JPH0450108B2 - - Google Patents

Info

Publication number
JPH0450108B2
JPH0450108B2 JP62281889A JP28188987A JPH0450108B2 JP H0450108 B2 JPH0450108 B2 JP H0450108B2 JP 62281889 A JP62281889 A JP 62281889A JP 28188987 A JP28188987 A JP 28188987A JP H0450108 B2 JPH0450108 B2 JP H0450108B2
Authority
JP
Japan
Prior art keywords
creep
content
less
welding
filler metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62281889A
Other languages
Japanese (ja)
Other versions
JPH01122694A (en
Inventor
Yoshimi Onitsuka
Tamao Takatsu
Teiichiro Saito
Tsuneo Nakanishi
Akyoshi Kikuchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP28188987A priority Critical patent/JPH01122694A/en
Publication of JPH01122694A publication Critical patent/JPH01122694A/en
Publication of JPH0450108B2 publication Critical patent/JPH0450108B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3033Ni as the principal constituent
    • B23K35/304Ni as the principal constituent with Cr as the next major constituent

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Arc Welding In General (AREA)
  • Nonmetallic Welding Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は高温で作動する原子力発電プラントな
どに用いられるNi基耐熱合金の溶接用溶加材に
関する。 〔従来の技術〕 例えばガスタービン、化学プラントおよび高温
ガス冷却型原子力発電プラントなど600〜1000℃
の高温で稼働する各種装置の構成部材には耐熱合
金が用いられている。耐熱合金はFe基、Ni基お
よびCo基合金などが知られており、上記の装置
などは主としてNiを基とする耐熱合金が使われ
ることが多く、例えば高温ガス冷却型原子力発電
プラントに用いられるNi基耐熱合金に商品名ハ
ステロイXがある。その代表的な合金組成を第1
表に示す。
[Industrial Application Field] The present invention relates to a filler metal for welding a Ni-based heat-resistant alloy used in nuclear power plants that operate at high temperatures. [Conventional technology] For example, gas turbines, chemical plants, high-temperature gas-cooled nuclear power plants, etc. 600-1000℃
Heat-resistant alloys are used in the components of various devices that operate at high temperatures. Heat-resistant alloys are known to include Fe-based, Ni-based, and Co-based alloys, and heat-resistant alloys based on Ni are often used in the above-mentioned devices, such as those used in high-temperature gas-cooled nuclear power plants. The Ni-based heat-resistant alloy has the trade name Hastelloy X. The first example is the typical alloy composition.
Shown in the table.

