JPH04503107A - Photodetector that counts photons - Google Patents
Photodetector that counts photonsInfo
- Publication number
- JPH04503107A JPH04503107A JP2502994A JP50299490A JPH04503107A JP H04503107 A JPH04503107 A JP H04503107A JP 2502994 A JP2502994 A JP 2502994A JP 50299490 A JP50299490 A JP 50299490A JP H04503107 A JPH04503107 A JP H04503107A
- Authority
- JP
- Japan
- Prior art keywords
- photons
- amplifier
- constituted
- optical
- counting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003287 optical effect Effects 0.000 claims description 16
- 230000003321 amplification Effects 0.000 claims description 12
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 12
- 239000004065 semiconductor Substances 0.000 claims description 11
- 238000001514 detection method Methods 0.000 claims description 10
- 239000013307 optical fiber Substances 0.000 claims description 5
- 238000004891 communication Methods 0.000 claims description 3
- 230000005281 excited state Effects 0.000 claims description 2
- 230000005855 radiation Effects 0.000 claims 2
- 230000001747 exhibiting effect Effects 0.000 claims 1
- 239000000463 material Substances 0.000 claims 1
- 238000005259 measurement Methods 0.000 claims 1
- 238000000034 method Methods 0.000 description 4
- 238000001069 Raman spectroscopy Methods 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000002839 fiber optic waveguide Methods 0.000 description 1
- 230000005283 ground state Effects 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J1/00—Photometry, e.g. photographic exposure meter
- G01J1/42—Photometry, e.g. photographic exposure meter using electric radiation detectors
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N25/00—Circuitry of solid-state image sensors [SSIS]; Control thereof
- H04N25/70—SSIS architectures; Circuits associated therewith
- H04N25/76—Addressed sensors, e.g. MOS or CMOS sensors
- H04N25/77—Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components
- H04N25/772—Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components comprising A/D, V/T, V/F, I/T or I/F converters
- H04N25/773—Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components comprising A/D, V/T, V/F, I/T or I/F converters comprising photon counting circuits, e.g. single photon detection [SPD] or single photon avalanche diodes [SPAD]
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J1/00—Photometry, e.g. photographic exposure meter
- G01J1/42—Photometry, e.g. photographic exposure meter using electric radiation detectors
- G01J1/44—Electric circuits
- G01J2001/4413—Type
- G01J2001/442—Single-photon detection or photon counting
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J1/00—Photometry, e.g. photographic exposure meter
- G01J1/42—Photometry, e.g. photographic exposure meter using electric radiation detectors
- G01J1/44—Electric circuits
- G01J2001/4446—Type of detector
- G01J2001/446—Photodiode
- G01J2001/4466—Avalanche
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Photometry And Measurement Of Optical Pulse Characteristics (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるため要約のデータは記録されません。 (57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】 光子を計数する光検出装置 本発明は、光子を計数する光検出装置に関する。[Detailed description of the invention] Photodetector that counts photons The present invention relates to a photodetection device that counts photons.
フォトマルチプライア(photo■uHIpliers)又は半導体アバラン チエフオドダイオード(avalanche photodlodes) (こ のダイオードは、発生した光電子が充分高速に加速され、静止分子との衝突によ り、追加電子を生成するという増幅過程を示す)を光子計数装置に使用すること は、一般に良く知られている。このような装置は、入射光子の一部が電子計数シ ステムの計数スレシヨルド(COUnt threshold)をトリガーする ことを可能とする。これは、入射光子が光電子を発生し、光電子は電子増幅過程 により、電子の充分大きなパケット(packet)又は束(bunch)を発 生することに基づいている。このような光子計数装置には性能的に限界がある。Photomultipliers (photo uHIpliers) or semiconductor avalan Thief photodiodes (avalanche photolodes) In the diode, the generated photoelectrons are accelerated at a sufficiently high speed and collide with stationary molecules. (indicates an amplification process in which an additional electron is generated) is used in a photon counting device. is generally well known. In such devices, a portion of the incident photons is an electron counting system. Trigger the stem counting threshold (COUNT threshold) make it possible. This is because an incident photon generates a photoelectron, and the photoelectron is in the process of electron amplification. emit a sufficiently large packet or bunch of electrons. It is based on living. Such photon counting devices have limited performance.
