JPH0450171B2 - - Google Patents

Info

Publication number
JPH0450171B2
JPH0450171B2 JP30548086A JP30548086A JPH0450171B2 JP H0450171 B2 JPH0450171 B2 JP H0450171B2 JP 30548086 A JP30548086 A JP 30548086A JP 30548086 A JP30548086 A JP 30548086A JP H0450171 B2 JPH0450171 B2 JP H0450171B2
Authority
JP
Japan
Prior art keywords
flow rate
runner
valve rod
heat
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP30548086A
Other languages
Japanese (ja)
Other versions
JPS63158219A (en
Inventor
Shigeru Tsutsumi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanri KK
Original Assignee
Sanri KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanri KK filed Critical Sanri KK
Priority to JP30548086A priority Critical patent/JPS63158219A/en
Publication of JPS63158219A publication Critical patent/JPS63158219A/en
Publication of JPH0450171B2 publication Critical patent/JPH0450171B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、ホツトランナー方式のランナーレ
スとして知られる合成樹脂射出成形システムにお
ける流量制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a flow control device in a synthetic resin injection molding system known as a hot runner type runnerless system.

〔従来の技術〕[Conventional technology]

一般に、この種のホツトランナー方式の合成樹
脂射出成形方法およびその装置は、構造的には、
原料樹脂を可塑化して、ピストン、トーピードな
どによる射出機構を介して溶融した原料樹脂をノ
ズル部より吐出させる可塑化バレルと、この可塑
化バレルとノズルタツチで連結される金型部と、
前記ノズル部と通ずる分割路形成に必要なマニホ
ールド部と、ランナー部と、ゲートおよびキヤビ
テイとを有し、ノズル部からゲートに至る湯道に
は断面積や経路が種々異なる複雑な個処が形成さ
れている。
In general, this type of hot runner synthetic resin injection molding method and its equipment are structurally as follows:
A plasticizing barrel that plasticizes raw resin and discharges the molten raw resin from a nozzle part via an injection mechanism using a piston, torpedo, etc., and a mold part that is connected to the plasticizing barrel by a nozzle touch;
It has a manifold part, a runner part, a gate, and a cavity necessary for forming a dividing path communicating with the nozzle part, and the runner from the nozzle part to the gate has complicated parts with various cross-sectional areas and routes. has been done.

そして、湯道は射出成形機メーカから見て、不
特定の金型メーカが射出成形機の大きさとかキヤ
ビテイの大きさに格別配慮することなく、独自の
経験と技術によつて細くしたり、太くして訳の分
らない流路構成を造つているのが現状である。
From the point of view of the injection molding machine manufacturer, the runner may be thinned by an unspecified mold maker using their own experience and technology without paying particular attention to the size of the injection molding machine or the size of the cavity. The current situation is to create thick and incomprehensible channel configurations.

ところで、非成形操作時にゲートより漏洩する
樹脂を防止し、併せてキヤビテイでの成形性を高
める手段として例えば、直接的にはゲートの狭少
な断面積部分の樹脂を冷却固化させたり、または
ゲートに対してランナー部内に流れの方向と一致
して往復動する開閉ピストンを設けたり、或はま
たランナー部内にホツトランナーチツプを配設し
たりして対応していたし、間接的には、射出機構
にサツクバツク装置を組み込んで対応しているの
が現状である。
By the way, as a means to prevent resin leaking from the gate during non-molding operations and to improve moldability in the cavity, for example, it is possible to directly cool and solidify the resin in the narrow cross-sectional area of the gate, or to This was dealt with by providing an opening/closing piston inside the runner that reciprocated in accordance with the flow direction, or by installing a hot runner chip inside the runner, which indirectly affected the injection mechanism. Currently, this is handled by incorporating a back-back device.

また、湯道の断面積の変化が比較的少ない構成
の場合は、問題は少ないが、ランナー部内にホツ
トランナーチツプを配設してある場合などは湯道
の断面積や経路が種々複雑に異なつたり、或は湯
道のゲート近くのランナー部分が部分的に固化し
て流通しない樹脂が付着するなど、これが原因
で、溶融樹脂という粘性の高い流体にとつて、湯
道の各部分の流速や流量の変化が、不均衡に作用
して形成上甚だ有害となつている。
In addition, if the cross-sectional area of the runner has a relatively small change, this problem is not a problem, but if a hot runner chip is installed in the runner, the cross-sectional area and route of the runner may vary in a complex way. Dripping, or the runner parts near the runner gates partially solidify and adhere to non-circulating resin, which can cause the flow rate of the molten resin, a highly viscous fluid, to decrease in each part of the runner. Changes in water and flow rate act unbalancedly and are extremely harmful to formation.

このような有害を排除するため、高価な附属部
品や電子制御のためコンピユータなどを用い、
個々の問題点を対象とした部分的な解決策を購じ
て来たのが現状である。
In order to eliminate such harmful effects, we use expensive accessories and computers for electronic control.
The current situation is that we have purchased partial solutions that target individual problems.

このことは、合成樹脂射出成形機の製造メーカ
が、必ずしも一貫して製造に関与しておらず、射
出成形機メーカは、金型部を除く他の機械的構造
は製造しても、肝心のキヤビテイを形成する金型
部は他の不特定の金型メーカによつて製作されて
いる。
This means that manufacturers of synthetic resin injection molding machines are not necessarily consistently involved in manufacturing, and even if injection molding machine manufacturers manufacture other mechanical structures other than the mold part, they The mold section forming the cavity is manufactured by another unspecified mold manufacturer.

本来、射出成形機メーカが製造する可塑化バレ
ルの先端部からノズル部へ続く湯道と、この湯道
とノズルタツチで接続される金型部内のキヤビテ
イに通ずる湯道は、一本の溶融樹脂の流路として
配慮しなければならないという基本的な技術的課
題を見逃していたものと謂わざるを得ない。
Originally, a runner manufactured by an injection molding machine manufacturer that runs from the tip of the plasticizing barrel to the nozzle, and a runner that leads to the cavity in the mold that is connected by a nozzle touch, are made of a single molten resin. I cannot help but say that the fundamental technical issue that must be taken into account as a flow path was overlooked.