【表】 このハステロイX合金を用いて装置を構成する
際には溶接を伴うのが普通である。溶接方法はタ
ングステン電極イナートガスアーク溶接法(略称
TIG)や合金電極イナートガスアーク溶接法(略
称MIG)が用いられ、溶接時に溶融しながら溶
接部に合金を添加し、溶接後の強度を保持するた
めの溶加材を必要とする。この溶加材に関して一
般にハステロイX合金の溶接に対しては
Amercan Welding Society(AWS)で定められ
た規格A5・14E R NiCrMo−2が広く使われ
ており、その化学成分を第2表に示す。
[Table] When constructing a device using this Hastelloy X alloy, welding is usually involved. The welding method is tungsten electrode inert gas arc welding (abbreviated as
TIG) and alloy electrode inert gas arc welding (MIG) are used, and alloys are added to the welded part while melting during welding, and filler metal is required to maintain strength after welding. Regarding this filler metal, generally for welding Hastelloy X alloy,
Standard A5/14E R NiCrMo-2 defined by the American Welding Society (AWS) is widely used, and its chemical composition is shown in Table 2.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら前述のような600〜1000℃の高温
で作動する機器は長時間の使用に際して、小さな
外力による構成部材の変形が刻々に進行して遂に
は破断に至るという周知のクリープ現象に対して
溶接部の満足すべき強度が得られないという問題
がある。すなわち、前に述べたハステロイX合金
とその溶加材を用いて、TIGまたはMIG溶接し
た溶接金属や溶接継手の高温クリープ強度は母材
に比べて弱く、しかもクリープ破断の延性が著し
く低いため、高温強度の信頼性が十分でない。例
えば900℃、応力4.5Kg/mm2におけるクリープ試験
を行なつたとき、クリープ破断時間は100〜
300hr、破断伸びは1〜7%程度という低い値し
か得られない。とくに管の継手の場合は溶接金属
が周知の母材のクリープ変形に引張られて、極め
て短時間に限界破断伸びに到達してしまうため、
クリープ破断時間は継手のないものに比べて1/2
〜1/10も短かくなることがある。 この原因について本発明者らは検討した結果前
述のAWS規格に定められていない溶加材の不可
避不純物の挙動に基づくものであることが判明し
た。このことは溶接金属の顕微鏡組織の観察から
も明らかであり、溶接金属は耐熱合金が局部的に
一旦溶解して凝固しただけの組織を呈して凝固方
向に沿つて成長した柱状晶からなつており、その
結晶粒界に不純物が濃縮して偏在し、ここが高温
でとくに脆弱化するためにクリープ強度のみなら
ず、クリープ破断時の伸びも著しく小さくなり溶
接継手の信頼性を低下させるのである。したがつ
て溶接部の高温クリープ強度を向上させるために
は溶加材に混入する不純物含有量を抑制する必要
がある。 本発明は上述の点に鑑みてなされたものであ
り、その目的はハステロイXなどNi基耐熱合金
の溶接に用いられ、高温クリープ強度およびクリ
ープ破断延性にすぐれた溶接金属や溶接継手を得
ることができる溶加材を提供することにある。 〔問題点を解決するための手段〕 本発明は C:0.05〜0.15% Si:1.0%以下 Mn:1.0%以下 Cr:20.5〜23.0% Co:0.1%以下 Fe:17.0〜20.0% Mo:8.0〜10.0% W:0.2〜1.0% Cu:0.5%以下 B:0.003〜0.01% を含有し、さらに不可避不純物として Al:0.1%以下 Ti:0.005〜0.05% Mg:0.005〜0.05% P:0.04%以下 S:0.03%以下 O:0.01%以下 N:0.01%以下 を含み、残部Niからなる組成を有するNi基耐熱
合金の溶接用溶加材である。 〔作用〕 本発明の溶接用溶加材は上記のごとく、AWS
規格材料を基本とし、これに高温クリープ強度を
増す元素の添加およびとくに溶製時に残存または
混入する不可避不純物の含有量を少なくしたため
に、溶接金属の結晶粒界に凝集して高温状態で結
晶間の結合力を弱めるように作用するこれら不純
物の挙動が抑制され、溶接金属および溶接継手の
高温クリープ強度が向上し、耐熱合金本来の特性
を実現することが可能となる。 〔実施例〕 以下本発明を実施例に基づき説明する。 本発明者らは溶加材合金の組成を決定するに当
たり、はじめに前述のAWS規格の合金成分を見
直したが、主成分と見られる元素のうち、C、
Si、Cr、Fe、Mo、WおよびCuについてはなん
ら問題がなかつたのでそのまま変更することなく
その説明を省略するがただ一例としてMnに関す
る検討結果を後述する。さらに主成分元素のCo
についてのみ含有量を変え、また高温クリープ強
度を増す元素としてBを追加した。とくに重要な
ことはAl、Ti、Mg、OなどAWS規格に定めら
れていない不可避不純物の適正範囲を決定するこ
とにあるが、同時にP、Sについても検討を加え
た。したがつて本実施例では溶接金属に対する溶
加材構成元素が高温クリープ強度に与える影響の
観点から、重要と県做される元素およびAWS規
格とは異なる元素を主体として行なつた実験結果
を述べる。 この実験は上記の主成分を含むNi基合金に対
称となる各元素の添加範囲を変えてそれぞれ20ロ
ツトを溶製して溶加材を作製し、これを用いてハ
ステロイX合金のTIG溶接を行ない、得られた試
料の溶接割れ試験、溶接継手曲げ試験およびクリ
ープ試験を行なつた。ここでは溶加材に含まれる
各種元素の含有量(重量%)とクリープ破断時間
との関係をいずれも温度900℃、応力4.5Kg/mm2
条件で求めた線図として第1図〜第10図に示し
た。なおこれら各図には元素含有量Xとクリープ
破断時間YがY=AX+Bなる関係をもつとして
求めた相関係数を付記してある。 以下各元素の適切な含有量について第1図〜第
10図の順にしたがつて述べる。第1図はBに関
する線図であり、Bは高温クリープ強度を高める
元素として有効であり、本発明者らの別途発明に
なる特開昭59−66994号公報では範囲を0.003〜
0.015%と開示しているが、この場合も0.003%以
上含むことによりクリープ破断時間は母材レベル
の500h以上に達し、一方その後の研究によつて
溶接継手の曲げ試験において、0.05Zr+0.39B+
0.11P+0.004S≦33ppmという関係を満足すれば
溶接金属の割れは生じないことが確かめられた。
この式でZr、P、Sを全く含有しない場合には
Bは0.008%まで許容できることになり、また溶
接時に酸化によつて約20%失われることも考慮し
て0.01%とするのがよい。すなわちBの有効範囲
は0.003〜0.01%である。 第2図はCoに関する線図であり、第2図では
Co含有量が多くなる程クリープ破断時間は短か
いが、相関係数が−0.0816しかないので、ほとん
ど影響を及ぼすことがないと言える。しかし前に
述べた高温ガス冷却型原子炉用としてこの合金を
使用するときは、半減期の長いCoを含んでいる
と、放射化されたCoが原子炉系統内を酸化物な
どとともに循環し、定期検査時などに作業環境の
放射能レベルを高めるのでCoは無い方がよい。
この点を考慮してAWS規格はCoの範囲を0.5〜
2.5%としているが本発明では0.1%以下とした。
0.1%以下としたのはCoは元来Ni原材料に2〜3
%程度は含まれているものであり、精錬によつて
Ni純度をあげても工業的に得られる低CoNi原料
のCo濃度は0.1%程度となるからである。また溶
加材の原料としては比較的純度の高いNiを用い
ても経済的に成り立つということもある。なお原
子炉以外の高温機器に対してはCo含有量は0.1%
以下でもそれ以上でもよい。 第3図はAlに関する線図である。通常ハステ
ロイX合金を溶製するとき酸化性の高いAlを脱
酸剤として用いるために、合金中にAlが残存す
るのを避けることができず、0.5%前後含有され
るのが普通である。しかし第3図のようにクリー
プ特性にとつてAlの量は少ない程好ましい。と
くに酸化ポテンシアルの低いHe冷却の高温ガス
炉ではAlによつて選択的な内部酸化を受けると
いう点からもAlの少ない方がよい。Alは脱酸剤
として必要な元素であるが合金中の残存量をでき
る限り少なくするよう、第3図の関係からクリー
プ破断時間が母材レベルの500h以上となる0.1%
を最大許容値とする。 第4図はTiに関する線図である。Tiもその酸
化力を利用して脱酸剤として用いられるので合金
中に残存するのは避けられない元素であるが、こ
れはAlと異なり、第4図のように含有量の増加
とともにクリープ特性を向上させる傾向を有する
ので上限の設定はクリープ特性だけからはとくに
決める必要はない。しかしTi含有量が多くなる
とAlと同様内部酸化を受けるという問題がある
のでその点を考慮して、クリープ破断時間が
500hを越え、内部酸化が顕著に現われない両者
の兼ね合いによつて0.005%〜0.05%の範囲とす
る。またTiをこの程度含むことによつて溶接割
れの低減と溶接継手の曲げ延性向上に寄与すると
いう効果もある。 第5図はMnに関する線図である。Mnは主成
分の一つと見られる元素の一つで含有量はAWS
規格のままでよいが、影響力の大きい元素である
から、一例として他の元素と同様に含有量とクリ
ープ破断時間の関係を主成分の検討の過程で得ら
れた結果として図示したものである。第5図のご
とく含有量の多い方がクリープ特性が低下し、ク
