JPH0450517A - Hydraulic clutch controller for ship propeller - Google Patents

Hydraulic clutch controller for ship propeller

Info

Publication number
JPH0450517A
JPH0450517A JP2156655A JP15665590A JPH0450517A JP H0450517 A JPH0450517 A JP H0450517A JP 2156655 A JP2156655 A JP 2156655A JP 15665590 A JP15665590 A JP 15665590A JP H0450517 A JPH0450517 A JP H0450517A
Authority
JP
Japan
Prior art keywords
pressure
valve
hydraulic clutch
control
clutch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2156655A
Other languages
Japanese (ja)
Other versions
JP2879246B2 (en
Inventor
Kenji Fujimoto
健二 藤本
Masao Akamine
赤嶺 正雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Marine Co Ltd
Original Assignee
Sanshin Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanshin Kogyo KK filed Critical Sanshin Kogyo KK
Priority to JP2156655A priority Critical patent/JP2879246B2/en
Publication of JPH0450517A publication Critical patent/JPH0450517A/en
Application granted granted Critical
Publication of JP2879246B2 publication Critical patent/JP2879246B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Hydraulic Clutches, Magnetic Clutches, Fluid Clutches, And Fluid Joints (AREA)

Abstract

PURPOSE:To prevent the occurrence of judder sounds and provide high transmissibility of power by providing a controlling means for reducing working oil pressure in a hydraulic clutch when rotational variation exceeds a predetermined value and increasing the working oil pressure when the rotational variation is less than the predetermined value. CONSTITUTION:A signal of a rotational frequency detecting means 91 consisting of an engine rotational frequency detector 16 provided between an engine 11 and hydraulic clutch 14 and a propeller shaft rotational frequency detector 18 provided between a speed change gear train 12a and a propeller 13 is inputted to a rotational variation detecting means 92 of a working oil pressure controlling means 23. A rotational variation signal obtained here is inputted together with a signal of a Ns setter 22 to a control section 93 which processes these signals in a predetermined manner to control a pressure adjusting means, i.e., pressure intensifying valve and pressure reducing valve by the output. A pressure reduction adjusting valve 35 for reducing the working oil pressure from the same oil pump 29 is controlled by the adjusting means to operate the hydraulic clutch 14 for slip control through a forward-backing change-over valve 60 changed over by a manual change-over means 94 or the like.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は舶用推進機のエンジンとプロペラ間に設ける油
圧クラッチの制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a control device for a hydraulic clutch provided between an engine and a propeller of a marine propulsion device.

[従来の技術] 従来のこの種の装置においては、第9図に示すように船
舶10にはエンジン11、変速機12を搭載し、エンジ
ン11の回転力を変速機12によって正転又は逆転方向
に変速を行い、プロペラ13に伝えるようになっている
。変速機12の入力軸側には多板式の油圧クラッチ14
を設け、油圧を制御することによりクラッチのスリップ
を調節している。
[Prior Art] In a conventional device of this kind, as shown in FIG. The gear is changed and the information is transmitted to the propeller 13. A multi-disc hydraulic clutch 14 is provided on the input shaft side of the transmission 12.
The slip of the clutch is adjusted by controlling the oil pressure.

このような舶用変速機においては、エンジンのトルクが
低速低負荷時において変動を生じる時には、変速ギア列
を構成するギアがバンクラッシュの存在によって相互に
衝撃的にぶつかり、不快なガラ音を発生させることがあ
る。従来このガラ音の発生を防止するには、運転者によ
るクラッチ圧低減操作によってクラッチをスリップさせ
ることが行なわれていた。しかしながらクラッチのスリ
ップが過大になり易く、クラッチつながりのフィーリン
グの悪化を招くことがあった。また作動油は温度により
粘性が大きく変化するため、適切なスリップを行なわせ
ることが困難であった。
In such marine transmissions, when the engine torque fluctuates at low speeds and low loads, the gears that make up the transmission gear train collide with each other due to bank lash, producing an unpleasant rattling sound. Sometimes. Conventionally, in order to prevent the occurrence of this rattling noise, the driver has performed a clutch pressure reduction operation to cause the clutch to slip. However, the slip of the clutch tends to be excessive, which may lead to deterioration of the clutch engagement feeling. Furthermore, since the viscosity of hydraulic oil changes greatly depending on temperature, it has been difficult to cause appropriate slippage.

それに対し、上記欠点を解消するため本出願人によりガ
ラ音の発生を振動検出器により検出し、油圧クラッチへ
の油圧を制御することによってクラッチのスリップを制
御する技術が提案されている(特開昭63−57945
号)。
On the other hand, in order to eliminate the above-mentioned drawbacks, the present applicant has proposed a technology in which clutch slip is controlled by detecting the occurrence of rattling noise with a vibration detector and controlling the hydraulic pressure to the hydraulic clutch (Unexamined Japanese Patent Publication No. Showa 63-57945
issue).

[発明が解決しようとする課題] 上記技術は以前運転者による手動制御によって油圧クラ
ッチの油圧を制御していたものよりはるかにガラ音の発
生防止効果は大きいものの、ガラ音の発生を振動によっ
て検出しているので、エンジンの振動等ガラ音以外の振
動によっても作動してしまい、ガラ音が発生していない
にも拘らずクラッチを滑らせてしまう可能性があった。
[Problem to be solved by the invention] Although the above technology is much more effective in preventing rattle noise than the previous method in which the oil pressure of the hydraulic clutch was controlled manually by the driver, it is difficult to detect rattle noise by vibration. Therefore, vibrations other than rattle noise, such as engine vibrations, could cause the clutch to operate, causing the clutch to slip even though there was no rattle noise.

