from a reactor pressure vessel, in view of the special characteristics of high-temperature gas reactors as described above.

〔課題を解決するための手段〕[Means to solve the problem]

その目的を達成するため、本発明は、 原子炉圧力容器の外周が、その原子炉圧力容器
の周面と対向する側に輻射熱吸収部材を取り付け
た断熱壁で囲まれ、 前記輻射熱吸収部材は、前記原子炉圧力容器の
周面と対して傾斜したフイン群を取り付けた冷却
管群から構成され、 その輻射熱吸収部材に冷却媒体が供給され、前
記原子炉圧力容器からの輻射熱を吸収した傾斜フ
インを前記冷却媒体で冷却するように構成されて
いることを特徴とするものである。
In order to achieve the object, the present invention provides that the outer periphery of a nuclear reactor pressure vessel is surrounded by a heat insulating wall having a radiant heat absorbing member attached to the side opposite to the circumferential surface of the reactor pressure vessel, the radiant heat absorbing member comprising: It is composed of a group of cooling pipes equipped with a group of fins that are inclined with respect to the circumferential surface of the reactor pressure vessel, and a cooling medium is supplied to the radiant heat absorbing member, and the inclined fins that absorb the radiant heat from the reactor pressure vessel are The device is characterized in that it is configured to be cooled by the cooling medium.

〔実施例〕〔Example〕

以下、本発明の実施例に係る後備冷却装置を第
1図ないし第4図とともに説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A backup cooling device according to an embodiment of the present invention will be described below with reference to FIGS. 1 to 4.

この実施例は、高温ガス炉のうちで現在研究、
開発が進められている多目的高温ガス炉
(VHTR)を例にしている。多目的高温ガス炉の
構造的な特徴は、燃料材としてグラフアイト燃料
を使用し、減速材、反射体及び炉心構造材として
黒鉛を使用し、冷却材としてヘリウムを使用して
いる点である。原子炉出口冷却材温度は約1000
℃、原子炉圧力容器の温度は約400℃に達し、原
子炉熱出力は約50MWである。
This example is currently researched among high temperature gas reactors,
The example is the multipurpose high temperature gas reactor (VHTR), which is currently under development. The structural features of the multipurpose high temperature gas reactor are that it uses graphite fuel as a fuel material, graphite as a moderator, reflector and core structural material, and helium as a coolant. Reactor outlet coolant temperature is approximately 1000
℃, the temperature of the reactor pressure vessel reaches about 400℃, and the reactor thermal power is about 50MW.

原子炉は、原子炉圧力容器1と、その内部に収
納されている燃料材、減速材、冷却材、反射体及
び炉心構造材(いずれも図示せず)などから主に
構成されている。
The nuclear reactor is mainly composed of a reactor pressure vessel 1, and fuel, moderator, coolant, reflector, core structural material (all not shown), etc. stored inside the reactor pressure vessel 1.

原子炉圧力容器1は2 1/4Cr−1Mo鋼からな
り、内径が約6m、肉厚が約14cm、内高が約16m
の円筒形で機密性の優れた容器である。この原子
炉圧力容器1の外周は、内側に輻射熱吸収部材2
を取り付けた断熱壁3で囲まれている。後備冷却
装置は、輻射熱吸収部材2、冷却媒体用タンク
4、循環ポンプ5、熱交換器6とから主に構成さ
れいてる。
The reactor pressure vessel 1 is made of 2 1/4Cr-1Mo steel, has an inner diameter of approximately 6 m, a wall thickness of approximately 14 cm, and an inner height of approximately 16 m.
It is a cylindrical container with excellent airtightness. The outer periphery of this reactor pressure vessel 1 has a radiant heat absorbing member 2 inside.
It is surrounded by an insulated wall 3 with a The backup cooling device mainly includes a radiant heat absorbing member 2, a cooling medium tank 4, a circulation pump 5, and a heat exchanger 6.

輻射熱吸収部材2は第1図と第2図に示す如
く、原子炉圧力容器1のほぼ全体を囲い、その外
周の形状に沿つて配置されている。また、前記原
子炉圧力容器1が大型であるため、輻射熱吸収部
材2は複数の吸収部材ブロツク2aを組合せるこ
とにより円筒状に構成されている。輻射熱吸収部
材2は第3図と第4図に示す如く、冷却管群7
と、原子炉圧力容器1の周面に対して斜めになる
ように各冷却管に取り付けられたフイン群8とか
ら構成されている。
As shown in FIGS. 1 and 2, the radiant heat absorbing member 2 surrounds almost the entire reactor pressure vessel 1 and is arranged along the shape of its outer periphery. Further, since the reactor pressure vessel 1 is large-sized, the radiant heat absorbing member 2 is formed into a cylindrical shape by combining a plurality of absorbing member blocks 2a. The radiant heat absorbing member 2 is connected to a cooling pipe group 7 as shown in FIGS. 3 and 4.
and a group of fins 8 attached to each cooling pipe so as to be oblique to the circumferential surface of the reactor pressure vessel 1.