リープ破断の絞りも小さく、相関係性が大きい。
Mnは耐酸化性に寄与する元素であるが多過ぎる
とクリープ特性が悪くなるので、クリープ特性を
重視するときは、0.8%以下にすることが望まし
い。 第6図はMgに関する線図である。Mgは脱酸
剤および脱硫剤として加えることにより微量の
S、OやNを低減させるのに極めて有効な元素で
あつて溶加材の溶製には不可欠であるが、第6図
に示すように含有量が多くなるとクリープ特性は
低下する傾向にある。しかし、相関係数が−
0.1477と小さいのでほとんど影響はないとみてよ
い。またMgが多い方が溶接割れが少なく溶接継
手の曲げ延性は良好になるが、含有量が0.05%を
越えると溶接時の湯流れが悪くなるということも
あるのでMgについては最大許容量を0.05%とし、
最低許容量はMgによる脱酸、脱硫が十分に行な
われたことを示す量として0.005%とする。 第7図はP、第8図はSに関する線図である。
P、Sは通常金属材料では特別な効果を期待する
場合のほかは、むしろ有害な元素として材料規格
に適正な範囲を規定するものであり、AWS規格
にも定められているが、本発明ではとくに不可避
不純物の影響を重視したことから、P、Sについ
て第7図、第8図を求めたものである。その結果
Pは第7図のように含有量の増加とともにクリー
プ特性は向上し、Sはこれとは逆に含有量が増す
とクリープ特性は低下する傾向を示す。しかし、
Pの含有によつてクリープ強度が高くなる反面溶
接継手の曲げ延性が劣化する点を考慮してPの最
大許容量はAWS規格と同じ0.04%とし、Sの方
も最大許容量をAWS規格と同じ0.03%とするが、
その範囲内でなるべく少なくする方がクリープ強
度に対しては有利となる。 第9図はOに関する線図である。Oは溶加材の
溶製中に大気から侵入する不可避不純物であり、
溶接金属の結晶粒界に酸化物の形となつて集ま
り、結晶粒界の高温強度を弱くするので当然のこ
とながら第9図のようにその含有量が多い程クリ
ープ特性は低下する。したがつてAWS規格には
定められていないOの最大許容量を決めることは
重要であり、第9図からクリープ破断時間500h
以上を得るためには0.01%とする。 第10図はNに関する線図である。NもOと同
様の意味をもつ不可避不純物であり、含有量の限
界値を定めることは重要である。ただNについて
はクリープ強度を高めるためには、例えばステン
レス鋼などでは固溶強化元素としてむしろ積極的
に添加することがあるという従来知られた技術も
あるが、本発明の溶加材においては第10図に示
したようにN含有量の増加とともにクリープ特性
は低下する傾向にあり、かなり高い相関係数をも
つて少ない方がよいということがわかつた。この
ことはNもOの場合と同様溶接金属の結晶粒界に
偏析して高温強度を低下させるように挙動するこ
とを意味する。したがつてNの含有量も少ない程
よいが第10図の関係からクリープ破断時間
500h以上とするためのNの最大許容量は0.01%と
すべきである。 以上本発明の溶加材の組成範囲を決めるための
実験結果に基づいてとくにAWS規格に定められ
ていない原料は溶製中の周囲雰囲気から混入して
くる不可避不純物、なかでも結晶粒界に集まつて
結晶間の結合力を弱め、高温クリープ強度を低下
させるO、Nの適正な許容量を決定したことが本
発明溶加材について最も大きな特徴と言うことが
できる。 〔発明の効果〕 ハステロイX合金などNi基耐熱合金の溶接に
用いる溶加材は従来AWS規格のものを用いてい
たが、AWS規格材は短時間の引張強度は良好で
あつても溶接部の高温強度まで考慮されたもので
はないから、例えば高温ガス冷却型原子炉など構
造物の構成部材の溶接に適用したとき、高温クリ
ープ特性が十分でなく、これら装置を高温長時間
使用するには信頼性に欠けるものであつたのに対
し、本発明の溶加材は実施例で述べたごとく、
AWS規格材の組成を基本としているが、とくに
原材料や溶製時の副材料から混入してくる不可避
不純物の残存量を検討し、これらの中でもAl、
Ti、O、Nを重視してその最大許容量を決定す
るなど、AWS規格には定められていない各種元
素の適正範囲を明らかにし、また構成元素の一部
改良や追加することにより、AWS規格の溶加材
を用いたとき溶接金属や溶接継手の900℃、4.5
Kg/mm2におけるクリープ破断時間が僅か100〜
300h程度であつたのに比べて本発明の溶加材に
よれば同一条件で少なくとも500h以上のクリー
プ破断時間が得られ、しかも破断延製も大きく溶
接性を非常に良好であり、その結果Ni基耐熱合
金を使用する高温駆動装置の溶接に対して大きな
信頼性を付与することができたものである。
However, when equipment that operates at high temperatures of 600 to 1,000 degrees Celsius (as mentioned above) is used for long periods of time, the welds are susceptible to the well-known creep phenomenon in which the deformation of component parts due to small external forces progresses moment by moment, eventually leading to breakage. There is a problem that satisfactory strength cannot be obtained. In other words, the high-temperature creep strength of weld metals and welded joints welded by TIG or MIG using the previously mentioned Hastelloy High temperature strength is not reliable enough. For example, when performing a creep test at 900℃ and a stress of 4.5Kg/ mm2 , the creep rupture time is 100~
After 300 hours, only a low elongation at break of about 1 to 7% can be obtained. Particularly in the case of pipe joints, the weld metal is stretched by the well-known creep deformation of the base material and reaches its critical elongation at break in an extremely short period of time.
Creep rupture time is 1/2 compared to one without joints
It can be as short as ~1/10. The inventors investigated the cause of this problem and found that it was due to the behavior of unavoidable impurities in the filler metal, which are not specified in the above-mentioned AWS standards. This is clear from observation of the microscopic structure of weld metal, which shows that the weld metal has a structure in which a heat-resistant alloy has been locally melted and solidified, and is made up of columnar crystals that grow along the solidification direction. Impurities are concentrated and unevenly distributed in the grain boundaries, which become especially brittle at high temperatures, resulting in a significant decrease in not only creep strength but also elongation at creep rupture, reducing the reliability of welded joints. Therefore, in order to improve the high temperature creep strength of the weld zone, it is necessary to suppress the content of impurities mixed in the filler metal. The present invention has been made in view of the above points, and its purpose is to obtain weld metals and weld joints that are used for welding Ni-based heat-resistant alloys such as Hastelloy X and have excellent high-temperature creep strength and creep rupture ductility. Our goal is to provide filler metals that can be used. [Means for solving the problems] The present invention has C: 0.05 to 0.15% Si: 1.0% or less Mn: 1.0% or less Cr: 20.5 to 23.0% Co: 0.1% or less Fe: 17.0 to 20.0% Mo: 8.0 to 10.0% W: 0.2 to 1.0% Cu: 0.5% or less B: 0.003 to 0.01%, and further contains unavoidable impurities Al: 0.1% or less Ti: 0.005 to 0.05% Mg: 0.005 to 0.05% P: 0.04% or less S This is a filler metal for welding a Ni-based heat-resistant alloy having a composition of: 0.03% or less O: 0.01% or less N: 0.01% or less, and the balance is Ni. [Function] As mentioned above, the welding filler metal of the present invention is