しかも、合成樹脂射出成形方法および装置がス
プルーランナーを生じないホツトランナー方式
と、スプルーランナーを生ずるコールドランナー
方式という二方向への歴史的発展が、湯道の形成
に一貫性を与えることができなかつたものとも考
えられる。
Moreover, the historical development of synthetic resin injection molding methods and equipment in two directions, namely hot runner methods that do not produce sprue runners and cold runner methods that produce sprue runners, has made it difficult to provide consistency in the formation of runners. It can also be considered as something that

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ランナーレスで経済性を高いこの種のホツトラ
ンナー方式の合成樹脂射出性方法およびその装置
は、非成形操作時において一般的に、可塑化バレ
ルとゲートに通じる湯道内には大容量の溶融樹脂
が貯溜するので残留圧が非常に高くなりゲートか
らの樹脂の漏出(鼻たれ現象)が避けられなかつ
た。
This type of hot runner synthetic resin injection method and its equipment, which is runnerless and highly economical, generally requires a large volume of molten resin in the runner leading to the plasticizing barrel and gate during non-molding operations. As the resin accumulates, the residual pressure becomes extremely high, and leakage of resin from the gate (runny nose phenomenon) is unavoidable.

そのため、ゲートからの樹脂の漏出防止手段に
前述のとおり、種々の対応を購じているが、直接
的には専らゲート部分を対象とした解決法に依存
しており、間接的には射出機構側でゲートから漏
出しようとする溶融樹脂をサツクバツク装置で逆
流吸引して解決しており、しかも可動する構成を
備えた漏出防止手段は、悉く樹脂の流出する方向
と一致した方向に作動する構成を備えている。
Therefore, as mentioned above, various measures have been taken to prevent resin leakage from the gate, but directly they rely exclusively on solutions that target the gate, and indirectly they rely on solutions that target the injection mechanism. This problem is solved by backflow suction of the molten resin that is about to leak from the gate on the side using a suction device.Moreover, the leakage prevention means, which is equipped with a movable structure, is configured to operate in the same direction as the direction in which the resin flows out. We are prepared.

しかもゲートを対象とする開閉ピストンの場合
などでは、ゲートという狭少な個処でのゲートの
開閉操作と、高精度とを要求され構成もきわめて
複雑化を余儀なくされ、ことにピストンが絶えず
ランナー部内の溶融樹脂と接触するためゲートの
閉塞に際してピストンに付着した樹脂がゲートに
不用意に当接して無理に押し込まれたり、ストロ
ーク作用が偏心する虞れがあるなどの幾多の不都
合が見出できる。また、サツクバツク装置は、射
出機構に付設されているので、ゲートとの距離が
長い場合は十分に機能せず、しかも必要以上の吸
引作用を伴うと溶融樹脂が逆流しすぎて次の成形
操作に支障を与えるにど幾多の問題があつた。
Moreover, in the case of an opening/closing piston for a gate, the opening/closing operation of the gate in a small space called the gate and high precision are required, making the configuration extremely complicated, and the piston is constantly moving inside the runner. Since the piston comes into contact with the molten resin, there are many disadvantages such as resin adhering to the piston when the gate is closed, such as the resin adhering to the piston being inadvertently abutted against the gate and being forced into it, and the stroke action being eccentric. In addition, since the suction device is attached to the injection mechanism, it will not function properly if the distance from the gate is long, and if the suction action is too strong, too much molten resin will flow back and cannot be used for the next molding operation. There were many problems that hindered this.

また、樹脂レベルのノズル部および金型部に至
る湯道の断面積が、種々段階的に変化している従
来の構成は、前述のとおり殆んど格別な根拠でな
い状態で概して太く造されているのが通常であ
る。
In addition, the conventional structure in which the cross-sectional area of the runner leading to the nozzle part and the mold part of the resin level changes in various stages is generally made thicker without any particular basis as mentioned above. There is usually one.

したがつて、製造当初から断面積を大きく造ら
れた侭で溶融樹脂という粘弾性の高い特異な流体
を、キヤビテイの成形品の肉厚の厚薄、大きさの
大小に関係なく射出操作を行つて成形する従来の
成形方法およびその装置は、明らかに不合理であ
り、根本的に改善すべき問題点を具備している。
Therefore, although the cross-sectional area has been made large from the beginning of manufacture, injection operation of molten resin, a unique fluid with high viscoelasticity, is carried out regardless of the wall thickness or size of the molded cavity. Conventional molding methods and devices are clearly unreasonable and have fundamental problems that should be improved.

また、さらに湯道の各部分には、前述のとお
り、根拠の乏しい断面積の変化が数個処に亘り多
段的に形成されているものがあるので、必要な溶
融樹脂の射出圧力を得るために、非常に高い元圧
を油圧ポンプとカラムなどから与えられなければ
ならないという無駄があつた。
In addition, as mentioned above, each part of the runner is formed in multiple stages in several places with poorly grounded changes in cross-sectional area, so in order to obtain the necessary injection pressure of molten resin, Another disadvantage was that a very high source pressure had to be supplied from a hydraulic pump and column.

つぎに、可塑化バレルに供給される原料の計量
は一般に重量か容量によつて計算されキヤビテイ
の容積に見合つた量であるが、不正確でバラつき
がきわめて大きく、又、可塑化バレルの先端のノ
ズル部と通ずる樹脂貯溜部の樹脂容積によつて計
量されるが矢張り相当量のバラつきが避けられな
い。
Next, the measurement of the raw material supplied to the plasticizing barrel is generally calculated by weight or volume, and the amount is commensurate with the cavity volume, but it is inaccurate and has extremely large variations, and the tip of the plasticizing barrel Although it is measured based on the resin volume of the resin reservoir part communicating with the nozzle part, a considerable amount of variation is unavoidable.

したがつて、精密成形のために高価なコンピユ
ータなどの電子制御により計量の補正を行わなけ
ればならないという問題点がある。しかも計算誤
差などで射出される溶融樹脂の量がキヤビテイの
容積に比し多い場合は、キヤビテイ周辺にバリが
発生するという問題を避けられない。
Therefore, there is a problem in that for precision molding, the measurement must be corrected by electronic control such as an expensive computer. Moreover, if the amount of molten resin injected is larger than the volume of the cavity due to a calculation error, the problem of burrs occurring around the cavity cannot be avoided.

さらにまた、小物の成形品についても、その役
影面積当り何トンといつた大きな型締力を必要と
し、殊に、精密成形加工およびバリ発生防止のた
めに、大きな型締力が欠くことができない成形上
の絶対条件であるという問題点があつた。
Furthermore, small molded products require a large mold clamping force of several tons per effective area, and in particular, large mold clamping forces are often required for precision molding and prevention of burrs. There was a problem that it was an absolute condition for molding that could not be done.

そして、一般的な問題として精密成形加工に
は、射出機構に高価な保圧装置とかサツクバツク
装置のような背圧装置を必要とするいう不都合も
あつた。
A general problem with precision molding is that the injection mechanism requires an expensive back pressure device such as a holding pressure device or a suction device.