[課題を解決するための手段] 本発明は従来のものの上記欠点を解消するため、エンジ
ンに連結してなる入力軸とプロペラに連結してなる出力
軸間の動力伝達経路中に油圧クラッチと変速ギア列を設
けた船舶推進機の油圧クラッチ制御装置において、動力
伝達経路に回転数を検出する回転数検出手段、検出され
た回転数に基づき回転変動を求める回転変動検出手段、
回転変動が所定値を越える時油圧クラッチの作動油圧を
下げ、所定値以下である時作動油圧を上げるよう制御す
る制御手段を設けたものであり、それにより変速機で生
じるガラ音の発生を防止したものである。
[Means for Solving the Problems] In order to solve the above-mentioned drawbacks of the conventional ones, the present invention provides a hydraulic clutch and a speed changer in the power transmission path between the input shaft connected to the engine and the output shaft connected to the propeller. In a hydraulic clutch control device for a marine propulsion device provided with a gear train, a rotation speed detection means for detecting rotation speed in a power transmission path, a rotation fluctuation detection means for determining rotation fluctuation based on the detected rotation speed,
This system is equipped with a control means that lowers the working oil pressure of the hydraulic clutch when the rotational fluctuation exceeds a predetermined value, and increases the working oil pressure when the rotational fluctuation is below a predetermined value, thereby preventing the rattling noise that occurs in the transmission. This is what I did.

〔作 用〕[For production]

本発明は以上のように構成したので、エンジンとプロペ
ラ間の動力伝達経路の回転数が常時検出され、その回転
変動が所定値以上となった時動力伝達経路中に設けた油
圧クラッチの油圧を下げ、スリップを減少させる。
Since the present invention is configured as described above, the rotation speed of the power transmission path between the engine and the propeller is constantly detected, and when the rotational fluctuation exceeds a predetermined value, the oil pressure of the hydraulic clutch provided in the power transmission path is adjusted. lower and reduce slip.

〔実 施 例〕〔Example〕

本発明の実施例を図面に基づいて説明する。第1図及び
第2図は本発明の装置の全体概要を示し、エンジン11
とプロペラ13を駆動するプロペラ軸15間には、変速
ギア列12aと油圧クラッチ14を内蔵する前後進切換
式の変速機12を備え、変速機12の入力軸側にはエン
ジン回転数を検出するエンジン回転数検量器16を設け
るとともに、変速機12の出力側であるプロペラ軸15
に設けた鉄製歯車17に近接してプロペラ回転数検出器
18を設ける。変速機12には減圧弁20及び増圧弁2
1を設け、前記エンジン回転数検圧器16とプロペラ回
転数検出器18の信号及び設定器22の信号を入力する
制御装置23によって各々制御を行なう。
Embodiments of the present invention will be described based on the drawings. 1 and 2 show an overall outline of the device of the present invention, and show an engine 11
and a propeller shaft 15 that drives the propeller 13, there is provided a forward/reverse switching type transmission 12 that includes a transmission gear train 12a and a hydraulic clutch 14, and the input shaft side of the transmission 12 detects the engine rotation speed. In addition to providing an engine rotation speed calibrator 16, a propeller shaft 15 which is the output side of the transmission 12 is provided.
A propeller rotation speed detector 18 is provided in close proximity to the iron gear 17 provided in the. The transmission 12 includes a pressure reducing valve 20 and a pressure increasing valve 2.
1, and each is controlled by a control device 23 which inputs signals from the engine rotation speed pressure detector 16 and propeller rotation speed detector 18 and a signal from the setting device 22.

油圧クラッチ12及びその油圧系統は第3図に示す。即
ちエンジンの出力軸から動力を入力する入力軸25は、
その動力を一対の油圧クラッチ26.27を介してプロ
ペラ軸15に伝達し、プロペラ13を駆動している。一
対の油圧クラッチ26.27のうち26は前進用クラッ
チであり、27は後進用クラッチである。
The hydraulic clutch 12 and its hydraulic system are shown in FIG. That is, the input shaft 25 that inputs power from the output shaft of the engine is
The power is transmitted to the propeller shaft 15 via a pair of hydraulic clutches 26 and 27 to drive the propeller 13. Of the pair of hydraulic clutches 26 and 27, 26 is a forward clutch, and 27 is a reverse clutch.

