JPH0450108A - Production of high-density vitreous carbonaceous material - Google Patents

Production of high-density vitreous carbonaceous material

Info

Publication number
JPH0450108A
JPH0450108A JP2160280A JP16028090A JPH0450108A JP H0450108 A JPH0450108 A JP H0450108A JP 2160280 A JP2160280 A JP 2160280A JP 16028090 A JP16028090 A JP 16028090A JP H0450108 A JPH0450108 A JP H0450108A
Authority
JP
Japan
Prior art keywords
polyimide resin
sheet
transition temperature
glass transition
calcination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2160280A
Other languages
Japanese (ja)
Other versions
JPH0776083B2 (en
Inventor
Toshiharu Uei
上井 敏治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Carbon Co Ltd
Original Assignee
Tokai Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Carbon Co Ltd filed Critical Tokai Carbon Co Ltd
Priority to JP2160280A priority Critical patent/JPH0776083B2/en
Publication of JPH0450108A publication Critical patent/JPH0450108A/en
Publication of JPH0776083B2 publication Critical patent/JPH0776083B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

PURPOSE:To obtain the title high-density carbonaceous material with excellent functionality up to ca.7mm thick, by forming an outer layer of a polyimide resin on the surface of a laminated, hot-pressed sheet from polyimide resin thin films followed by calcination. CONSTITUTION:Firstly, thin films of a polyimide resin <300 deg.C in glass transition temperature are mutually laminated and hot-pressed into a sheet of a specified thickness. Thence, an outer layer of another polyimide resin >=300 deg.C in glass transition temperature is formed on this sheet surface followed by calcination and carbonization at 800-2100 deg.C in a non-oxidative atmosphere, thus obtaining the objective carbonaceous material. With the present production process, the calcination and carbonization can be performed smoothly with the sheet form prior to calcination retained at all times, resulting in the conversion into the objective perfectly gas-impermeable, uniform, high-density vitreous carbonaceous material free from any texture damage.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、厚さ71程度までの高密度でシート形状を備
えるガラス状カーボン材の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a glassy carbon material having a sheet shape and having a high density of up to about 71 mm in thickness.

〔従来の技術〕[Conventional technology]

ガラス状カーボン材は、ガラス状の外観ならびに破断面
を呈する硬質で緻密組織の炭素質物で、通常のカーボン
材料に比べて気体不透過性、化学的安定性などの面で優
れているため、電子、機械、化学をはじめ多様の分野で
実用されている。
Glassy carbon material is a hard, densely structured carbonaceous material that exhibits a glass-like appearance and fractured surface, and is superior in terms of gas impermeability and chemical stability compared to ordinary carbon materials, so it is used for electronic purposes. It is used in a variety of fields including , machinery, and chemistry.

従来、ガラス状カーボン材は、フラン系樹脂またはフェ
ノール系樹脂のような炭化残留率の高い熱硬化性樹脂を
所望の形状に成形したのち、非酸化性雰囲気下で焼成炭
化する方法により製造されてきたが、より薄膜状で高密
度組織を有するガラス状カーボン材料を効率よく製造す
る手段として原料樹脂に芳香族ポリイミド樹脂のフィル
ムを用いる方法が本出願人によって開発されている(特
願平1−149984号、同1−303542号)。
Conventionally, glassy carbon materials have been manufactured by molding a thermosetting resin with a high carbonization residual rate, such as furan resin or phenol resin, into a desired shape and then firing and carbonizing it in a non-oxidizing atmosphere. However, the present applicant has developed a method of using an aromatic polyimide resin film as a raw material resin as a means of efficiently producing a glassy carbon material that is thinner and has a higher density structure (Japanese Patent Application No. No. 149984, No. 1-303542).

このうち特願平1−303542号の発明は、高密度ガ
ラス状カーボンフィルムを製造するにあたり、ガラス転
移温度(Tg)が300 ’C以上の芳香族ポリイミド
樹脂のフィルムを炭素賞押え板により挟圧した状態で焼
成炭化処理することを特徴としておリ、この構成により
焼成段階においてポリイミド樹脂フィルムが押え板へ融
着する現象が効果的に防止され、組織破損のない薄膜の
高密度ガラス状ガーボンを得ることが可能となる。
Among these, the invention of Japanese Patent Application No. 1-303542 is used to press an aromatic polyimide resin film with a glass transition temperature (Tg) of 300'C or higher using a carbon pressure plate in order to produce a high-density glassy carbon film. This structure effectively prevents the polyimide resin film from adhering to the presser plate during the firing stage, making it possible to create a thin film of high-density glass-like garbon without structural damage. It becomes possible to obtain.