〔問題点を解決するための手段〕[Means for solving problems]

この発明は上述の幾多の問題点に着目して成さ
れたもので、基本的には、射出機構を有する可塑
化バレルのノズル部から金型のキヤビテイに通ず
るゲートに至る間の溶融樹脂の流路、すなわち湯
道の途中に、湯道の開閉または開閉と断面積を可
変できる流量制御機構を介装してキヤビシテイの
容積に応じた溶融樹脂の流量を適正に絞ることが
できるようにすると共に前記流量制御機構は、湯
道を開閉調節する弁ロツド部と、この弁ロツド部
を駆動させる駆動部と、前記弁ロツド部の流量を
大小自在に制御する調節部とより成り、かつ前記
弁ロツド部には、弁ロツド部内の樹脂が貯溜する
弁孔に貯溜される溶融樹脂を溶融保持するための
保熱機構と、前記駆動部に熱を伝播しない放熱な
どの熱遮断機構ととを配設して高価なコンピユー
タによる流量補正を簡単な制御で行うようにし、
かつ必要以上に大きな型締力に代えて絶えず成形
品の大きさに適合した型締力を以つてバリ発生を
防止しながら高精密の成形を可能とする新規な合
成樹脂射出成形システムにおける流量制御装置を
提供するにある。
This invention was made by focusing on the numerous problems mentioned above, and basically focuses on the flow of molten resin between the nozzle part of the plasticizing barrel having an injection mechanism and the gate leading to the mold cavity. A flow rate control mechanism that can open and close the runner or open and close the runner and change the cross-sectional area is installed in the middle of the runner, so that the flow rate of the molten resin can be appropriately reduced according to the volume of the cavity. The flow rate control mechanism includes a valve rod section that adjusts the opening and closing of the runner, a drive section that drives the valve rod section, and an adjustment section that freely controls the flow rate of the valve rod section. The valve rod section is equipped with a heat retention mechanism for melting and retaining the molten resin stored in the valve hole where the resin is stored in the valve rod section, and a heat cutoff mechanism such as a heat dissipation mechanism that prevents heat from propagating to the drive section. and perform flow rate correction using an expensive computer with simple control.
Flow control in a new synthetic resin injection molding system that enables high-precision molding while preventing burr generation by constantly applying a mold clamping force that matches the size of the molded product instead of using an unnecessarily large mold clamping force. We are in the process of providing equipment.

さらに、この発明は、前記構成において湯道の
途中の設けられる流量制御機構は、湯道を開閉す
る弁機能と湯道の断面積を可及的に変化調節する
制御機能とを一体的かまたは各別の独立した構成
として組込み、同時に湯道の開閉と湯道を流通す
る溶融樹脂の流量調節とを行わせて、これにより
従来の問題点を一挙に解決した合成樹脂射出成形
システムにおける流量制御装置を提供するにあ
る。
Further, in the present invention, in the above structure, the flow rate control mechanism provided in the middle of the runner has a valve function for opening and closing the runner and a control function for changing and adjusting the cross-sectional area of the runner as much as possible. Flow rate control in a synthetic resin injection molding system that solves the conventional problems at once by incorporating each as an independent structure and simultaneously opening and closing the runners and adjusting the flow rate of the molten resin flowing through the runners. We are in the process of providing equipment.

〔作用〕[Effect]

可塑化バレルで原料で溶融された樹脂は、射出
機構の働きによつて所定量射出される。射出され
た溶融樹脂は可塑化バレルのノズル部からゲート
に至る湯道を通つてキヤビテイ内に必要量注入さ
れる。
The resin melted with the raw material in the plasticizing barrel is injected in a predetermined amount by the action of an injection mechanism. The required amount of the injected molten resin is injected into the cavity through a runner from the nozzle of the plasticizing barrel to the gate.

ところで、湯道にはその途中に湯道の弁機能ま
た弁機能と流量を調節する流量制御機能を有する
流量制御機構を設けてあるので、射出成形操作に
先立ち、射出成形操作の都度、弁機能の働きによ
つて湯道が開かれ、これによつて、溶融樹脂が流
通できるが、射出成形操作が完了すると弁機能の
働きによつて湯道を閉じる。
By the way, the runner is equipped with a flow rate control mechanism that has a valve function of the runner and a flow rate control function that adjusts the valve function and flow rate. The runner is opened by the action of the runner to allow the molten resin to flow therethrough, but the runner is closed by the action of the valve when the injection molding operation is completed.

この射出成形操作に対してつぎの弁機能を閉塞
操作を瞬間的に連動させることにより、不必要な
溶融樹脂の進入を防止でき、しかも余分な圧力の
伝達も完全に遮断される。その上、バリが出るほ
どの樹脂量が始めから時間で正確に制御されて供
給されないのでバリは生じない。又、型締力もキ
ヤビテイの単位投影面積当り何トンというような
大きな圧力も必要なくなる。
By instantaneously interlocking the closing operation of the next valve function with respect to this injection molding operation, unnecessary intrusion of molten resin can be prevented, and transmission of excess pressure can also be completely blocked. Furthermore, burrs do not occur because the amount of resin that causes burrs is not supplied in an accurately controlled manner from the beginning. Also, there is no need for a mold clamping force or a large pressure of several tons per unit projected area of the cavity.

このようにして、この弁機能により金型の開閉
が連動して、キヤビテイ内に充填された溶融樹脂
の固化成形が行われて所望の成形品を得ることが
できる。
In this way, the opening and closing of the mold are interlocked by this valve function, and the molten resin filled in the cavity is solidified and molded to obtain a desired molded product.

なお、湯道の途中に設けた弁機能を有する流量
制御機構による湯道の閉塞によりこの機構からゲ
ートに至る間の湯道内の溶融樹脂は、キヤビテイ
内の溶融樹脂が冷却固化されて成形品として取り
出されるまでの時間、冷却固化することなく溶融
ないし軟化状態を維持して次の射出成形操作まで
待機させられる。
In addition, when the runner is blocked by a flow control mechanism with a valve function installed in the middle of the runner, the molten resin in the runner between this mechanism and the gate is cooled and solidified in the cavity and becomes a molded product. Until it is taken out, it remains in a molten or softened state without being cooled and solidified, and is kept on standby until the next injection molding operation.

また、可塑化バレル側の射出機構の影響は完全
に遮断されるので背圧作用を受けることもない。
Furthermore, since the influence of the injection mechanism on the plasticizing barrel side is completely blocked, there is no back pressure effect.