オイルタンク28からの油は油圧供給手段であるオイル
ポンプ29で加圧されて主管路30に送られ、リリーフ
弁31によって圧力P。に保たれる。主管路30の圧油
は第1管路32、第2管路33、第3管路34に分岐さ
れる。第1管路32の圧油は絞り32a、オイルクーラ
32bを介して正転減速ギア及び逆転減速ギアの回転部
に送られ潤滑を行なう。第2管路33の圧油は減圧調整
弁35に送られる。減圧調整弁35は小径シリンダ36
、中径シリンダ37、大径シリンダ38からなるシリン
ダ39と、その内部で摺動する減圧弁40、大径シリン
ダ38内で摺動する調整用ピストン41、減圧弁40と
調整用ピストン41間に設けたスプリング59からなる
。シリンダ39内の第1室42は調圧管43が、第2室
44はドレンボート45が、第3室46は排出ボート4
7及び開度調整可能に流入ボート48及びドレンボート
50が、また第4室51にはドレンボート52が各々設
けられ、接続している。第3管路34には絞り53、オ
イルフィルタ54、リリーフ弁55、増圧弁21を設け
、減圧調整弁35の第1室42と調圧管43を介して連
通している。この第3管路及び調圧管43の接続部は減
圧弁20、手動開閉弁56t−介してオイルタンク28
に戻る。減圧調整弁35の第3室46に常時連通する排
出ボート47は前後進切換弁60の第1開ロ61と接続
する。前後進切換弁60には更にオイルタンク28に連
通する第2開ロ62、第1管路32に連通ずる第3開ロ
63、前進用油圧クラッチ26の多板クラッチ64を押
圧するピストン65作動用管路66に連通する第4開口
67、及び後進用油圧クラッチ27の多板クラッチ70
を押圧するピストン71作動用管路72に連通ずる第5
開ロア3を備える。前後進切換弁60はこれら第1〜第
5開口を3種類の態様で切換えるため第1弁74、第2
弁75、第3弁76を備え、手動でいずれかに切換えら
れる。
The oil from the oil tank 28 is pressurized by an oil pump 29, which is a hydraulic pressure supply means, and sent to the main pipe 30, and the pressure is set to P by a relief valve 31. is maintained. The pressure oil in the main pipeline 30 is branched into a first pipeline 32, a second pipeline 33, and a third pipeline 34. The pressure oil in the first conduit 32 is sent to the rotating parts of the normal rotation reduction gear and the reverse rotation reduction gear through the throttle 32a and the oil cooler 32b, and lubricates them. The pressure oil in the second pipe line 33 is sent to the pressure reduction regulating valve 35. The pressure reduction regulating valve 35 is a small diameter cylinder 36
, a cylinder 39 consisting of a medium-diameter cylinder 37 and a large-diameter cylinder 38, a pressure reducing valve 40 sliding inside the cylinder 39, an adjusting piston 41 sliding inside the large-diameter cylinder 38, and a cylinder 39 between the pressure reducing valve 40 and the adjusting piston 41. It consists of a spring 59 provided. The first chamber 42 in the cylinder 39 has a pressure regulating pipe 43, the second chamber 44 has a drain boat 45, and the third chamber 46 has a discharge boat 4.
7 and an inflow boat 48 and a drain boat 50 whose opening degree can be adjusted, and a drain boat 52 is provided in the fourth chamber 51 and connected to each other. The third conduit 34 is provided with a throttle 53, an oil filter 54, a relief valve 55, and a pressure increase valve 21, and communicates with the first chamber 42 of the pressure reduction regulation valve 35 via a pressure regulation pipe 43. The connection between this third pipe line and the pressure regulating pipe 43 is connected to the oil tank 28 via the pressure reducing valve 20 and the manual on-off valve 56t.
Return to The discharge boat 47, which is always in communication with the third chamber 46 of the pressure reduction regulating valve 35, is connected to the first opening hole 61 of the forward/reverse switching valve 60. The forward/reverse switching valve 60 further includes a second opening 62 communicating with the oil tank 28 , a third opening 63 communicating with the first pipe 32 , and a piston 65 operating to press the multi-disc clutch 64 of the forward hydraulic clutch 26 . A fourth opening 67 communicating with the utility pipe 66 and a multi-disc clutch 70 of the reverse hydraulic clutch 27
The fifth piston 71, which presses the
An open lower lower 3 is provided. The forward/reverse switching valve 60 has a first valve 74, a second valve 74, and a second valve 74 to switch the first to fifth openings in three ways.
It is provided with a valve 75 and a third valve 76, and can be manually switched to either one.

前記油圧装置において、減圧弁20及び増圧弁21が第
3図(a)に示した状態から増圧弁21の電磁コイル7
9への通電を遮断して第3管路34に圧油を供給すると
、油圧P3の圧力はP4に近かずくように調整され、減
圧調整弁35の調整用ピストン41を押圧する。その力
はスプリング59を介して減圧弁40を図中左方に押し
、流入ボート48を所定量開口するとともにドレンボー
ト50を所定量閉じて第3室内を増圧する。一方、前後
進切換弁60の第3弁76を作動位置に移動させておく
と、減圧調整弁35の第3室46内の圧油は前進用クラ
ッチ26のピストン65に作用し、多板クラッチを押圧
するのでクラッチでのスリップが少なくなる。それに対
し2減圧弁20の電磁コイル80に通電すると、調圧管
43内の圧油はオイルタンク28にドレンされ、減圧調
整弁35は前記と逆の作動によって第3室46内の圧力
は低下し、ピストン65に作用する油圧が低減するので
クラッチのスリップが多くなる。このように増圧弁21
の電磁コイル79及び減圧弁20の電磁コイル80への
通電を制御すると前進用クラッチ26のスリップは任意
に制御される。
In the hydraulic system, when the pressure reducing valve 20 and the pressure increasing valve 21 are in the state shown in FIG. 3(a), the electromagnetic coil 7 of the pressure increasing valve 21
9 and supplies pressure oil to the third pipe line 34, the pressure of the oil pressure P3 is adjusted so as not to approach P4, and the adjustment piston 41 of the pressure reduction adjustment valve 35 is pressed. The force pushes the pressure reducing valve 40 to the left in the figure via the spring 59, opens the inflow boat 48 by a predetermined amount, and closes the drain boat 50 by a predetermined amount, thereby increasing the pressure in the third chamber. On the other hand, when the third valve 76 of the forward/reverse switching valve 60 is moved to the operating position, the pressure oil in the third chamber 46 of the pressure reduction adjustment valve 35 acts on the piston 65 of the forward clutch 26, causing the multi-disc clutch Since the clutch is pressed, slippage in the clutch is reduced. On the other hand, when the electromagnetic coil 80 of the second pressure reducing valve 20 is energized, the pressure oil in the pressure regulating pipe 43 is drained into the oil tank 28, and the pressure reducing valve 35 operates in the opposite manner to the above, so that the pressure in the third chamber 46 decreases. , since the hydraulic pressure acting on the piston 65 is reduced, clutch slip increases. In this way, the pressure increase valve 21
By controlling the energization of the electromagnetic coil 79 and the electromagnetic coil 80 of the pressure reducing valve 20, the slip of the forward clutch 26 can be arbitrarily controlled.