フォトマルチプライアのゲインは非常に大きく(一般に105 倍)、従って次 段の電子増幅器の熱ノイズを克服するのに充分大きな振幅の出力パルスを発生す る。しかしフォトマルチプライアは大型で壊れやすく、高レベルの光により容易 に破壊される。さらに、フォトマルチプライアの効率は非常に低く、入射光子の 僅かな部分しか検出できない。The gain of a photomultiplier is very large (typically 105 times), so the following generate output pulses of sufficient amplitude to overcome the thermal noise of the electronic amplifier in the stage. Ru. However, photomultipliers are large, fragile, and easily exposed to high levels of light. destroyed. Furthermore, the efficiency of photomultipliers is very low, and the efficiency of photomultipliers is very low. Only a small portion can be detected.
アバランチエフオドダイオードは扱いやすい大きさで、比較的頑丈であり、効率 も高い。しかし、アバランチエフオドダイオードのゲインは、その光電子ゲイン が雪崩崩壊(avalanche breakdown)の付近で動作するとき を除き、小さく(一般に500〜1000倍)、増幅された電子の自然崩壊が° 暗計数°即ち入射光子に一致しない計数値を生じるという欠点がある。この低ゲ インによる欠点は、次段電子増幅器の熱ノイズレベルを遥かに越える光電子によ る電子のパケットを生成するのが難しく、高周波数応答が高速計数率を可能にす るための電子増幅器に望まれるときは特に難しい。Avalanche differential diodes are conveniently sized, relatively rugged, and efficient. It's also expensive. However, the gain of an avalanche-effect diode is equal to its photoelectron gain operates near an avalanche breakdown. Except for It has the disadvantage of producing dark counts, ie counts that do not correspond to the incident photons. This low gay The drawback is that the photoelectron noise level far exceeds the thermal noise level of the next-stage electronic amplifier. It is difficult to generate packets of electrons that This is particularly difficult when an electronic amplifier is desired for
光アンプを使用することも良く知られている。これらの光アンプは、光フアイバ ー光子アンプ(希土類がドープされたファイバー又はラマンゲイン(Raman −gain)又はブリロイン(Brillouln gain)処理を使用して )、又は進行波半導体やレーザ形式アンプに基づいて動作する。そのような光ア ンプを比較的ノイズの多いPIN−フォトダイオード/電子アンプ複合器の前の プリアンプとして、この複合器の比較的低い受信性能を高めるために、使用して 実験することが一般的になっている。しかし、そのような光アンプをフォトマル チプライアのような高電子ゲインを有する装置の前に使用することは試みられて いない。これは通常の通信目的に関して(これは光子計数を使用しない)、一般 にPIN検出器出力が次段電子アンプの熱ノイズを克服するには、光子アンプ単 独で充分だからである。更に又、そのように使用することによって生じる利点に もかかわらず、光子アンプを光子計数システムの前のプリアンプとして使用する ことは試みられていない。It is also well known to use optical amplifiers. These optical amplifiers are – Photon amplifier (rare earth doped fiber or Raman gain -gain) or using Brillouln gain treatment. ), or based on traveling wave semiconductor or laser type amplifiers. Such a light a The amplifier is placed in front of the relatively noisy PIN-photodiode/electronic amplifier combination. Use this as a preamplifier to enhance the relatively low reception performance of this combiner. Experiments are becoming commonplace. However, such optical amplifiers cannot be used as photomultipliers. It has been attempted to use it before devices with high electronic gain such as tipliers. not present. For normal communication purposes (which does not use photon counting), this is a general To overcome the thermal noise of the next-stage electronic amplifier, the PIN detector output needs to be replaced by a single photon amplifier. Because alone is enough. Furthermore, the benefits accruing from such use Nevertheless, using a photon amplifier as a preamplifier before a photon counting system That has not been attempted.
この発明の目的は、高い効率及び広帯域を有する光子を計数する光検出機器を提 供することである。The purpose of this invention is to provide a photon-counting device with high efficiency and wide bandwidth. It is to provide.