Based on standard materials, we added elements that increase high-temperature creep strength and reduced the content of unavoidable impurities that remain or are mixed in during melting, which aggregates at the grain boundaries of the weld metal and causes intercrystalline formation at high temperatures. The behavior of these impurities, which act to weaken the bonding strength of the weld metal, is suppressed, and the high-temperature creep strength of the weld metal and weld joint is improved, making it possible to realize the original properties of a heat-resistant alloy. [Examples] The present invention will be described below based on Examples. In determining the composition of the filler metal alloy, the inventors first reviewed the alloy components in the AWS standard mentioned above, and found that among the elements considered to be the main components, C,
Since there were no problems with Si, Cr, Fe, Mo, W, and Cu, their explanations will be omitted without any changes; however, as an example, the study results regarding Mn will be described later. In addition, the main element Co
Only the content was changed, and B was added as an element that increases high-temperature creep strength. What is particularly important is determining the appropriate range of unavoidable impurities such as Al, Ti, Mg, and O that are not specified in AWS standards, but we also considered P and S at the same time. Therefore, in this example, from the perspective of the influence of filler metal constituent elements on weld metal on high-temperature creep strength, we will describe the results of experiments conducted mainly on elements that are considered important and elements that differ from AWS standards. . In this experiment, filler metals were produced by melting 20 lots of Ni-based alloys containing the above main components with different addition ranges of each element, and using these fillers, TIG welding of Hastelloy X alloy was performed. The obtained samples were subjected to a weld cracking test, a weld joint bending test, and a creep test. Here, the relationship between the content (wt%) of various elements contained in the filler metal and the creep rupture time is shown in Figures 1 to 2 as diagrams obtained under the conditions of a temperature of 900℃ and a stress of 4.5Kg/mm2. It is shown in Figure 10. In each of these figures, a correlation coefficient determined on the assumption that the element content X and the creep rupture time Y have the relationship Y=AX+B is appended. The appropriate content of each element will be described below in the order of FIGS. 1 to 10. FIG. 1 is a diagram related to B, and B is effective as an element that increases high-temperature creep strength, and in JP-A-59-66994, which is a separate invention by the present inventors, the range is from 0.003 to
Although it is disclosed as 0.015%, in this case as well, by containing 0.003% or more, the creep rupture time reaches the base metal level of 500 hours or more.On the other hand, subsequent research has shown that 0.05Zr + 0.39B +
It was confirmed that if the relationship 0.11P+0.004S≦33ppm was satisfied, no cracking of the weld metal would occur.
In this formula, if Zr, P, and S are not contained at all, B can be allowed up to 0.008%, and considering that about 20% is lost due to oxidation during welding, it is preferable to set it at 0.01%. That is, the effective range of B is 0.003 to 0.01%. Figure 2 is a diagram related to Co, and in Figure 2
The higher the Co content, the shorter the creep rupture time, but since the correlation coefficient is only -0.0816, it can be said that it has almost no effect. However, when this alloy is used for the high-temperature gas-cooled nuclear reactor mentioned earlier, if it contains Co, which has a long half-life, the activated Co will circulate in the reactor system together with oxides, etc. It is better not to use Co, as it increases the radioactivity level in the working environment during periodic inspections.