前後進切換弁60の第1弁74を作動位置に移動させる
と、減圧調整弁35の第3室46の油圧は後進用油圧ク
ラッチ27のピストン71に作用1.、前進時と同様電
磁コイル75及び80への通電によって多板クラッチ7
0のスリップは制御される。前後進切換弁60の第2弁
75を第3図に示すように作動位置に移動すると、減圧
調整弁35の第3室46の圧油は第1管路32に入り、
潤滑油として利用され、前進用油圧クラッチ26及び後
進用油圧クラッチ27は作動しない。
When the first valve 74 of the forward/reverse switching valve 60 is moved to the operating position, the oil pressure in the third chamber 46 of the pressure reduction regulating valve 35 acts on the piston 71 of the reverse hydraulic clutch 27. , the multi-disc clutch 7 is activated by energizing the electromagnetic coils 75 and 80 in the same way as when moving forward.
0 slip is controlled. When the second valve 75 of the forward/reverse switching valve 60 is moved to the operating position as shown in FIG.
It is used as lubricating oil, and the forward hydraulic clutch 26 and reverse hydraulic clutch 27 do not operate.

上記のような油圧装置は制御装置23において第1図に
示すように制御される。即ち、エンジン11と油圧クラ
ッチ14間に設けたエンジン回転数検出器16と、変速
ギア列12aとプロペラ13間に設けたプロペラ軸回転
数検出器18とからなる回転数検出手段91の信号は作
動油圧制御手段23の回転変動横比手段92に入力する
。ここで得られた回転変動信号はNs設定器22の信号
とともに制御部93に入力する。この制御部93では後
述するフローチャートに従って信号処理し、その高力で
調圧手段即ち前記増圧弁20及び減圧弁21を制御する
。この調整手段によって同一のオイルタンク29からの
作動油圧を減圧する減圧調整弁35を制御し、手動等の
切換手段94によって切換えられる前後進切換弁60を
介して油圧クラッチ14を作動し、スリップ制御を行な
う。
The hydraulic system as described above is controlled by a control device 23 as shown in FIG. That is, the signal from the rotation speed detection means 91, which is comprised of an engine rotation speed detector 16 provided between the engine 11 and the hydraulic clutch 14, and a propeller shaft rotation speed detector 18 provided between the transmission gear train 12a and the propeller 13, is activated. It is input to the rotational variation side ratio means 92 of the hydraulic control means 23. The rotational fluctuation signal obtained here is input to the control section 93 together with the signal from the Ns setter 22. This control section 93 processes signals according to a flowchart to be described later, and uses the high power to control the pressure regulating means, that is, the pressure increase valve 20 and the pressure reduction valve 21. This adjustment means controls the pressure reduction adjustment valve 35 that reduces the pressure of the working oil pressure from the same oil tank 29, and operates the hydraulic clutch 14 via the forward/reverse switching valve 60, which is switched by a manual switching means 94, to control slippage. Do this.

前記制御部93においては第4図(a)に示すフローチ
ャ−トに従った制御を行なう。この一連の制御は0.0
5秒間隔のトリガ信号により起動101し、スタート1
02する。設定器22におけるダイヤル設定値Nsの読
み取り1(13を行ない、このNsが固定値Aより大き
いか否かを判別104する。大きい時には変速機で生じ
るガラ音の発生を防ぐためのガラ音制御105を行ない
、固定値Aより小さいか等しい時にはI・ローリング制
御126を行なう。
The control section 93 performs control according to the flowchart shown in FIG. 4(a). This series of controls is 0.0
Start 101 by trigger signal at 5 second intervals and start 1
02. The dial setting value Ns in the setting device 22 is read 1 (step 13), and it is determined 104 whether or not this Ns is larger than the fixed value A. If it is larger, a rattle noise control 105 is performed to prevent rattle noise generated in the transmission. When the value is smaller than or equal to the fixed value A, the I-rolling control 126 is performed.

なお、固定値Aは出荷時予め、例えば300 rpmあ
るいは500 rpm等と船種による最高トローリング
プロペラ回転数に合わせて設定しておく値である。
The fixed value A is a value that is set in advance at the time of shipment, such as 300 rpm or 500 rpm, according to the maximum trolling propeller rotation speed depending on the type of ship.

ガラ音制御105の時には、エンジン回転数検出器16
でエンジン回転数Neを検出106シ、エンジン回転数
Neが2回連続して850rpm以上ならばB=1にセ
ットし、同時にNeが750 rpmJJ、下ならばB
=Oに、それ以外の場合前回の値としてのB=Bにセッ
ト107する。次いで上記B=0であるか否か、即ちエ
ンジン回転数Neがガラ音が発生し得る750rpm以
下か、−旦750rpm以下となった後の85 Orp
m以下の状態であるか否かを判別108シ、その条件を
満たす場合にはプロペラ回転数検出器18においてサン
プルタイムの間で検出したプロペラ回転数Npのうち、
最大値Npmaxと最小値Npm1nを求める109゜
百方の値NpmaxどNpm1nの差α、すなわち回転
変動を求めた後、その値に応じて油圧制御1を行ない1
11ながら、その制御終了後次回の(すなわちその制御
の起動後0.05秒後に起動開始される)制御へ進む1
12゜なお、エンジン始動後Bは0に初期値設定される
At the time of rattle noise control 105, engine rotation speed detector 16
Detect engine speed Ne at 106, set B=1 if engine speed Ne is 850 rpm or more twice in a row, and set B if Ne is 750 rpmJJ or lower at the same time.
=O, otherwise set 107 B=B as the previous value. Next, check whether the above B=0, that is, whether the engine rotation speed Ne is 750 rpm or less where a rattling noise can occur, or -85 Orp after it has become 750 rpm or less.
m or less is determined 108, and if the condition is met, the propeller rotation speed Np detected by the propeller rotation speed detector 18 during the sample time is determined.
Find the maximum value Npmax and the minimum value Npm1n 109° After finding the difference α between the 100-degree values Npmax and Npm1n, that is, the rotational fluctuation, perform hydraulic control 1 according to that value.
11, after that control ends, proceed to the next control (that is, the activation starts 0.05 seconds after the activation of that control)1
12° Note that B is initialized to 0 after the engine is started.