従って、この発明により光子を計数する光検出機器が提供され、この光学機器は 、受信手段に到達した光子の数を与えられた時間内に判断する受信手段及びカウ ンタ手段を具備し、前記受信手段は到達した光子を増幅する増幅手段、及び増幅 された光子を検出し光電流を検出する光検出器を具備し、前記カウンタ手段は受 信手段に到達した光子の数を測定するために、与えられたスレショルドレベルを 越える出力光電流パルスの数を計数する。Therefore, the present invention provides a photodetection device for counting photons, and this optical device is , receiving means and counter for determining the number of photons reaching the receiving means in a given time; the receiving means includes amplifying means for amplifying the arriving photons; a photodetector for detecting a photon and a photocurrent; To measure the number of photons that reach the transmission means, a given threshold level is Count the number of output photocurrent pulses that exceed.
好適に、前記増幅手段は刺激された光子増幅処理により動作する。Preferably, said amplification means operate by a stimulated photon amplification process.
前記増幅手段は、低い基底状態に比べてそのような励起状態の反転分布を有する エネルギ増幅した電子状態を含む少なくとも一つの光フアイバー導波管を具備し 、正味光ゲインは光子が前記光フアイバー導波管を通過するときに生じる。 、 前記増幅手段は光ファイバーが外部光源によりポンプされる(pumped)と き、パラメトリックゲインを有する光ファイバーにすることもできる。パラメト リックゲインは一般的なRaman又はBr111ouin処理によることがで きる。the amplifying means has a population inversion of such excited states compared to a lower ground state; at least one optical fiber waveguide containing an energy-amplified electronic state; , a net optical gain occurs when photons pass through the fiber optic waveguide. , The amplification means is configured such that the optical fiber is pumped by an external light source. It can also be an optical fiber with parametric gain. parameto Rick gain can be achieved by standard Raman or Br111ouin processing. Wear.
増幅手段は励起された電子反転分布の半導体アンプを使用することもできる。The amplification means may also use an excited electronic population inversion semiconductor amplifier.
励起された反転分布半導体は、進行波半導体アンプ、又は部分的にミラー構成の Fabry−Perot形式又は半導体レーザに使用される構造に類似する構造 の分散されたBraggフィードバック形式のものでもよい。光検出手段はPI Nフォトダイオードでもよい。The excited population inverted semiconductor can be used as a traveling wave semiconductor amplifier or partially in a mirror configuration. Fabry-Perot type or structure similar to that used in semiconductor lasers It may also be in the form of distributed Bragg feedback. The light detection means is PI An N photodiode may also be used.
又、光検出器はフォトマルチプライアでもよい。Alternatively, the photodetector may be a photomultiplier.
光検出装置は、パルス高を認識する手段を含み、この手段は前記光検出手段の後 に設けられ、どの出力光電流パルスを出力光電流パルスの高さに基づいて計数す るかを決定する。このパルス高認識手段は一般に適切な電子回路である。The light detection device includes means for recognizing the pulse height, the means being located after the light detection means. and which output photocurrent pulses are counted based on the height of the output photocurrent pulses. Decide what to do. This pulse height recognition means is generally a suitable electronic circuit.
パルス高認識手段の出力は、与えられたスレショルド以上で、所定時間内に立ち 上がる電子パルスの数に対応する信号を発生するのに使用される。The output of the pulse height recognition means is equal to or higher than the given threshold and rises within a predetermined time. It is used to generate a signal corresponding to the number of rising electron pulses.
パルス高認識装置の出力が所定スレショルド以上の電子パルスの数に対応する信 号を発生するのに使用される場合、その光検出装置は通信受信器、又は光の時間 領域(time−domain)反射システム、又はレーダ(即ちLidar) システム、又は動く物体からの拡散光の光到着統計(photo arriVa l 5tatiStieS)を検査して前記物体の動きを判断する装置でもよい 。(後者の応用はレーザドツプラー速度計及び光子相関分光器[1aser d oppler velocisetry and photon correl ation 5pectroscopy]を含む)この発明の光検出装置は、高 効率、高性能光子計数システムを提供し、このシステムは、前述したように従来 の光検出手段の前に、光子アンプを使用する。The output of the pulse height recognition device is a signal corresponding to the number of electronic pulses above a predetermined threshold. When used to generate a signal, the photodetection device is a communications receiver or Time-domain reflection system, or radar (i.e. Lidar) system, or light arrival statistics for diffused light from a moving object (photo arriVa It may be a device that determines the movement of the object by inspecting the . (The latter applications are laser Doppler velocimeters and photon correlation spectrometers [1aserd oppler velocity and photon correl 5pectroscopy]) The photodetection device of the present invention has a high provides an efficient, high-performance photon counting system, and this system, as previously mentioned, A photon amplifier is used before the photodetection means.