しかも、前述の待機中の湯道内の樹脂は、その
容積に応じた小さな残留圧が残り、一種の保圧作
用を呈すると共に狭少なゲートは、成形品の冷却
中に半固化、半溶融状態となり、ゲートを仮閉塞
状態にできるので、キヤビテイ内の充填樹脂のヒ
ケがなくしかも成形品取出しの離型時にゲートか
ら溶融樹脂が漏出することもない。
Moreover, the resin in the waiting runner runner mentioned above remains with a small residual pressure depending on its volume, and exhibits a kind of pressure retention effect, and the narrow gate becomes semi-solidified and semi-molten while the molded product is cooling. Since the gate can be temporarily closed, there is no sinkage of the filled resin in the cavity, and there is no leakage of molten resin from the gate when releasing the molded product.

以上が一回の射出成形の全工程であるが引き続
きつぎの射出成形操作は、金型が閉じ、キヤビテ
イが形成されて弁機能を有する流量制御機構が働
き湯道を開くことによつて前記したと同様の操作
を反復して行われる。
The above is the entire process of one injection molding, but the next injection molding operation begins when the mold is closed, a cavity is formed, and the flow control mechanism with a valve function operates to open the runner, as described above. The same operation is repeated.

つぎに、湯道の途中に設けられる流量可変調節
を行う流量制御機構により湯道を通過する流量を
キヤビテイの容積に応じて大小自在に変えること
によつて、常に絶対計算値に近似的に等しいだけ
の計算値が与えられる。
Next, a flow rate control mechanism installed in the middle of the runner that performs variable flow rate adjustment adjusts the flow rate that passes through the runner depending on the volume of the cavity, so that the flow rate is always approximately equal to the absolute calculated value. The calculated value of is given.

しかも、キヤビテイの大きさに応じて、流速か
圧力かのいづれかを重点に置いて湯道の断面積を
可及的に変化できるので、結果として最適断面
積、最適流速、最適圧力を溶融樹脂に選択して与
えることができ精密成形が可能となる。
Moreover, depending on the size of the cavity, the cross-sectional area of the runner can be changed as much as possible, focusing on either flow velocity or pressure, so as a result, the optimum cross-sectional area, optimum flow rate, and optimum pressure can be applied to the molten resin. It can be selectively given, allowing precision molding.

この流量制御機構に前述の弁機能を付加して湯
道の途中に一体的または各別に配設して射出成形
操作を行わせる時は、両機構の働きによつてホツ
トランナー方式の理想的な射出成形が行われて高
精密成形が可能となる。
When the above-mentioned valve function is added to this flow rate control mechanism and the injection molding operation is carried out by installing it integrally or separately in the middle of the runner, the ideal hot runner method is achieved by the functions of both mechanisms. Injection molding is performed to enable high precision molding.

しかも、前記流量制御機構は、弁ロツド部と、
駆動部と調節部とを備えており、かつ弁ロツド部
には保熱機構と並んで駆動部に熱を伝播しない熱
遮断機構とを有しているのでロツド部の弁孔内の
少量の偏倚された樹脂の固化を防ぐと共に駆動部
側への熱の伝達を防いで爾後の射出成形操作を円
滑に行わせることができると共に駆動部および調
節部は熱影響を受けることなく作動、操作できて
最適な流量制御と湯働の開閉を行うことができ
る。
Moreover, the flow rate control mechanism includes a valve rod portion,
It is equipped with a driving part and an adjusting part, and the valve rod part has a heat insulation mechanism as well as a heat isolation mechanism that prevents heat from propagating to the driving part, so that a small amount of deviation in the valve hole of the rod part can be avoided. This prevents the solidification of the resin and the transfer of heat to the driving part, making subsequent injection molding operations smooth, and allowing the driving part and adjustment part to operate and operate without being affected by heat. Optimal flow control and opening/closing of hot water can be performed.

〔実施例〕〔Example〕

以下に、この発明の二実施例を図面と共に説明
する。
Two embodiments of the invention will be described below with reference to the drawings.

各図において、Aは原料樹脂の可塑化バレル
で、原料樹脂を可塑化して、ピストン、トーピー
ドなどによる射出機構を介して溶融した原料樹脂
をノズル部1より吐出させることができるように
なつている。Bは、この可塑化バレルAとノズル
タツチで連結される金型部で、前記ノズル部1と
通ずる分割路形成に必要なマニホールド部2、ラ
ンナー部3、ゲート4およびキヤビテイ5を有
し、ノズル部3からゲート4に至る湯道Pが形成
されている。
In each figure, A is a plasticizing barrel for raw resin, which can plasticize the raw resin and discharge the molten raw resin from the nozzle part 1 via an injection mechanism using a piston, torpedo, etc. . B is a mold part connected to this plasticizing barrel A by a nozzle touch, and has a manifold part 2, a runner part 3, a gate 4, and a cavity 5 necessary for forming a dividing path communicating with the nozzle part 1. A runner P is formed from the gate 3 to the gate 4.

つぎに、第1図ないし第3図に示す実施例につ
いて説明する。
Next, the embodiment shown in FIGS. 1 to 3 will be described.