なお、上記実施例におけるフローチャートのボックス1
09の代りに第4図(b)に示すように、エンジン回転
数検出器16の信号のみを利用し、サンプルタイム間に
おける最大値Nemaxと最小値Nem1n及び平均回
転数Nemeanを求め115、回転変動率β=: (
Ne+nax−Nemin) /Nemeanを求め1
16、このβの値によって油圧制御を行なう117こと
も可能である。
Note that Box 1 of the flowchart in the above embodiment
Instead of 09, as shown in FIG. 4(b), only the signal of the engine rotation speed detector 16 is used to find the maximum value Nemax, minimum value Nem1n, and average rotation speed Nemean during the sample time 115, and the rotation fluctuation is calculated. Rate β=: (
Find Nemean)/Nemean1
16. It is also possible to perform hydraulic control 117 based on the value of β.

回転変動αの値の制御に際しては、第5図に示すように
、油圧制御工がスタート120すると予め設定した第6
図(a)に示すグラフに従い、αの値が25rpmを中
心に±5rpmの巾を不感応域とし、Orpmに近付く
にしたがって増圧弁21の開放時間t1を制御起動間隔
の0.05secまで徐々に増加させ(すなわち、電磁
コイル79に通電する時間を徐々に減少させ)、逆にそ
れより回転変動が大きくなるにしたがって減圧弁20の
開放時間t2を同様に増加させるよう、tIsec及び
t 2secを決める121゜この値によって弁21を
tlsec、あるいは弁20をt 2sec開放作動1
22シ、最初のスタート102に戻る123゜ 前記第4図(b)の実施例のようにエンジン回転数の回
転変動βによって制御を行なう時には、第6図(b)に
示す予め設定されたグラフに従い、βの任意の例えば0
.lrpmを中心に±0.05rpmの巾を不感応域と
し、0に近付くにしたがって増圧弁21の開放時間t1
を徐々に増加させ、逆に回転変動が大きくなるにしたが
って減圧弁20の開放時間t2を同様に増加させるよう
、t 1sec及びtlsecを決める12+ことも可
能である。
When controlling the value of rotational fluctuation α, as shown in FIG.
According to the graph shown in Figure (a), the width of ±5 rpm is defined as an insensitive region around the value of α of 25 rpm, and as the value of α approaches Orpm, the opening time t1 of the pressure increase valve 21 is gradually increased to the control activation interval of 0.05 sec. tIsec and t2sec are determined so as to increase the opening time t2 of the pressure reducing valve 20 (that is, gradually decrease the time during which the electromagnetic coil 79 is energized), and conversely increase the opening time t2 of the pressure reducing valve 20 as the rotational fluctuation becomes larger. 121° According to this value, the valve 21 is opened for tlsec, or the valve 20 is opened for t2sec.
22, return to the initial start 102 123° When performing control based on the rotation fluctuation β of the engine speed as in the embodiment shown in FIG. 4(b), the preset graph shown in FIG. 6(b) According to β, for example 0
.. A width of ±0.05 rpm centered on lrpm is defined as an insensitive region, and as it approaches 0, the opening time t1 of the pressure increase valve 21 increases.
It is also possible to determine t1sec and tlsec to 12+ so that the opening time t2 of the pressure reducing valve 20 increases gradually, and conversely, the opening time t2 of the pressure reducing valve 20 increases as the rotational fluctuation increases.

第6図(a)及び(b)におけるα、βの不感帯域は手
動調整等の調整手段により、各推進機、変速機、プロペ
ラ等の特性に応じて任意に調整を行なうようにすること
が望ましい。
The dead zones α and β in Figures 6(a) and (b) can be arbitrarily adjusted by manual adjustment or other adjustment means according to the characteristics of each propulsion unit, transmission, propeller, etc. desirable.

上記のようにプロペラ回転数を検出して速度変動を求め
る場合には、油圧クラッチを経て回転変動が低くなった
もので制御することとなり、所定値としての値が25r
pm程度と低い値に設定することができ、エンジン回転
数そのものの回転変動を使って油圧クラッチを制御する
時の所定値よりも低く設定できる。
When determining the speed fluctuation by detecting the propeller rotation speed as described above, control is performed using a hydraulic clutch that reduces rotation fluctuation, and the predetermined value is 25r.
It can be set to a value as low as about pm, and can be set lower than a predetermined value when controlling the hydraulic clutch using rotational fluctuations in the engine speed itself.

上記制御はガラ音発生防止のための制御であり、制御部
93ではそのほか以下のような制御も行なう。
The above control is for preventing rattling noise, and the control section 93 also performs the following controls.

即ち、判別部108においてエンジン回転数Neがガラ
音制御域外にある時は油圧クラッチの油圧を上昇124
させ、クラッチを直結状態として次の制御に移る125
゜なお、プロペラ軸の回転変動率α=(Npmax −
Npm1n)/Npmeanを求めて制御を行なうと、
回転変動は高速回転径小さくなるので、このステップを
なくすことも可能である。
That is, when the engine speed Ne is outside the rattle noise control range in the determination unit 108, the oil pressure of the hydraulic clutch is increased 124.
125, and move to the next control with the clutch in the directly connected state.
゜In addition, the rotational fluctuation rate of the propeller shaft α=(Npmax −
When controlling by finding Npm1n)/Npmean,
Since the rotational fluctuation becomes smaller at high speed rotation, it is also possible to eliminate this step.

一方、設定器22におけるダイヤル設定値Nsが固定値
Aより小さいか等しい時にはトローリング制御126を
行ない、エンジン回転数Neを検出127した後、この
Neの値が2回連続して120Orpm以上ならばC=
1にセットし、同様にNeが60Orpm以下ならばC
=0に、それ以外の場合前回の値としてのC=Cにセッ
ト128する。次いでc=。
On the other hand, when the dial setting value Ns in the setting device 22 is smaller than or equal to the fixed value A, trolling control 126 is performed, and after detecting the engine rotation speed Ne 127, if the value of Ne is 120 Orpm or more twice in a row, C =
1 and similarly, if Ne is less than 60Orpm, C
= 0, otherwise set 128 C = C as the previous value. Then c=.