光検出手段は前述のアバランチェダイオードが望ましいが、前述のPINフォト ダイオードを、アンプ手段の充分な光子ゲインを発生するのに使用できる。The photodetection means is preferably the avalanche diode described above, but the PIN photodetector described above is preferable. A diode can be used to generate sufficient photon gain for the amplifier means.
光アンプの効果的量子効率は非常に高く、大部分の入射光子はアンプ内のゲイン を示す。又、単−入射光子からの光信号が光検出手段に到達するまでの時間に、 光信号は実質的に30〜1,000,000倍のゲインを受け、これはプリアン プとして機能する増幅手段から得られるゲインに依存する。従って、実質的に増 幅された全ての光子激発(bursts)は、光検出手段の量子効率が10%く らいに低いときでも、光検出手段内の光電子の激発を生じる。従ってこの組み合 わせの総合実効量子効率は100%に近く、本質的に全ての入射光子は、光検出 手段からの電子の強い出力激発を生じる。The effective quantum efficiency of optical amplifiers is very high, with most incident photons being absorbed by the gain inside the amplifier. shows. Also, in the time it takes for an optical signal from a single incident photon to reach the photodetection means, The optical signal is effectively subjected to a gain of 30 to 1,000,000 times, which is depends on the gain obtained from the amplification means acting as a amplifier. Therefore, there is a substantial increase in All the bursts of photons that have been Even at extremely low levels, this results in a burst of photoelectrons within the photodetection means. Therefore this combination The overall effective quantum efficiency of the wafer is close to 100%, meaning that essentially all incident photons are producing a strong output burst of electrons from the means.
プリアンプの応答帯域幅は(Brillouinファイバーアンプを除いて)、 一般に非常に高く、少なくとも数十GHzである。又、後段検出器電子アンプの 帯域幅も非常に高く、総合ゲイン積(即ち光子掛ける光電子)がそれほど高くな いときに生じることのあるノイズによる不利益を被ることはない。速度に関する 唯一の制限は、従ってアバランチエフオドダイオードの速度であり、現在の技術 で代表的上限は1〜2GHzのオーダである。この制限値は(フォト電子ゲイン のみを使用する)従来システムの上限光子計数率に充分対抗でき、この従来値は 一般に僅か10MHzのオーダである。The response bandwidth of the preamplifier (with the exception of the Brillouin fiber amplifier) is Generally very high, at least several tens of GHz. In addition, the electronic amplifier of the latter stage detector The bandwidth is also very high and the total gain product (i.e. photons times photoelectrons) is not very high. You will not be penalized by the noise that can occur at other times. Regarding speed The only limitation is therefore the speed of the avalanche differential diode, and current technology A typical upper limit is on the order of 1-2 GHz. This limit value is (photoelectronic gain This conventional value is sufficient to overcome the upper limit photon counting rate of conventional systems (using only Typically only on the order of 10 MHz.
この発明による一実施例が添付図面を参照してこれより説明される。An embodiment according to the invention will now be described with reference to the accompanying drawings.
図1は電子アンプのみを使用する従来の光子計数装置を示し;図2はこの発明に よる光検出装置で、光検出装置は光子を計数するために使用され、光アンプを使 用する従来の光増倍法による装置である;図3は図2の光検出装置内の光子の増 幅を更に示す。Figure 1 shows a conventional photon counting device that uses only electronic amplifiers; Figure 2 shows the present invention. The photodetector is used to count photons and uses an optical amplifier. This is a device using the conventional photomultiplying method; The width is further shown.
図1において、従来の光子計数装置2が示され、これは電子アンプのみを使用す る。更に詳細には、入射光は結合された検出器及び電子増倍装置4に入射し、増 倍装置4はアバランチエフオドダイオード又はフォトマルチプライアである。装 置4はアンプ6に接続され、アンプ6はパルス高認識装置8に接続される。パル ス高認識装ff18からのパルスはライン10を介して計数手段(図示されず) に到達する。In Figure 1, a conventional photon counting device 2 is shown, which uses only an electronic amplifier. Ru. More specifically, the incident light enters the combined detector and electron multiplier 4 and is multiplied. The multiplier 4 is an avalanche odd diode or a photomultiplier. outfit The device 4 is connected to an amplifier 6, and the amplifier 6 is connected to a pulse height recognition device 8. Pal Pulses from the height recognition device ff18 are passed through line 10 to counting means (not shown). reach.