冷却管群7の両端は断熱壁3を貫通し、断熱壁
3の外部でそれぞれ上部ヘツダ9と下部ヘツダ1
0に接続している。このような構造の輻射熱吸収
部材2の上部ヘツダ9は熱交換器6の給入部11
に配管で接続され、下部ヘツダ10は循環ポンプ
5の排出部12に配管で接続されている。なお、
第1図に示す如く、それぞれの吸収部材ブロツク
2aは、独立して循環ポンプ5と熱交換器6に接
続されるように、各配管は並列に設けられてい
る。更に、熱交換器6の排出部13と貯水槽4と
の間が配管で接続され、冷却媒体用タンク4と循
環ポンプ5の給入部14との間が配管で接続され
ている。
Both ends of the cooling pipe group 7 pass through the heat insulating wall 3, and are connected to an upper header 9 and a lower header 1 outside the heat insulating wall 3, respectively.
Connected to 0. The upper header 9 of the radiant heat absorbing member 2 having such a structure is connected to the inlet part 11 of the heat exchanger 6.
The lower header 10 is connected to the discharge part 12 of the circulation pump 5 by piping. In addition,
As shown in FIG. 1, the piping is provided in parallel so that each absorption member block 2a is independently connected to a circulation pump 5 and a heat exchanger 6. Furthermore, the discharge part 13 of the heat exchanger 6 and the water storage tank 4 are connected by piping, and the cooling medium tank 4 and the supply part 14 of the circulation pump 5 are connected by piping.

この後備冷却装置の動作を説明すると、原子炉
に異常が生じると、循環ポンプ5により冷却媒体
用タンク4内の冷却媒体(水)が図中の矢印Aに
示す如く、下部ヘツダ10を経て冷却管群7に供
給される。前述のようにフイン群8を原子力圧力
容器1の周面に対して斜めに取り付けることによ
り、原子力圧力容器1との対向面積(熱吸収面
積)が可及的に広くとれ、原子炉圧力容器1から
の輻射熱をフイン群8が効率よく吸収する。下部
ヘツダ10から供給された水は冷却管群7内で、
原子炉圧力容器1の輻射熱を受けて加熱したフイ
ン群8の熱を吸収し、図中の矢印Bに示す如く、
上部ヘツダ9から熱交換器6に入る。熱交換器6
で冷却された後、水は冷却媒体用タンク4に戻さ
れ、再び冷却に使用される。
To explain the operation of this backup cooling system, when an abnormality occurs in the reactor, the cooling medium (water) in the cooling medium tank 4 is cooled down by the circulation pump 5 through the lower header 10 as shown by arrow A in the figure. It is supplied to tube group 7. As described above, by attaching the fin group 8 obliquely to the circumferential surface of the nuclear pressure vessel 1, the area facing the nuclear pressure vessel 1 (heat absorption area) can be made as large as possible, and the area facing the nuclear pressure vessel 1 can be made as large as possible. The fin group 8 efficiently absorbs the radiant heat from the fins. The water supplied from the lower header 10 is in the cooling pipe group 7,
The heat of the fin group 8 heated by the radiant heat of the reactor pressure vessel 1 is absorbed, and as shown by arrow B in the figure,
It enters the heat exchanger 6 through the upper header 9. heat exchanger 6
After being cooled in , the water is returned to the cooling medium tank 4 and used for cooling again.

このように、他の原子炉のように水スプレイ系
によらないで、原子炉の異常昇温を阻止すること
ができる。また、輻射熱吸収部材2は原子力圧力
容器1の周面に対して傾斜したフイン群8を具備
していることから、冷却効果が大きく向上してい
る。
In this way, abnormal temperature rise in the reactor can be prevented without relying on a water spray system unlike other nuclear reactors. Further, since the radiant heat absorbing member 2 includes the fin group 8 that is inclined with respect to the circumferential surface of the nuclear pressure vessel 1, the cooling effect is greatly improved.