であるか否か、即ちエンジン回転数Neが60Orpm
以下であるか、あるいは−度600 rpm以下になっ
た後の1200rpm以下であるかのいずれかの状態で
あるか否かを判別129シ、その条件を満たす場合には
プロペラ回転数検出器18によってプロペラ回転数Np
を求め130、プロペラ回転数Npとダイヤル設定値N
sとの差δ= N p −N sの値を演算131シ、
第8図のグラフに示すように予め定められたグラフに基
づいて油圧制御2を行なう132゜即ち、第7図に示す
ように油圧制御2がスタート133すると第8図のグラ
フに従いNpがNsと等しい時であるδ=0を中心に±
5rpm程度の不感応域を設定し、、NpがNsより小
さくなればなる程増圧弁21の開放時間1.−を徐々に
増加させ、逆にNpがNsより大きくなればなる程減圧
弁20の開放時間t2−を同様に増加させるようtl 
 sec及びt2  secを決める134゜この値に
基づいて増圧弁21はtl  Sec開放し、減圧弁2
0はt2 sec開放し、以下最初の制御に戻る136
゜このことにより運転者の希望トローリングプロペラ回
転数すなわちダイヤル設定値N Sに維持することが可
能となる。
Whether or not the engine rotation speed Ne is 60 Orpm.
The propeller rotation speed detector 18 determines whether the speed is below 1200 rpm or below 1200 rpm after being below -600 rpm. Propeller rotation speed Np
Find 130, propeller rotation speed Np and dial setting value N
Calculate the value of the difference δ = N p - N s with 131
As shown in the graph of FIG. 8, hydraulic control 2 is performed based on a predetermined graph 132°, that is, as shown in FIG. 7, when hydraulic control 2 starts 133, Np changes to Ns according to the graph of FIG. ± around δ=0, which is the equal time
A dead zone of about 5 rpm is set, and the more Np becomes smaller than Ns, the longer the opening time of the pressure increase valve 21 becomes. - is gradually increased, and conversely, as Np becomes larger than Ns, the opening time t2- of the pressure reducing valve 20 is similarly increased.
sec and t2 sec are determined.Based on this value, the pressure increasing valve 21 opens tl Sec, and the pressure reducing valve 2
0 releases for t2 sec and returns to the initial control 136
This makes it possible to maintain the trolling propeller rotation speed desired by the driver, that is, the dial setting value NS.

一方、判別部129においてエンジン回転数Neが2回
連続1200rpm以上に一旦なった後は600rpm
以下にならない限り、油圧クラッチの油圧を0まで低下
させ137、クラッチを切った後次の制御に移る138
6すなわち129〜132のステップにより、少なくと
もエンジン回転数が60 Orpmである限りエンジン
回転数によらずプロペラ回転数Npをダイヤル設定値N
sに維持可能であるとともに、少なくともエンジン回転
数が120Orpm以上となる高回転時クラッチをオフ
するので、油温の異常上昇につながるクラッチの高スリ
ップを防ぐことが可能となる。なお、エンジン始動後に
は初期値設定される。
On the other hand, once the engine rotation speed Ne reaches 1200 rpm or more twice in a row in the determination unit 129, it becomes 600 rpm.
Unless the following occurs, reduce the oil pressure of the hydraulic clutch to 0 (137), disengage the clutch, and then proceed to the next control (138)
6, that is, steps 129 to 132, set the propeller rotation speed Np to the dial setting value N, regardless of the engine rotation speed, as long as the engine rotation speed is at least 60 Orpm.
s can be maintained, and the clutch is turned off when the engine speed is at least 120 rpm or higher, so it is possible to prevent high slippage of the clutch that would lead to an abnormal rise in oil temperature. Note that the initial value is set after the engine is started.

なお、上記実施例においては増圧弁21及び減圧弁20
を設は各々の制御をおこなったものであるが、これらの
弁を第3図(b)に示すような弁としても良い。即ち調
整弁140を第1弁141、第2弁]42及び第3弁1
43で構成し、両端に電磁コイル144と145を設け
る。この調圧弁140を前記実施例の増圧弁21の位置
、即ち第3管路34中に介装するとともにオイルタンク
28へのドレンボー1・を設け、更に前記実施例におけ
る減圧弁20を設置した管路を無くす。この調整弁】4
0を用いる時には、前記実施例の増圧弁21の電磁コイ
ル79への弁閉止信号(但し通電時間は0.05sec
−tlsecとなる)の代りに電磁コイル144への通
電信号とし、減圧弁20の電磁コイル80への弁開放信
号の代りに電磁コイル1451への通電信号とする。こ
のように電磁コイル144−\通電した時に調圧弁14
0の第1弁141が作動位置となり、減圧調整弁35の
第1室42の油圧を増大し、電磁コイル145へ通電し
た時には第3弁]43が作動位置となり、前記第1室4
2の油圧をドレンして油圧を減少させる。このような弁
を用いることにより弁機構及び配管系統は簡素化する。
In addition, in the above embodiment, the pressure increasing valve 21 and the pressure reducing valve 20
Although these valves are configured to perform respective controls, these valves may be replaced by valves as shown in FIG. 3(b). That is, the regulating valve 140 is connected to the first valve 141, the second valve]42, and the third valve 1.
43, and electromagnetic coils 144 and 145 are provided at both ends. This pressure regulating valve 140 is installed at the position of the pressure increasing valve 21 of the above embodiment, that is, in the third pipe line 34, and a drain port 1 to the oil tank 28 is provided, and furthermore, the pipe in which the pressure reducing valve 20 of the above embodiment is installed is installed. Eliminate the road. This adjustment valve】4
0, a valve closing signal is sent to the electromagnetic coil 79 of the pressure booster valve 21 of the above embodiment (however, the energization time is 0.05 sec).
-tlsec) is replaced by an energization signal to the electromagnetic coil 144, and instead of a valve opening signal to the electromagnetic coil 80 of the pressure reducing valve 20, an energization signal to the electromagnetic coil 1451 is used. In this way, when the electromagnetic coil 144-\ is energized, the pressure regulating valve 14
When the first valve 141 of the pressure reduction adjustment valve 35 increases the hydraulic pressure in the first chamber 42 of the pressure reduction regulating valve 35 and the electromagnetic coil 145 is energized, the third valve 43 becomes the operating position, and the first chamber 4
2. Drain the oil pressure to reduce the oil pressure. By using such a valve, the valve mechanism and piping system are simplified.