第2図において、光子を計数する光検出装置12が示される。光検出装置12は 、光アンプ14の形式の増幅手段と、光検出器16の形式の光検出手段と、及び パルス高認識装置20を具備する。パルス高認識装置20からのパルス出力は計 数手段(図示されず)に到達する。In FIG. 2, a photodetection device 12 for counting photons is shown. The photodetector 12 is , an amplification means in the form of an optical amplifier 14, a light detection means in the form of a photodetector 16, and A pulse height recognition device 20 is provided. The pulse output from the pulse height recognition device 20 is measured. Several means (not shown) are reached.
光検出装置12は、弱い入射光22が光アンプ14を通過して、ここで入射光は 増幅され、増幅された光24として光検出器16に到達するように動作する。光 アンプ14のゲインに依存して、光検出器16は、アンプ18に示される電子増 倍ステージを必要、又は必要としない。高ゲイン先アンプ14を使用することに より、光検出器16は簡単なPINフォトダイオードで充分である。In the photodetector 12, weak incident light 22 passes through an optical amplifier 14, where the incident light is It operates so that it is amplified and reaches the photodetector 16 as amplified light 24. light Depending on the gain of amplifier 14, photodetector 16 receives an electron multiplier shown in amplifier 18. Requires or does not require a double stage. In using high gain amplifier 14 Therefore, a simple PIN photodiode is sufficient for the photodetector 16.
図3において、入射光子26は光アンプ14に到達しているところが示され、又 、入射光子26は増幅された光子のパケット又は激発28に増幅され、これら光 子は光検出器16により受信される。又図3は、光検出器16に到達するパケッ ト又は激発が、どのようにして光電子の激発32としてライン30を通過するか を示す。アバランチエフオドダイオード検出器又はフォトマルチプライア検出器 が、アンプのノイズを克服するために選択された場合は、光電子の激発32は内 部電子増幅を検出器内で既に受けている。In FIG. 3, the incident photon 26 is shown reaching the optical amplifier 14, and , the incident photons 26 are amplified into amplified photon packets or bursts 28, and these light is received by photodetector 16. FIG. 3 also shows the packets reaching the photodetector 16. How does the photoelectron burst 32 pass through the line 30 as a burst 32 of photoelectrons? shows. Avalanche odd diode detector or photomultiplier detector is chosen to overcome amplifier noise, the photoelectron burst 32 is has already undergone partial electron amplification within the detector.
添付図面の図2及び3を参照して説明されたこの発明の実施例は一例に過ぎず、 これに修正を加えることは容易である。The embodiment of the invention described with reference to figures 2 and 3 of the accompanying drawings is by way of example only; It is easy to modify this.
nc、 1 FIG、2 nG、J 国際調査報告 1“1“−^″に−′″PCT/GB 90100138国際調査報告nc, 1 FIG.2 nG, J international search report 1"1"-^"-'"PCT/GB 90100138 International Search Report
Claims (11)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB898902080A GB8902080D0 (en) | 1989-01-31 | 1989-01-31 | Optical detection apparatus for counting optical photons |
GB8902080.4 | 1989-01-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04503107A true JPH04503107A (en) | 1992-06-04 |
Family
ID=10650875
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2502994A Pending JPH04503107A (en) | 1989-01-31 | 1990-01-31 | Photodetector that counts photons |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP0456710A1 (en) |
JP (1) | JPH04503107A (en) |
GB (2) | GB8902080D0 (en) |
WO (1) | WO1990008946A1 (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7372031B2 (en) * | 2005-03-24 | 2008-05-13 | Southwest Research Institute | System and method for sensitive photon detection |
US10620300B2 (en) | 2015-08-20 | 2020-04-14 | Apple Inc. | SPAD array with gated histogram construction |
EP3646057A1 (en) | 2017-06-29 | 2020-05-06 | Apple Inc. | Time-of-flight depth mapping with parallax compensation |
WO2019125349A1 (en) * | 2017-12-18 | 2019-06-27 | Montrose Laboratories Llc | Time-of-flight sensing using an addressable array of emitters |
KR102604902B1 (en) | 2019-02-11 | 2023-11-21 | 애플 인크. | Depth sensing using sparse arrays of pulsed beams |