Considering this point, the AWS standard sets the range of Co from 0.5 to
The content is set at 2.5%, but in the present invention it is set at 0.1% or less.
The reason for setting it below 0.1% is that Co is originally 2 to 3% in the Ni raw material.
About % is included, and by refining
This is because even if the Ni purity is increased, the Co concentration of the industrially obtained low CoNi raw material will be about 0.1%. Furthermore, it may be economically viable to use relatively pure Ni as the raw material for the filler metal. For high-temperature equipment other than nuclear reactors, the Co content is 0.1%.
It can be less or more. FIG. 3 is a diagram regarding Al. Since Al, which is highly oxidizing, is normally used as a deoxidizing agent when producing Hastelloy However, as shown in FIG. 3, the smaller the amount of Al, the better for creep characteristics. Particularly in Helium-cooled high-temperature gas furnaces with low oxidation potential, less Al is better since selective internal oxidation occurs due to Al. Al is a necessary element as a deoxidizing agent, but in order to keep the amount remaining in the alloy as low as possible, the creep rupture time is 500 hours or more at the base metal level from the relationship shown in Figure 3.
is the maximum allowable value. FIG. 4 is a diagram regarding Ti. Ti is also an element that cannot be avoided because it is used as a deoxidizing agent by utilizing its oxidizing power, but unlike Al, this element exhibits creep characteristics as the content increases, as shown in Figure 4. Therefore, it is not necessary to set the upper limit based only on creep characteristics. However, when the Ti content increases, there is a problem that it undergoes internal oxidation like Al, so in consideration of this, the creep rupture time is
The content should be in the range of 0.005% to 0.05%, depending on the balance between the two, so that internal oxidation does not occur significantly for more than 500 hours. Also, by including Ti to this extent, it contributes to reducing weld cracking and improving the bending ductility of welded joints. FIG. 5 is a diagram regarding Mn. Mn is one of the elements that is considered to be one of the main components, and the content is AWS
Although it can be left as is in the standard, since it is an element with a large influence, we have illustrated the relationship between content and creep rupture time as an example, as in the case of other elements, as a result obtained in the process of examining the main components. . As shown in FIG. 5, the higher the content, the lower the creep properties, the smaller the aperture of creep rupture, and the greater the correlation.
Mn is an element that contributes to oxidation resistance, but too much Mn deteriorates creep properties, so when emphasis is placed on creep properties, it is desirable to keep it at 0.8% or less. FIG. 6 is a diagram regarding Mg. Mg is an extremely effective element for reducing trace amounts of S, O, and N when added as a deoxidizing agent and desulfurizing agent, and is essential for melting filler metal. As the content increases, the creep properties tend to decrease. However, the correlation coefficient is −
Since it is small at 0.1477, it can be considered that there is almost no effect. Also, the more Mg there is, the less weld cracking will occur and the bending ductility of the welded joint will be better.However, if the content exceeds 0.05%, the flow of the metal during welding may deteriorate, so the maximum allowable amount for Mg should be set at 0.05%. %year,
The minimum allowable amount is 0.005%, which indicates that Mg has sufficiently deoxidized and desulfurized. FIG. 7 is a diagram regarding P, and FIG. 8 is a diagram regarding S.
P and S are normally regarded as harmful elements in metal materials, unless a special effect is expected, and the appropriate range is specified in the material standards, and they are also specified in the AWS standards, but in the present invention, In particular, since we focused on the influence of unavoidable impurities, Figures 7 and 8 were obtained for P and S. As a result, as shown in FIG. 7, the creep characteristics of P improve as the content increases, while the creep characteristics of S, on the contrary, tend to decrease as the content increases. but,