本実施例において第3図に図示したような減圧調整弁3
5を用いると、この弁は調圧制御ポ・−1・が流入ボー
ト48と排出ボート47と各々独立し2て区画しており
、従来のこの種の弁のように流入ボートあるいは排出ボ
ートを調圧制御ボートに連通し、前記2つのボートの圧
力変動をフィードバックして調圧制御ポートの圧力を制
御するものではなく、かつ調圧制御ポートの圧力調整は
入力弁、ドレン弁を組み合わせ、置方を閉、いずれか一
方を開の3通りの状態を時間制御することにより実施し
ているので、制御の信頼性が向上する。
In this embodiment, a pressure reducing regulating valve 3 as shown in FIG.
5, this valve has a pressure regulation control port 48 and a discharge boat 47, which are each independently divided into two sections, and unlike conventional valves of this type, the pressure regulation control port 48 and discharge boat 47 cannot be connected to the inlet boat or the discharge boat. It communicates with the pressure regulation control boat and does not control the pressure of the pressure regulation control port by feeding back the pressure fluctuations of the two boats, and the pressure of the pressure regulation control port is controlled by combining an input valve and a drain valve. Since this is implemented by time-controlling three states, one closed and one open, the reliability of the control is improved.

(発明の効果) 本発明は上記のように構成し作用するので、ガラ音の発
生する回転数領域では油圧クラッチの作動油圧を下げ、
油圧クラッチを滑らせることによリガラ音の発生が防止
されるとともに、ガラ音の発生がない状態、あるいはガ
ラ音の発生レベルが低い回転変動の所定値以下の時には
、油圧クラッチの滑り率を上げることによりガラ音の発
生がない状態あるいはガラ音の発生レベルが低い状態の
まま、高い動力伝達率を達成することができる。
(Effects of the Invention) Since the present invention is configured and operates as described above, the working pressure of the hydraulic clutch is lowered in the rotation speed region where rattling noise occurs, and
Sliding the hydraulic clutch prevents rattling noise from occurring, and increases the slip rate of the hydraulic clutch when no rattling noise occurs or the level of rattling noise is low and below a predetermined value of rotational fluctuation. As a result, a high power transmission rate can be achieved without rattling noise or with a low level of rattling noise.

また、動力伝達経路の回転数に基づき制御するので、ガ
ラ音以外の擾動の影響を受けることがなく、ガラ音の防
止のみを確実に行なうことができる。
Further, since the control is performed based on the rotational speed of the power transmission path, there is no influence of vibrations other than rattle noise, and only rattle noise can be reliably prevented.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の油圧クラッチ制御装置の作動概要を示
すクレーム対応図、第2図は本発明の調圧クラッチ制御
装置を適用する動力伝達機構及び制御装置の概要図、第
3図(a)、 (b)は油圧クラッチとその油圧系統を
示す図、第4回は本発明による制御装置の制御フローを
示す図であり、(a)は第1実施例を示し、(b)は第
2実施例を示す、第5図は第4図の油圧制御部]の詳細
制御フロー図、第6図はその制御条件を示すグラフであ
り、(a)は第1実施例を示し、(b)は第2実施例を
示す、第7図は第4図の油制御部2の詳細制御フロー図
、第8図はその制御条件を示すグラフ、第9図は従来及
び本発明の油圧クラッチ制御装置を適用する船舶の概要
図である。 11ニエンジン     12.変速機13;プロペラ
     14二油圧クラツチ15゛プロペラ軸 16
.エンジン回転数検出器18:プロペラ回転数検出器 20:減圧弁      2]:増圧弁22:設定器 
     26;前進用クラッチ:後進用クラッチ 二オイルポンプ 二減圧弁 :前後進切換弁 ピストン :回転変動検出手段
Fig. 1 is a claim correspondence diagram showing an outline of the operation of the hydraulic clutch control device of the present invention, Fig. 2 is a schematic diagram of a power transmission mechanism and control device to which the pressure regulating clutch control device of the present invention is applied, and Fig. 3 (a ), (b) is a diagram showing a hydraulic clutch and its hydraulic system, the fourth part is a diagram showing the control flow of the control device according to the present invention, (a) is a diagram showing the first embodiment, and (b) is a diagram showing the control flow of the control device according to the present invention. FIG. 5 is a detailed control flow diagram of the hydraulic control section shown in FIG. 4, and FIG. 6 is a graph showing its control conditions. ) shows the second embodiment, FIG. 7 is a detailed control flow diagram of the oil control unit 2 of FIG. 4, FIG. 8 is a graph showing the control conditions, and FIG. 9 is the hydraulic clutch control of the conventional and present invention. FIG. 2 is a schematic diagram of a ship to which the device is applied. 11 engine 12. Transmission 13; Propeller 14 Two hydraulic clutches 15'' Propeller shaft 16
.. Engine speed detector 18: Propeller speed detector 20: Pressure reducing valve 2]: Pressure increasing valve 22: Setting device
26; Forward clutch: Reverse clutch 2 Oil pump 2 Pressure reducing valve: Forward/forward switching valve Piston: Rotation fluctuation detection means