Fは流量制御機構を示し、ノズル部1に起立さ
せた複数の支持杆6によつて放熱間隔部7を形成
して取付けられている。8はノズル部1に対して
これを横切る方向に配設した弁ロツド部で、この
湯道Pと一致して開口できる樹脂を溶融状態で貯
溜できる弁孔9を設けると共に、この弁孔9に近
接して弁ロツド部8の自由端側に沿つて熱伝導性
の高い銅とか銅−ベリリウムのような材料より成
る保熱機構10を取付けてある。なお、この保熱
機構10は、ノズル部1のバンドヒータ11より
の熱を吸収して弁孔9に貯えた溶融樹脂の冷却固
化を防ぐ働きを呈するものである。しかもこの保
熱機構10よりの熱間隔を等しくするため弁孔9
の孔形状は、第3図に示すように角柱状に形成す
るのが好ましい。12は弁ロツド部8の他側、す
なわち放熱間隔部7に向つて穿たれた中空放熱孔
で、熱電対13を設けて弁ロツド部8の内部温度
を計測できるようにしてある。14は中空放熱部
12の空気抜け孔で前記放熱間隔部7に開口して
ある。15は弁ロツド部8の駆動部を示し、ピス
トン16、シリンダ17によつて構成され、油
圧、空気圧などの流体圧によつて直線方向のスト
ローク運動を行えるようになつている。18は前
記駆動部15において、放熱間隔部7に沿つて配
設した断熱板を示し、前記中空放熱孔12と共に
熱遮断機構19を形成している。20は前記駆動
部15に連結される調節部を示し、ハンドル21
とナツト22とストローク調節ストツパー23と
より成り、前記弁ロツド部8の流量調節ができる
ように構成されている。そして、ハンドル21の
回動によつて上下動する調節螺杆24を前記駆動
部15のロツド25とベアリング26を介してカ
ツプリング27で連結すると共に、ロツド25の
回動を防止する周り止めおよびこの周り止め28
の案内部29を前記シリンダ17上に設けたケー
シング30内に配設して全体を形成する。
F indicates a flow rate control mechanism, which is attached to the nozzle portion 1 with a plurality of upright support rods 6 forming a heat dissipation interval portion 7. Reference numeral 8 designates a valve rod portion disposed in a direction transverse to the nozzle portion 1, and is provided with a valve hole 9 that can be opened in line with this runner P and can store resin in a molten state. Adjacently mounted along the free end of the valve rod portion 8 is a heat retention mechanism 10 made of a highly thermally conductive material such as copper or copper-beryllium. The heat retention mechanism 10 functions to absorb heat from the band heater 11 of the nozzle portion 1 to prevent the molten resin stored in the valve hole 9 from cooling and solidifying. Moreover, in order to equalize the heat distance from this heat retention mechanism 10, the valve hole 9
The hole shape is preferably formed into a prismatic shape as shown in FIG. Reference numeral 12 designates a hollow heat radiation hole bored toward the other side of the valve rod portion 8, that is, toward the heat radiation spacing portion 7, and a thermocouple 13 is provided in the hole so that the internal temperature of the valve rod portion 8 can be measured. Reference numeral 14 denotes an air vent hole of the hollow heat radiating section 12, which opens into the heat radiating interval section 7. Reference numeral 15 denotes a driving section of the valve rod section 8, which is composed of a piston 16 and a cylinder 17, and is capable of linear stroke movement using fluid pressure such as hydraulic pressure or air pressure. Reference numeral 18 denotes a heat insulating plate disposed along the heat radiation interval section 7 in the drive section 15, and forms a heat shielding mechanism 19 together with the hollow heat radiation hole 12. Reference numeral 20 indicates an adjustment section connected to the drive section 15, and a handle 21
, a nut 22 and a stroke adjustment stopper 23, and is configured to be able to adjust the flow rate of the valve rod portion 8. The adjustment screw 24, which moves up and down with the rotation of the handle 21, is connected to the rod 25 of the drive section 15 through a bearing 26 with a coupling 27, and a stopper for preventing rotation of the rod 25 and a circumferential stop around the rod 25 are connected. Stop 28
A guide portion 29 is disposed within a casing 30 provided on the cylinder 17 to form the entire body.

射出成形操作に先立ち、キヤビテイ5の容積の
大きさに応じて予じめ調節部20のハンドル21
を操作して湯動Pと開閉可能の弁ロツド部8の弁
孔9との連通状態の大きさを設定して置く。
Prior to the injection molding operation, the handle 21 of the adjustment part 20 is adjusted in advance according to the volume of the cavity 5.
is operated to set the size of the communication state between the fluid P and the valve hole 9 of the valve rod portion 8 which can be opened and closed.

すなわち、ハンドル21の調節量が大きいと連
通状態は小さくなり、流量は小さく絞り込まれ、
かつハンドル21の調節量が小さいと連通状態は
大きくなり流量を大きく設定できる。
That is, when the amount of adjustment of the handle 21 is large, the communication state becomes small, the flow rate is narrowed down,
In addition, if the adjustment amount of the handle 21 is small, the communication state becomes large and the flow rate can be set large.

つぎに成形操作について説明する。 Next, the molding operation will be explained.

可塑化バレルAにおける原料樹脂の溶融処理が
終わり、成形加工操作準備が完了すると射出機構
の働きによりキヤビテイ5内に溶融樹脂を射出で
きるが、その射出成形操作の開始に先立ち、流量
制御機構Fを駆動部15によつて弁ロツド部8を
稼動させ、該機構Fの弁孔9を湯動Pの口径と必
要な絞り量(設定量)になるように一致させる。
When the melting process of the raw resin in the plasticizing barrel A is completed and the preparation for the molding operation is completed, the molten resin can be injected into the cavity 5 by the function of the injection mechanism, but before the start of the injection molding operation, the flow rate control mechanism F is The valve rod part 8 is operated by the driving part 15, and the valve hole 9 of the mechanism F is made to match the diameter of the water movement P to a necessary throttling amount (set amount).

この機構Fの弁開の信号を受けると直ちに射出
機構が作動し、必要量の融解樹脂は可塑化バレル
Aのノズル部1より湯動Pを通りゲート4よりキ
ヤビテイ5内に射出され射出操作を完了する。
Immediately upon receiving the signal to open the valve of this mechanism F, the injection mechanism operates, and the necessary amount of molten resin is injected from the nozzle part 1 of the plasticizing barrel A through the liquid P and into the cavity 5 from the gate 4, and the injection operation is carried out. Complete.

この完了信号を受けると駆動部15は、再び働
いた弁孔9を反対方向に摺動させ湯動Pの流路は
弁閉の状態となり、射出機構よりの圧力を瞬時に
遮断できる。
Upon receiving this completion signal, the drive section 15 slides the activated valve hole 9 in the opposite direction again, and the flow path of the molten metal P moves into a valve-closed state, so that the pressure from the injection mechanism can be instantly shut off.

この流量制御機構Fの弁閉により湯道P内の残
留圧は小となるのでキヤビテイ5に作用する圧力
も低減し、その結果冷却固化は急速に促されて金
型部Bの離型による製品取出しが能率よく行われ
る。
By closing the valve of the flow rate control mechanism F, the residual pressure in the runner P becomes small, so the pressure acting on the cavity 5 is also reduced, and as a result, cooling and solidification are rapidly promoted, and the product is released by releasing the mold part B. Removal is performed efficiently.

また、離型中におけるゲート部4からの溶融樹
脂の鼻たれ現象も湯道P内の溶融樹脂の残留圧が
小さいので防止できる。
Furthermore, the phenomenon of dripping of the molten resin from the gate portion 4 during demolding can be prevented since the residual pressure of the molten resin in the runner P is small.

離型製品取り出し後、型締操作が行われて次の
射出成形操作を行う準備が整うと、その信号が流
量制御機構Fに伝達され、駆動部15が働いて前
述と同様に弁開状態となり射出成形操作が行われ
る。
After taking out the released product, when the mold clamping operation is performed and preparations for the next injection molding operation are completed, the signal is transmitted to the flow rate control mechanism F, and the drive unit 15 is activated to open the valve in the same manner as described above. An injection molding operation is performed.

以下、同一の操作を反復してランナーレスの射
出成形が行われる。
Thereafter, runnerless injection molding is performed by repeating the same operation.