Considering that the inclusion of P increases the creep strength but deteriorates the bending ductility of welded joints, the maximum allowable amount of P is set at 0.04%, which is the same as the AWS standard, and the maximum allowable amount of S is also set as the same as the AWS standard. The same value is 0.03%, but
It is more advantageous for creep strength to reduce it as much as possible within this range. FIG. 9 is a diagram regarding O. O is an unavoidable impurity that enters from the atmosphere during melting of filler metal,
It gathers in the form of oxides at the grain boundaries of weld metal and weakens the high-temperature strength of the grain boundaries. Naturally, as shown in FIG. 9, the higher the content, the lower the creep characteristics. Therefore, it is important to determine the maximum allowable amount of O, which is not specified in the AWS standard.
To obtain the above, set it to 0.01%. FIG. 10 is a diagram regarding N. N is also an unavoidable impurity with the same meaning as O, and it is important to determine the limit value of its content. However, in order to increase the creep strength of N, there is a conventionally known technique in which, for example, in stainless steel, N is sometimes actively added as a solid solution strengthening element, but in the filler metal of the present invention, the As shown in Figure 10, the creep properties tend to decrease as the N content increases, and it was found that the lower the correlation coefficient, the better. This means that, like O, N also segregates at the grain boundaries of the weld metal and behaves so as to reduce the high-temperature strength. Therefore, the lower the N content, the better, but from the relationship shown in Figure 10, the creep rupture time
The maximum allowable amount of N for 500h or more should be 0.01%. Based on the above experimental results for determining the composition range of the filler metal of the present invention, we have found that raw materials not specified in the AWS standards contain unavoidable impurities that enter from the surrounding atmosphere during melting, and in particular, concentrate at grain boundaries. The most important feature of the filler metal of the present invention is that it has determined appropriate allowable amounts of O and N, which weaken the bond between crystals and reduce high-temperature creep strength. [Effect of the invention] Filler metals used for welding Ni-based heat-resistant alloys such as Hastelloy Since high-temperature strength is not taken into consideration, when applied to welding structural components of structures such as high-temperature gas-cooled nuclear reactors, the high-temperature creep properties are insufficient, making these devices unreliable for long-term use at high temperatures. In contrast, the filler metal of the present invention, as described in the examples,
Although the composition is based on the composition of AWS standard materials, we especially considered the remaining amount of unavoidable impurities that come in from raw materials and secondary materials during melting, and among these, Al,
By clarifying the appropriate range of various elements that are not specified in the AWS standard, such as determining the maximum allowable amount with emphasis on Ti, O, and N, and by improving or adding some of the constituent elements, the AWS standard Weld metal and welded joints at 900℃ and 4.5
Creep rupture time at Kg/mm 2 is only 100 ~
In contrast, the filler metal of the present invention can obtain a creep rupture time of at least 500 hours under the same conditions, and has a large elongation at fracture, resulting in very good weldability. It has been possible to provide high reliability to welding of high-temperature drive devices using base heat-resistant alloys.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第10図はいずれも本発明の溶加材に
含有される元素の量と溶接金属のクリープ破断時
間の関係を示す線図であり、第1図はB、第2図
はCo、第3図はAl、第4図はTi、第5図はMn、
第6図はMg、第7図はP、第8図はS、第9図
はO、第10図はNの含有量に対するクリープ破
断時間の関係を表わすものである。
Figures 1 to 10 are diagrams showing the relationship between the amount of elements contained in the filler metal of the present invention and the creep rupture time of weld metal; Figure 1 is B, and Figure 2 is Co. , Figure 3 is Al, Figure 4 is Ti, Figure 5 is Mn,
FIG. 6 shows the relationship between the creep rupture time and the content of Mg, FIG. 7 shows the content of P, FIG. 8 shows the content of S, FIG. 9 shows the content of O, and FIG. 10 shows the relationship of the N content.