Claims (1)

【特許請求の範囲】[Claims] エンジンに連結してなる入力軸とプロペラに連結してな
る出力軸間の動力伝達経路中に油圧クラッチと変速ギア
列を設けた船舶推進機の油圧クラッチ制御装置において
、動力伝達経路に回転数を検出する検出手段、検出され
た回転数に基づき回転変動を求める回転変動検出手段、
回転変動が所定値を越える時油圧クラッチの作動油圧を
下げ、所定値以下である時作動油圧を上げるよう制御す
る制御手段を設けたことを特徴とする船舶推進機の油圧
クラッチ制御装置
In a hydraulic clutch control device for a marine propulsion machine, which has a hydraulic clutch and a transmission gear train in the power transmission path between the input shaft connected to the engine and the output shaft connected to the propeller, the rotation speed is controlled in the power transmission path. a detection means for detecting, a rotation fluctuation detection means for determining rotation fluctuation based on the detected rotation speed;
A hydraulic clutch control device for a marine propulsion device, characterized in that a control means is provided for controlling the hydraulic pressure of the hydraulic clutch to be lowered when the rotational fluctuation exceeds a predetermined value, and to increase the hydraulic pressure when the rotational fluctuation is below a predetermined value.
JP2156655A 1990-06-16 1990-06-16 Hydraulic clutch control device for ship propulsion Expired - Lifetime JP2879246B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2156655A JP2879246B2 (en) 1990-06-16 1990-06-16 Hydraulic clutch control device for ship propulsion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2156655A JP2879246B2 (en) 1990-06-16 1990-06-16 Hydraulic clutch control device for ship propulsion

Publications (2)

Publication Number Publication Date
JPH0450517A true JPH0450517A (en) 1992-02-19
JP2879246B2 JP2879246B2 (en) 1999-04-05

Family

ID=15632405

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2156655A Expired - Lifetime JP2879246B2 (en) 1990-06-16 1990-06-16 Hydraulic clutch control device for ship propulsion

Country Status (1)

Country Link
JP (1) JP2879246B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5425687A (en) * 1991-05-28 1995-06-20 Toyota Jidosha Kabushiki Kaisha Shift control system for selecting between two shift patterns based on torque converter judders in an automatic transmission
JP2001347994A (en) * 2000-06-06 2001-12-18 Yanmar Diesel Engine Co Ltd Propulsion device for ship
CN100417831C (en) * 2005-06-03 2008-09-10 加特可株式会社 Hydraulic clutch control device and corresponding method
JP2013203079A (en) * 2012-03-27 2013-10-07 Hitachi Nico Transmission Co Ltd Hybrid propulsion device and system
JP2015081054A (en) * 2013-10-24 2015-04-27 ダイハツディーゼル株式会社 Transmission changeover control device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5425687A (en) * 1991-05-28 1995-06-20 Toyota Jidosha Kabushiki Kaisha Shift control system for selecting between two shift patterns based on torque converter judders in an automatic transmission
JP2001347994A (en) * 2000-06-06 2001-12-18 Yanmar Diesel Engine Co Ltd Propulsion device for ship
JP4499876B2 (en) * 2000-06-06 2010-07-07 ヤンマー株式会社 Marine propulsion device
CN100417831C (en) * 2005-06-03 2008-09-10 加特可株式会社 Hydraulic clutch control device and corresponding method
JP2013203079A (en) * 2012-03-27 2013-10-07 Hitachi Nico Transmission Co Ltd Hybrid propulsion device and system
JP2015081054A (en) * 2013-10-24 2015-04-27 ダイハツディーゼル株式会社 Transmission changeover control device

Also Published As

Publication number Publication date
JP2879246B2 (en) 1999-04-05

Similar Documents

Publication Publication Date Title
US5480363A (en) Apparatus for controlling slip of lock-up clutch on motor vehicle during deceleration of the vehicle
JP2877948B2 (en) How to adjust the clutch
US5961408A (en) Device for controlling a CVT
JPS627430B2 (en)
JPH11132308A (en) Transmission gear
US4660440A (en) Device for controlling continuously variable transmission
US5569117A (en) Slip control apparatus for motor vehicle lock-up clutch
JPH04249664A (en) Hydraulic controller for belt type continuously variable transmission for vehicle
JPH09280332A (en) Transmission control device for continuously variable transmission
JPH04249665A (en) Hydraulic controller for belt type continuously variable transmission for vehicle
JP3402080B2 (en) Slip control device for vehicle lock-up clutch
JPH0450517A (en) Hydraulic clutch controller for ship propeller
JP2964815B2 (en) Hydraulic control device for belt-type continuously variable transmission for vehicles
JPH0316544B2 (en)
US4623053A (en) Control device for a direct-coupling hydraulic clutch in a hydraulic torque converter
JPH1182725A (en) Hydraulic control device of continuously variable transmission
JPH08312741A (en) Control device for continuously variable automatic transmission
US7066855B2 (en) Line pressure control apparatus for continuously variable transmission
JP2780448B2 (en) Transmission control device for continuously variable transmission
JP2959049B2 (en) Anti-freezing device for forward / reverse switching mechanism for continuously variable transmission
JPH09280357A (en) Line pressure control device in automatic transmission
JPH07117148B2 (en) Hydraulic control device for continuously variable transmission for vehicles
JP3203472B2 (en) Control device for continuously variable transmission
US7317979B2 (en) Speed change control system of automotive automatic transmission
JPH03113161A (en) Coast controller for automatic transmission

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080129

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090129

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090129

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100129

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100129

Year of fee payment: 11

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100129

Year of fee payment: 11

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100129

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100129

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110129

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110129

Year of fee payment: 12