ところで、射出成形完了の弁開時、弁孔9内に
貯溜されている溶融樹脂は、近接して設けた保熱
機構10によつてバンドヒータ11より熱が常時
作用しているので冷却固化が防がれ、つぎに、弁
開操作が行われる時は弁孔9内の樹脂は溶融状態
を維持しているので湯道内の溶融樹脂と混つて支
障なく成形操作を行うことができる。
By the way, when the valve is opened after injection molding is completed, the molten resin stored in the valve hole 9 is constantly exposed to heat from the band heater 11 by the heat retention mechanism 10 provided nearby, so that the molten resin is not cooled and solidified. Then, when the valve is opened, the resin in the valve hole 9 remains molten, so it mixes with the molten resin in the runner and the molding operation can be performed without any trouble.

さらに、弁ロツド部8には放熱用の中空放熱部
12が設けられ、かつ弁ロツド部8をストローク
作動させる駆動部15との間に断熱板18を有す
る放熱間隙部7を形成しているので、熱が駆動部
へ伝達する不都合が完全に防がれ完全に、かつ効
率よく成形操作を反復継続できる。
Further, the valve rod portion 8 is provided with a hollow heat radiation portion 12 for heat radiation, and a heat radiation gap portion 7 having a heat insulating plate 18 is formed between the valve rod portion 8 and the drive portion 15 for stroking the valve rod portion 8. The inconvenience of heat being transmitted to the drive unit is completely prevented, and the molding operation can be repeated and continued completely and efficiently.

以上に流量制御機構Fをノズル部1に設けた場
合を示したが、他の湯道Pの好みの場所に設置で
きる。
Although the case where the flow rate control mechanism F is provided in the nozzle part 1 has been shown above, it can be installed in any other runner P at any desired location.

つぎに第4図ないし第6図について他の実施例
を示す。なお、前記実施例と同一または相当する
個処には同一符号を施し、その説明の詳細は省
く。
Next, other embodiments will be shown with reference to FIGS. 4 to 6. Note that the same reference numerals are given to the same or corresponding parts as in the above embodiment, and detailed explanation thereof will be omitted.

この実施例は、第一の実施例と対比して、弁ロ
ツド部8の駆動方式が異なるのみで両者実質的に
同一である。
This embodiment is substantially the same as the first embodiment except for the driving method of the valve rod portion 8.

すなわちこの実施例では、弁ロツド部8を回動
させて弁閉、弁開および流量の調節制御を行うよ
うにしたもので、駆動モータ31と一対のベベル
ギヤ32,33を以つて前記操作を行わせるよう
にしたものである。
That is, in this embodiment, the valve rod section 8 is rotated to close the valve, open the valve, and control the flow rate, and the above operations are performed using a drive motor 31 and a pair of bevel gears 32 and 33. It was designed to allow

したがつて弁ロツド8は、前記実施例がストロ
ーク運動を呈して第3図に示すような弁孔9と湯
道Pとの位置関係であるのに対し、第二の実施例
では回動運動を呈して第6図のような弁孔9と湯
道との位置関係が保持されるものである。
Therefore, the valve rod 8 exhibits a stroke motion in the embodiment described above, and the positional relationship between the valve hole 9 and the runner P is as shown in FIG. Thus, the positional relationship between the valve hole 9 and the runner as shown in FIG. 6 is maintained.

そして弁孔9と湯道Pとの一致状態は、モータ
31の回転量によつて規正できるものである。
The state of alignment between the valve hole 9 and the runner P can be regulated by the amount of rotation of the motor 31.

なお、成形操作は、前記第一の実施例と全く同
一である。
Note that the molding operation is exactly the same as in the first embodiment.

そして、この流量制御機構Fもノズル部1に限
らず湯道Pの好みの個処に設置できる。
This flow rate control mechanism F can also be installed not only in the nozzle section 1 but also at any desired location in the runner P.

以上、この発明について二実施例を記述したが
いづれの流量制御機構Fも、射出機構により可塑
化バレルAから射出される溶融樹脂の流量を、キ
ヤビテイ5の容量など種々の金型部Bの大きさな
どに応じて湯道Pの断面積を簡単に加減して、最
適流量に制御できるので、射出圧との関係を適正
に保つことにより高精密成形を行わせることがで
きる。
As mentioned above, two embodiments of this invention have been described, but both flow rate control mechanisms F control the flow rate of the molten resin injected from the plasticizing barrel A by the injection mechanism, depending on the size of the mold section B such as the capacity of the cavity 5. Since the cross-sectional area of the runner P can be easily adjusted depending on the flow rate, etc., and the flow rate can be controlled to the optimum flow rate, high-precision molding can be performed by maintaining an appropriate relationship with the injection pressure.

具体的には、肉厚の大きな成形加工には、湯道
Pの断面積を大きく調節して流速を落とし、圧力
を高めれば良く、殊にレンズのような精密加工品
の成形に効果的であると共に、肉の小さくコツプ
のような成形加工には、湯道Pの断面積を小さく
絞つて流速を増加し、圧力を小さくすれば無理な
く成形品の大きさ、厚さに応じた最適流速、最適
圧力を容易に選択できる。
Specifically, when molding a large wall thickness, it is sufficient to greatly adjust the cross-sectional area of the runner P to reduce the flow velocity and increase the pressure.This method is particularly effective for molding precision processed products such as lenses. At the same time, for molding small pieces of meat such as small pieces, the flow rate can be increased by reducing the cross-sectional area of the runner P, and the pressure can be reduced to easily achieve the optimum flow rate according to the size and thickness of the molded product. , the optimum pressure can be easily selected.

なお、最適圧力は、流量制御機構Fの設定量、
キヤビテイ5の容積などの条件を下に簡易な演算
によつて設定できることは勿論である。
In addition, the optimum pressure is the setting amount of the flow rate control mechanism F,
Of course, it is possible to set the conditions such as the volume of the cavity 5 by simple calculation.

また以上の実施例においては、弁機能を備えた
流量制御機構Fについて説明したが両機能をそれ
ぞれ単独で構成した場合でも実施できることは勿
論である。
Further, in the above embodiments, the flow control mechanism F having a valve function has been described, but it goes without saying that the flow control mechanism F can be implemented even when both functions are configured independently.

ところで湯道Pと弁孔9の形状が円形の場合、
流量制御画がその円形の半径分rだけ偏倚した場
合、すなわち第7図aの状態では流量が39.1%と
なり、また、半径の3/2rだけ偏倚した場合、す
なわち第7図bの状態では流量が15.4%に制御さ
れることが簡単に計算できる。
By the way, if the runner P and the valve hole 9 have a circular shape,
If the flow rate control image deviates by the radius r of the circle, that is, in the state shown in Figure 7 a, the flow rate will be 39.1%, and if it deviates by 3/2 of the radius, that is, in the state shown in Figure 7 b, the flow rate will be 39.1%. can be easily calculated to be controlled to 15.4%.