Claims (1)

【特許請求の範囲】 1 重量%で C:0.05〜0.15 Si:1.0以下 Mn:1.0以下 Cr:20.5〜23.0 Co:0.1以下 Fe:17.0〜20.0 Mo:8.0〜10.0 W:0.2〜1.0 Cu:0.5以下 B:0.003〜0.01 を含有し、さらに不可避不純物として Al:0.1以下 Ti:0.005〜0.05 Mg:0.005〜0.05 P:0.04以下 S:0.03以下 O:0.01以下 N:0.01以下 を含み、残部Niからなる組成を有することを特
徴とするNi基耐熱合金の溶接用溶加材。
[Claims] 1. C: 0.05 to 0.15 Si: 1.0 or less Mn: 1.0 or less Cr: 20.5 to 23.0 Co: 0.1 or less Fe: 17.0 to 20.0 Mo: 8.0 to 10.0 W: 0.2 to 1.0 Cu: 0.5 Contains the following B: 0.003 to 0.01, and further contains unavoidable impurities Al: 0.1 or less Ti: 0.005 to 0.05 Mg: 0.005 to 0.05 P: 0.04 or less S: 0.03 or less O: 0.01 or less N: 0.01 or less, and the balance is Ni A filler metal for welding a Ni-based heat-resistant alloy, characterized by having the following composition:
JP28188987A 1987-11-07 1987-11-07 Filler metal for welding ni base heat resistant alloy Granted JPH01122694A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28188987A JPH01122694A (en) 1987-11-07 1987-11-07 Filler metal for welding ni base heat resistant alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28188987A JPH01122694A (en) 1987-11-07 1987-11-07 Filler metal for welding ni base heat resistant alloy