US11500094B2 (en) | 2019-06-10 | 2022-11-15 | Apple Inc. | Selection of pulse repetition intervals for sensing time of flight |
US11555900B1 (en) | 2019-07-17 | 2023-01-17 | Apple Inc. | LiDAR system with enhanced area coverage |
US11733359B2 (en) | 2019-12-03 | 2023-08-22 | Apple Inc. | Configurable array of single-photon detectors |
US11681028B2 (en) | 2021-07-18 | 2023-06-20 | Apple Inc. | Close-range measurement of time of flight using parallax shift |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2140500C3 (en) * | 1971-08-12 | 1975-05-22 | Siemens Ag, 1000 Berlin Und 8000 Muenchen | Laser beam receiver |
DE2543863B2 (en) * | 1975-10-01 | 1978-11-16 | Max-Planck-Gesellschaft Zur Foerderung Der Wissenschaften E.V., 3400 Goettingen | Device for measuring light by counting photons |
GB2183417B (en) * | 1985-11-22 | 1990-01-17 | Stc Plc | Rangefinder |
-
1989
- 1989-01-31 GB GB898902080A patent/GB8902080D0/en active Pending
-
1990
- 1990-01-31 GB GB9002145A patent/GB2228318A/en not_active Withdrawn
- 1990-01-31 JP JP2502994A patent/JPH04503107A/en active Pending
- 1990-01-31 WO PCT/GB1990/000138 patent/WO1990008946A1/en not_active Application Discontinuation
- 1990-01-31 EP EP90902805A patent/EP0456710A1/en not_active Withdrawn
Also Published As
Publication number | Publication date |
---|---|
GB9002145D0 (en) | 1990-03-28 |
GB2228318A (en) | 1990-08-22 |
EP0456710A1 (en) | 1991-11-21 |
WO1990008946A1 (en) | 1990-08-09 |
GB8902080D0 (en) | 1989-03-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9995622B2 (en) | Avalanche photodiode receiver | |
US9553216B2 (en) | Avalanche photodiode receiver | |
CN109725320B (en) | Laser radar | |
CN211554305U (en) | LiDAR readout circuit | |
US7675610B2 (en) | Photon counting, chirped AM LADAR system and related methods | |
JPH04503107A (en) | Photodetector that counts photons | |
Ahmed et al. | A shot-noise limited 420 Mbps visible light communication system using commerical off-the-shelf silicon photomultiplier (SiPM) | |
Jack et al. | HgCdTe APD-based linear-mode photon counting components and ladar receivers | |
US7135669B2 (en) | Low-level light detector and low-level light imaging apparatus | |
US7372031B2 (en) | System and method for sensitive photon detection | |
Fukasawa et al. | High speed HPD for photon counting | |
KR101672509B1 (en) | Single photon detection device and photodetector using by the single photon detection device | |
Lewis et al. | Photon-burst method in high-resolution laser spectroscopy | |
Mu et al. | Evaluation and experimental comparisons of different photodetector receivers for visible light communication systems under typical scenarios | |
Robinson et al. | Photon detection with cooled avalanche photodiodes | |
Youmans | Avalanche photodiode detection statistics for direct-detection laser radar | |
JP2001004445A (en) | Light measuring instrument | |
Miyamoto et al. | A 10 Gb/s high sensitivity optical receiver using an InGaAs-InAlAs superlattice APD at 1.3 mu m/1.5 mu m | |
Zhang et al. | A comparison between the sensitivities of VLC receivers containing an off-the-shelf SPAD array and an APD | |
Williams | GHz-rate single-photon-sensitive linear-mode APD receivers | |
US3510662A (en) | Optical radar system with photomultiplier and associated circuitry having time constant long enough to permit "pile-up" of signal pulse but short enough to keep noise pulses separated | |
Li et al. | A Photon Limited SiPM Based Receiver for Internet of Things | |
CN118069098A (en) | Quantum random number generator and method based on quantum dot light sampling | |
Witteman | Fast Detection of Weak and Noisy Signals | |
Kutaev et al. | Laser receiver with a quantum detection limit in the near-IR range |