なお上述の実施例のように弁機能とする流量調
節機能を備えたものであると、射出成形操作に関
連して弁開閉操作と流量制御操作との両作用が相
乗的に働くので、高速成形と、適切な型締力によ
る精密成形が行われ、しかもゲート5での鼻たれ
現象や、バリの発生が無くなるので、高価なゲー
ト5よりの樹脂漏洩防止装置や、ゲート5部の樹
脂による流路を開閉させるための機構とかコント
ローラなど不要となり構成を簡単にできて安価に
提供できる。
In addition, if the device is equipped with a flow rate adjustment function as a valve function as in the above embodiment, both the valve opening/closing operation and the flow rate control operation work synergistically in relation to the injection molding operation, so high-speed molding is possible. As a result, precision molding is performed using an appropriate mold clamping force, and there is no dripping phenomenon or burr generation at the gate 5. There is no need for a mechanism or controller for opening and closing the passage, and the configuration can be simplified and provided at low cost.

以上、この発明の実施例を列記したが、金型部
Bの構成において、ヒータ、センサその他金型と
して必要な他の構成を具備していることは勿論で
ある。
Although the embodiments of the present invention have been listed above, it goes without saying that the configuration of the mold section B includes a heater, a sensor, and other components necessary for the mold.

また、弁機能の働きや流量調節機能の作動制御
をも、射出機構の作動条件と関連させて働かせる
ようにすることも勿論である。
Furthermore, it goes without saying that the operation of the valve function and the flow control function can be controlled in conjunction with the operating conditions of the injection mechanism.

〔発明の効果〕〔Effect of the invention〕

この発明によれば、溶融樹脂が流通する湯道の
途中に弁機能または、弁機能と流量調節機能とを
有する流量制御機構を配設してあるので、弁機能
を働かせて開弁し、適正な流量制御の下にキヤビ
テイ内への溶融樹脂機能の射出操作が完了すると
瞬時に弁機能の働きで閉弁するので、キイビテイ
内の充填樹脂への射出圧力が完全に遮断され、流
量制御機構とゲート間の湯道に滞留する溶融樹脂
のみの残留圧しか作用せず、速やかな冷却固化が
進行できて固化より離型後、成形品の取出しに至
る時間を著しく短縮できると共にゲートよりの溶
融樹脂の鼻たれ現象も防がれて、直ちにつぎの射
出成形作用を行うことができる。
According to this invention, a flow control mechanism having a valve function or a valve function and a flow rate adjustment function is disposed in the middle of the runner through which the molten resin flows, so that the valve function is activated to open the valve properly. When the injection operation of the molten resin function into the cavity is completed under proper flow rate control, the valve function instantly closes the valve, so the injection pressure to the filled resin in the cavity is completely cut off, and the flow rate control mechanism and Only the residual pressure of the molten resin remaining in the runner between the gates acts, allowing rapid cooling and solidification to occur, significantly shortening the time from solidification to removal of the molded product, and reducing the amount of molten resin from the gate. The nasal drip phenomenon is also prevented, and the next injection molding operation can be carried out immediately.

したがつて一回の成形操作の所要時間が全体と
して短縮できるので成形サイクルを格段と向上で
きると共に高精密成形が可能となる。
Therefore, the time required for one molding operation can be shortened as a whole, so that the molding cycle can be significantly improved and high-precision molding can be performed.

しかも、ゲート部から溶融樹脂の漏出がなくな
るので、従来、種々の形で必要とした溶融樹脂漏
出防止手段を不必要とすることができるし、背圧
装置も取除いて実施できる。
Moreover, since there is no leakage of molten resin from the gate portion, it is possible to eliminate the need for molten resin leakage prevention means that have conventionally been required in various forms, and the back pressure device can also be removed.

また、この発明によれば、湯道に対してその場
道の流路を大小自在に変化させて流量を制御でき
る流量制御機構を設けてあるので、絶えず、適正
な流量がキヤビテイに与えられ、必要以上の大き
な型締力を必要とせず射出圧力および流量可変調
節機構の設定した流速によつてバリなどの発生を
生じないできわめて高精度で無理のない成形が行
われる。
Further, according to the present invention, since a flow rate control mechanism is provided that can control the flow rate by freely changing the size of the flow path in the runner, an appropriate flow rate is constantly given to the cavity. Without the need for an unnecessarily large mold clamping force, the injection pressure and the flow rate set by the variable flow rate adjustment mechanism allow for extremely high precision and reasonable molding without the occurrence of burrs.

殊に、可塑化バレルに設けられる原料の計量の
バラつきをこの簡単な流量可変調節機構によつて
容易にしかも正確に制御できる。
In particular, variations in the metering of raw materials provided in the plasticizing barrel can be easily and precisely controlled by this simple variable flow rate adjustment mechanism.

さらにまた、この発明によれば、湯道に、必要
以上の断面積変化を伴う段差を設けることなく、
簡単でストレートな構成で差支えないと共に、流
量制御機構は、弁ロツド部と駆動部および調節部
で構成され、弁ロツド部の弁孔への保熱機能と、
駆動部への熱の遮断機構という構成によつて反復
繰返して行われる射出成形操作に弁孔内の溶融樹
脂が冷却固化するなど円滑に作用でき、しかも駆
動部へは熱の伝達が完全に遮断できるという効果
を有するものである。
Furthermore, according to the present invention, without providing a step in the runner that causes an unnecessarily large change in cross-sectional area,
A simple and straight configuration is sufficient, and the flow rate control mechanism is composed of a valve rod part, a driving part, and an adjustment part, and has a heat retention function for the valve hole of the valve rod part,
The structure of the mechanism that cuts off heat to the drive section allows the molten resin in the valve hole to cool and solidify during repeated injection molding operations, allowing it to function smoothly and completely blocking heat transfer to the drive section. This has the effect of making it possible.