Publications (2)

Publication Number Publication Date
JPH01122694A JPH01122694A (en) 1989-05-15
JPH0450108B2 true JPH0450108B2 (en) 1992-08-13

Family

ID=17645377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28188987A Granted JPH01122694A (en) 1987-11-07 1987-11-07 Filler metal for welding ni base heat resistant alloy

Country Status (1)

Country Link
JP (1) JPH01122694A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2786419B1 (en) * 1998-12-01 2001-01-05 Imphy Sa NICKEL BASED ALLOY WELDING ELECTRODE AND CORRESPONDING ALLOY
CN106181115B (en) * 2015-04-29 2018-10-30 海宁瑞奥金属科技有限公司 Low spatter 9Ni steel nickel-based welding electrodes

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51134341A (en) * 1975-05-17 1976-11-20 Nippon Steel Corp Welding wire for heat resistant alloy
JPS5966994A (en) * 1982-10-06 1984-04-16 Nippon Uerudeingurotsuto Kk Filler metal for welding of nickel-base heat resistant alloy
JPS59199192A (en) * 1983-04-21 1984-11-12 エム・ア−・エン・マシ−ネンフアブリ−ク・アウクスブルク−ニユルンベルク・アクチエンゲゼルシヤフト Welding wie for welding pipe to tube plate of heat exchangerwithout air void

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51134341A (en) * 1975-05-17 1976-11-20 Nippon Steel Corp Welding wire for heat resistant alloy
JPS5966994A (en) * 1982-10-06 1984-04-16 Nippon Uerudeingurotsuto Kk Filler metal for welding of nickel-base heat resistant alloy
JPS59199192A (en) * 1983-04-21 1984-11-12 エム・ア−・エン・マシ−ネンフアブリ−ク・アウクスブルク−ニユルンベルク・アクチエンゲゼルシヤフト Welding wie for welding pipe to tube plate of heat exchangerwithout air void

Also Published As

Publication number Publication date
JPH01122694A (en) 1989-05-15

Similar Documents

Publication Publication Date Title
EP2206796B1 (en) Austenitic heat resistant alloy
JP4310664B1 (en) Welding materials and welded joint structures
JP5977998B2 (en) Ni-base alloy weld metal, strip electrode, and welding method
JP4672555B2 (en) Ni-base high Cr alloy filler metal and welding rod for coated arc welding
JP5170297B1 (en) Welding material for Ni-base heat-resistant alloy, weld metal and welded joint using the same
JP4835770B1 (en) Welding material for austenitic heat resistant steel, weld metal and welded joint using the same
JP3329261B2 (en) Welding materials and welded joints for high temperature high strength steel
JP2622530B2 (en) Welding material for austenitic steel with excellent high-temperature strength
JPH044079B2 (en)
US4673123A (en) Filler for welding a heat resistant nickel-base alloy
JPH11285890A (en) High c/high cr-ni based welding rod
JP3382834B2 (en) Filler for Ni-base high Cr alloy
JPH0450108B2 (en)
JP3170166B2 (en) Filler for Ni-base high Cr alloy
JP6107170B2 (en) Welding material for austenitic heat-resistant steel, weld metal and welded joint produced using the same
US6521060B1 (en) Filler metal for use in welding of Ni-Cr-W alloys
JPH11138262A (en) Tig welding method and tig welding consumables
JPH11277293A (en) Welding metal and welding joint excellent in reheat crack resistance
JP2800661B2 (en) Welding material for high Cr high N austenitic steel
JP2722893B2 (en) Welding material for high Cr high N austenitic steel
JP2797981B2 (en) High strength austenitic steel welding material and method for producing the same
JP2942450B2 (en) Gas shielded arc welding method with less welding deformation
JPS61180693A (en) Welding method of high-ductility austenite stainless steel
JP6288397B1 (en) Austenitic stainless steel
JPS59193790A (en) Cr-mo solid wire for submerged arc welding

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080813

Year of fee payment: 16

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080813

Year of fee payment: 16