このフイン群8を具備しないで、冷却管群7だ
けの冷却効果と、当該実施例の冷却効果を比較す
ると次の結果が得られる。この比較は、水によつ
て吸収・搬出された、原子炉圧力容器1の輻射熱
の熱量から知ることができる。原子炉圧力容器1
から輻射される熱量Qは、 Q=κAT4=hρcV(To−Ti)
……(1式) で表わされる。但し、ここで、 κは輻射熱吸収係数、 Aは輻射熱の有効吸収断面積、 Tは原子炉圧力容器の表面温度、 hは冷却管の熱伝達係数、 ρ、c、Vは各々、水の密度、比熱、流速、 Toは冷却装置の下部ヘツダでの水の温度、 Tiは冷却装置の上部ヘツダでの水の温度、 である。
When the cooling effect of only the cooling pipe group 7 without the fin group 8 is compared with the cooling effect of this embodiment, the following results are obtained. This comparison can be determined from the amount of radiant heat of the reactor pressure vessel 1 absorbed and carried away by water. Reactor pressure vessel 1
The amount of heat Q radiated from Q = κAT 4 = hρcV (To-Ti)
...It is expressed as (Equation 1). However, here, κ is the radiant heat absorption coefficient, A is the effective absorption cross section of radiant heat, T is the surface temperature of the reactor pressure vessel, h is the heat transfer coefficient of the cooling pipe, and ρ, c, and V are each the density of water. , specific heat, flow velocity, To is the temperature of the water at the lower header of the chiller, and Ti is the temperature of the water at the upper header of the chiller.

この式において、フイン群を具備しない場合の
冷却装置が受ける熱量をQ1とし、当該冷却装置
が受ける熱量をQ2とするならば、 Q1/Q2=A1/A2 ……(2式) の関係式が導かれる。但し、ここで A1はフイン群なしの冷却装置の有効吸収断面積、 A2は当該冷却装置の有効吸収断面積、 である。各々の断面積A1、A2に実測値を代入す
ると、当該冷却装置の熱吸収効率は約2.3倍優れ
た結果が得られた。なお、当該実施例にあつては
冷却媒体に水を用いているが、特に、これに限ら
ず、他の気体あるいは液体を用いることもでき
る。
In this formula, if the amount of heat received by the cooling device without a fin group is Q1 , and the amount of heat received by the cooling device is Q2 , then Q1 / Q2 = A1 / A2 ... (2 The relational expression (formula) is derived. However, here, A 1 is the effective absorption cross section of the cooling device without fin groups, and A 2 is the effective absorption cross section of the cooling device. When actual measurements were substituted for each of the cross-sectional areas A 1 and A 2 , it was found that the heat absorption efficiency of the cooling device was about 2.3 times better. Although water is used as the cooling medium in this embodiment, the cooling medium is not limited to this, and other gases or liquids may also be used.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明の冷却装置は、原子炉
圧力容器の外周が、その原子炉圧力容器の周面と
対向する側に輻射熱吸収部材を取り付けた断熱壁
で囲まれ、その輻射熱吸収部材が原子炉圧力容器
の周面と対して傾斜したフイン群を取り付けた冷
却管群から構成されている。そのため、原子炉圧
力容器からの輻射熱を効率良く吸収することがで
き、原子炉の温度上昇を有効に阻止することがで
きる。
As described above, in the cooling device of the present invention, the outer periphery of the reactor pressure vessel is surrounded by a heat insulating wall having a radiant heat absorbing member attached to the side opposite to the circumferential surface of the reactor pressure vessel, and the radiant heat absorbing member is It consists of a group of cooling pipes with fins attached that are inclined with respect to the circumferential surface of the reactor pressure vessel. Therefore, radiant heat from the reactor pressure vessel can be efficiently absorbed, and a rise in temperature of the reactor can be effectively prevented.

【図面の簡単な説明】[Brief explanation of the drawing]

図は全て本発明の実施例に係る後備冷却装置を
説明するためのもので、第1図はその後備冷却装
置の構成図、第2図はその冷却装置の一部を断面
にした平面図、第3図はその冷却装置の要部拡大
断面図、第4図は原子炉圧力容器を透視した場合
の冷却装置の部分斜視図である。 1……原子炉圧力容器、2……輻射熱吸収部
材、2a……吸収部材ブロツク、3……断熱壁、
4……冷却媒体用タンク、5……循環ポンプ、6
……熱交換器、7……冷却管群、8……フイン
群。
The figures are all for explaining the backup cooling device according to the embodiment of the present invention, and FIG. 1 is a configuration diagram of the backup cooling device, FIG. 2 is a plan view of a part of the cooling device in cross section, FIG. 3 is an enlarged sectional view of the main part of the cooling device, and FIG. 4 is a partial perspective view of the cooling device when looking through the reactor pressure vessel. DESCRIPTION OF SYMBOLS 1... Reactor pressure vessel, 2... Radiant heat absorption member, 2a... Absorption member block, 3... Heat insulation wall,
4...Cooling medium tank, 5...Circulation pump, 6
... Heat exchanger, 7 ... Cooling pipe group, 8 ... Fin group.