つぎに、実施例に開示した流量制御機構が湯道
に対し直角であるが、斜方向に形成しても何等差
支えないと共に使用する原料も、合成樹脂の単独
またはガラス繊維などの複合材も用いることがで
きる。
Next, although the flow rate control mechanism disclosed in the embodiment is perpendicular to the runner, there is no problem with forming it in an oblique direction, and the raw material used may be a synthetic resin alone or a composite material such as glass fiber. be able to.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第3図は、この発明に係る合成樹
脂射出成形システムにおける流両制御装置の一実
施例を示すもので、第1図は要部を一部切欠に断
面で示す全体の説明図、第2図は要部の正面図、
第3図a,b,cは湯道と弁孔との三つの相対位
置関係を示す説明図、第4図ないし第6図は他の
実施例を示すもので、第4図は要部を一部切欠し
て断面で示す側面図、第5図は正面図、第6図
a,b,cは、湯道と弁孔との三つの相対位置関
係を示す断面説明図、第7図a,bは湯道と弁孔
とが一致して制御状態にある二例を示す説明図で
ある。 A……可塑化バレル、B……金型部、1……ノ
ズル部、3……ランナー部、4……ゲート、5…
…キヤビテイ、P……湯道、F……流量制御機
構、8……弁ロツド部、9……弁孔、10……保
熱機構、15……駆動部。
1 to 3 show an embodiment of a flow control device in a synthetic resin injection molding system according to the present invention, and FIG. 1 is an overall explanatory diagram showing a main part partially cut away in cross section. , Figure 2 is a front view of the main parts,
Figures 3a, b, and c are explanatory diagrams showing three relative positional relationships between the runner and the valve hole, Figures 4 to 6 show other embodiments, and Figure 4 shows the main parts. Figure 5 is a front view; Figures 6a, b, and c are cross-sectional explanatory diagrams showing the three relative positional relationships between the runner and the valve hole; Figure 7a , b are explanatory diagrams showing two examples in which the runner and the valve hole coincide and are in a controlled state. A... Plasticizing barrel, B... Mold part, 1... Nozzle part, 3... Runner part, 4... Gate, 5...
... Cavity, P... Runway, F... Flow rate control mechanism, 8... Valve rod section, 9... Valve hole, 10... Heat retention mechanism, 15... Drive section.

Claims (1)

【特許請求の範囲】 1 射出成形操作に応じて、溶融樹脂を可塑化バ
レルのノズル部より金型部のゲートに至る湯道を
経てキヤビテイ内に射出すると共に前記湯道の開
閉または開閉と流量の調節をする流量制御機構を
設けてキヤビテイの大きさに適した適正な流量と
射出圧の下に成形操作を行うようにした合成樹脂
射出成形システムであつて、前記流量制御機構
は、湯道を開閉調節する弁ロツド部と、この弁ロ
ツド部を駆動させる駆動部と、前記弁ロツド部の
流量を大小制御する調節部とより成り、かつ、前
記弁ロツド部には弁ロツド部内の弁孔内に貯溜さ
れる溶融樹脂を溶融保持するための保熱機構と、
前記駆動部に熱を伝播しない放熱などの熱遮断機
構とを配設して成ることを特徴とする流量制御装
置。 2 保熱機構は、熱伝導性の良い材料で形成して
弁ロツド部内に埋設すると共に弁ロツド部内の弁
孔に対して熱間隔を等しく形成して成ることを特
徴とする特許請求の範囲第1項記載の合成樹脂射
出成形システムにおける流量制御装置。 3 熱遮断機構は、弁ロツド部に縦通した中空放
熱孔と、駆動部との境界部に設けた断熱板を有す
る放熱間隔部とより成ることを特徴とする特許請
求の範囲第1項記載の合成樹脂射出成形システム
における流量制御装置。
[Scope of Claims] 1. According to the injection molding operation, the molten resin is injected into the cavity from the nozzle part of the plasticizing barrel through the runner leading to the gate of the mold part, and the opening and closing of the runner or opening and closing of the runner and the flow rate are controlled. A synthetic resin injection molding system is provided with a flow rate control mechanism to adjust the flow rate and injection pressure to perform the molding operation at an appropriate flow rate and injection pressure suitable for the size of the cavity. It consists of a valve rod section that adjusts opening and closing, a drive section that drives this valve rod section, and an adjustment section that controls the flow rate of the valve rod section, and the valve rod section has a valve hole in the valve rod section. a heat retention mechanism for melting and retaining the molten resin stored therein;
A flow control device characterized in that the drive section is provided with a heat cutoff mechanism such as heat radiation that does not propagate heat. 2. The heat retaining mechanism is made of a material with good thermal conductivity and is embedded in the valve rod part, and the heat retention mechanism is formed with equal thermal spacing with respect to the valve hole in the valve rod part. A flow rate control device in the synthetic resin injection molding system according to item 1. 3. The heat cutoff mechanism is characterized by comprising a hollow heat radiation hole extending vertically through the valve rod portion and a heat radiation interval portion having a heat insulating plate provided at the boundary with the drive portion. Flow control device for synthetic resin injection molding systems.
JP30548086A 1986-12-23 1986-12-23 Flow rate controlling device in synthetic resin injection molding Granted JPS63158219A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30548086A JPS63158219A (en) 1986-12-23 1986-12-23 Flow rate controlling device in synthetic resin injection molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30548086A JPS63158219A (en) 1986-12-23 1986-12-23 Flow rate controlling device in synthetic resin injection molding

Publications (2)

Publication Number Publication Date
JPS63158219A JPS63158219A (en) 1988-07-01
JPH0450171B2 true JPH0450171B2 (en) 1992-08-13

Family

ID=17945664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30548086A Granted JPS63158219A (en) 1986-12-23 1986-12-23 Flow rate controlling device in synthetic resin injection molding

Country Status (1)

Country Link
JP (1) JPS63158219A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI721742B (en) * 2019-12-31 2021-03-11 陳銘棟 Mold flow adjustment fixture

Also Published As

Publication number Publication date
JPS63158219A (en) 1988-07-01

Similar Documents

Publication Publication Date Title
KR100209031B1 (en) Preplasticizing injection apparatus
JPS6159219B2 (en)
US5117894A (en) Die casting method and die casting machine
US20160288389A1 (en) Side gating hot runner apparatus with continuous valve pin movement
KR20080020552A (en) Injection molding machine, mold, and injection molding method
EP0489911A1 (en) Improved pressure-holding chamber type injection molding process and apparatus.
JPH0550972B2 (en)
CN110315694A (en) Injection (mo(u)lding) machine
JP4871956B2 (en) Molding method and molding apparatus
JPH0450171B2 (en)
US6403010B1 (en) Method for injecting plastic material
JPS63130321A (en) Injection molding method for synthetic resin and its equipment
JPS5917943B2 (en) Mold gate control method
JP2002086515A (en) Method and mold for injection-molding thermoplastic resin
JPH07214611A (en) Control method for suck-back action in injection molding machine
JPH02116529A (en) Injection molding machine
JPH01241418A (en) Injection device of injection molding machine
JPS63296912A (en) Injection molding device
KR100462700B1 (en) Injection molding apparatus and injection molding method
US20220288829A1 (en) Injection molding device
JP2000117776A (en) Injection nozzle
JPS5939530A (en) Injection molding device
JPH0460809B2 (en)
JPS60212316A (en) Screw type injector
JPH11320625A (en) Mold with sprue bush structure and molding method