Claims (1)

【特許請求の範囲】 1 原子炉圧力容器の外周が、その原子炉圧力容
器の周面と対向する側に輻射熱吸収部材を取り付
けた断熱壁で囲まれ、 前記輻射熱吸収部材は、前記原子炉圧力容器の
周面と対して傾斜したフイン群を取り付けた冷却
管群から構成され、 その輻射熱吸収部材に冷却媒体が供給され、前
記原子炉圧力容器からの輻射熱を吸収した傾斜フ
インを前記冷却媒体で冷却するように構成されて
いることを特徴とする高温ガス炉後備冷却装置。
[Scope of Claims] 1. The outer periphery of the reactor pressure vessel is surrounded by a heat insulating wall having a radiant heat absorbing member attached to the side opposite to the circumferential surface of the reactor pressure vessel, and the radiant heat absorbing member is capable of absorbing the reactor pressure. It consists of a group of cooling pipes equipped with a group of fins that are inclined with respect to the circumferential surface of the vessel, and a cooling medium is supplied to the radiant heat absorbing member, and the inclined fins that have absorbed the radiant heat from the reactor pressure vessel are used with the cooling medium. A high temperature gas reactor back-up cooling device, characterized in that it is configured to cool the reactor.
JP58157110A 1983-08-30 1983-08-30 Cooling device for cooling system installed to rear section of high-temperature gas furnace Granted JPS6049293A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58157110A JPS6049293A (en) 1983-08-30 1983-08-30 Cooling device for cooling system installed to rear section of high-temperature gas furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58157110A JPS6049293A (en) 1983-08-30 1983-08-30 Cooling device for cooling system installed to rear section of high-temperature gas furnace

Publications (2)

Publication Number Publication Date
JPS6049293A JPS6049293A (en) 1985-03-18
JPH0450553B2 true JPH0450553B2 (en) 1992-08-14

Family

ID=15642445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58157110A Granted JPS6049293A (en) 1983-08-30 1983-08-30 Cooling device for cooling system installed to rear section of high-temperature gas furnace

Country Status (1)

Country Link
JP (1) JPS6049293A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63169593A (en) * 1986-12-26 1988-07-13 プロト−パワ− コ−ポレ−シヨン Nuclear reaction reactor system and manufacture thereof
JP2013217738A (en) * 2012-04-06 2013-10-24 Hitachi-Ge Nuclear Energy Ltd Heat exchanger

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5616095B2 (en) * 1976-11-01 1981-04-14
JPS5875094A (en) * 1981-10-30 1983-05-06 日本原子力研究所 Thermal shock relaxation device of panel type emergency cooler

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5616095U (en) * 1979-07-18 1981-02-12

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5616095B2 (en) * 1976-11-01 1981-04-14
JPS5875094A (en) * 1981-10-30 1983-05-06 日本原子力研究所 Thermal shock relaxation device of panel type emergency cooler

Also Published As

Publication number Publication date
JPS6049293A (en) 1985-03-18

Similar Documents

Publication Publication Date Title
KR100906717B1 (en) Air/Water hybrid passive reactor cavity cooling apparatus and method for core decay heat removal of a High Temperature Gas-Cooled Reactor
US4560533A (en) Fast reactor power plant design having heat pipe heat exchanger
CN102637465B (en) Passive safety shell cooling system
JPS62265597A (en) Auxiliary cooling system of radiating vessel
US3395076A (en) Compact nuclear reactor heat exchanging system
US4959193A (en) Indirect passive cooling system for liquid metal cooled nuclear reactors
CN108335759B (en) The cooling system for tokamak device divertor based on evaporation cooling principle
KR20200104212A (en) Nuclear reactor core
CN110274501B (en) Nuclear power plant spent fuel pool cooling system based on passive separation type heat pipe exchanger
JP7050886B2 (en) Liquid metal cold reactor with fully passive residual force removal (DHR) system
JP2012233698A (en) Nuclear power plant emergency cooling system
US5021211A (en) Liquid metal cooled nuclear reactors with passive cooling system
CN109545400A (en) A kind of Passive containment cooling system
WO2022193905A1 (en) Mixing chamber structure for prismatic high-temperature gas-cooled reactor, and prismatic high-temperature gas-cooled reactor structure
JPH0450553B2 (en)
JPS6147360B2 (en)
KR101815958B1 (en) Passive containment cooling system for pressurized water reactor using phase-change material
US4554129A (en) Gas-cooled nuclear reactor
US3275523A (en) Nuclear reactor wet thermal insulation
JP2004019813A (en) Multiplex piping for low-temperature fluid
JP2011196700A (en) System and method for removing residual heat
CN209447555U (en) A kind of Passive containment cooling system
KR20210050223A (en) Integrated type passive cooling system of nuclear power plant
CN112420226B (en) Passive residual heat removal system based on annular air cooler
CN214152462U (en) Device for relieving overpressure risk of containment and containment