[発明が解決しようとする課題〕 しかしながら、上記の先行技術は0.2mmを下層る薄
膜フィルムのガラス状カーボン材を製造する方法として
は有効であるが、1M11以上の一定厚さをもつシート
形状のガラス状カーボン材を製造する手段としては適切
ではない。その理由は、−定厚さのガラス状カーボン材
料を得るには原料となるポリイミド樹脂を相当の厚手シ
ートに成形する必要があるが、ポリイミド樹脂シートは
ガラス転移温度(Tg)が300℃以上の樹脂成分を用
いるときには加熱融着による一体化が進行せず、成形化
することができなくなるためである。
[Problems to be Solved by the Invention] However, although the above-mentioned prior art is effective as a method for manufacturing a glassy carbon material with a thin film of 0.2 mm, it cannot be used in a sheet shape having a constant thickness of 1M11 or more. It is not suitable as a means for producing glassy carbon materials. The reason for this is: - To obtain a glassy carbon material with a constant thickness, it is necessary to mold the raw material polyimide resin into a fairly thick sheet, but polyimide resin sheets have a glass transition temperature (Tg) of 300°C or higher. This is because when a resin component is used, integration by heat fusion does not proceed and molding becomes impossible.

本発明はポリイミド樹脂フィルムを原料として一定厚シ
ート形状のガラス状カーボン材を製造する条件について
研究を重ねた結果開発されたもので、発明の目的は厚さ
71程度までの高密度で優れた機能性状を有するガラス
状カーボン材を収率よく製造する方法を提供することに
ある。
The present invention was developed as a result of repeated research on the conditions for manufacturing a glass-like carbon material in the form of a sheet of constant thickness using a polyimide resin film as a raw material. It is an object of the present invention to provide a method for producing a glassy carbon material having properties with good yield.

〔課題を解決するための手段〕[Means to solve the problem]

上記の目的を達成するための本発明による高密度ガラス
状カーボン材の製造方法は、300℃未満のガラス転移
温度(Tg)を有するポリイミド樹脂の薄膜フィルムを
積層熱圧して一定厚さのシートに成形し、このシート面
に前記成形工程と同時にもしくは後工程として300℃
以上のガラス転移温度(Tg)を有するポリイミド樹脂
の外層を形成したのち、非酸化性雰囲気中800〜21
00℃の温度で焼成炭化処理することを構成上の特徴と
する。
A method for producing a high-density glassy carbon material according to the present invention to achieve the above object is to heat-press thin films of polyimide resin having a glass transition temperature (Tg) of less than 300°C into a sheet of constant thickness. The sheet surface is heated to 300°C at the same time as the above-mentioned forming process or as a post-process.
After forming an outer layer of polyimide resin having a glass transition temperature (Tg) of 800 to 21
The structural feature is that the firing carbonization treatment is performed at a temperature of 00°C.

る。Ru.

一定厚さのポリイミド樹脂シートを成形する工程は、ガ
ラス転移温度(Tg)が300℃未満、好ましくは25
0〜295℃の芳香族ポリイミド樹脂で形成された厚さ
0.02〜O,13+−の薄膜フィルムを多数枚積層し
、熱圧する方法でおこなわれる。熱圧条件は、温度を2
50〜450℃の範囲に保持し、圧力を5 kg/cm
”以上に設定することが望ましい。この条件により、厚
さ0.1〜9−一の一体に融着した組織のポリイミド樹
脂シートを成形することができる。
The step of molding a polyimide resin sheet with a certain thickness is performed at a glass transition temperature (Tg) of less than 300°C, preferably 25°C.
This is done by laminating a large number of thin films made of aromatic polyimide resin at 0 to 295° C. and having a thickness of 0.02 to 0.13+-, and then hot-pressing them. The heat and pressure conditions are as follows:
Maintain the temperature in the range of 50 to 450℃ and the pressure to 5 kg/cm
It is desirable to set the value above. Under these conditions, it is possible to mold a polyimide resin sheet having a thickness of 0.1 to 9-1 and having an integrally fused structure.

成形されたポリイミド樹脂シート面には、前記成形工程
と同時にもしくは後工程として300℃以上のポリイミ
ド樹脂による外層が形成される。
On the surface of the molded polyimide resin sheet, an outer layer made of polyimide resin at a temperature of 300° C. or higher is formed simultaneously with the molding step or as a post-process.

この外層を成形工程と同時に形成するには、成形工程に
おいてガラス転移温度(Tg) 300℃未満の積層フ
ィルムの両面にガラス転移温度(Tg)が300℃以上
の芳香族ポリイミド樹脂フィルムを配置して同時に熱圧
する方法が採られる。また、成形工程の後工程として形
成するには、積層熱圧して成形されたポリイミド樹脂シ
ートの面にイミド化後のガラス転移温度(Tg)が30
0℃以上になるようなポリアミック酸のワニス(ポリイ
ミド樹脂の前駆体)を塗布し、乾燥、イミド化する方法
が採られる。塗布手段としては、ドクターブレード法、
ディッピング法、スプレー法、刷毛塗り法など種々の方
法を適用することができる。乾燥処理は、溶媒成分(通
常、N−メチル−2−ピロリドンまたはN、N−ジメチ
ルアセトアミド)が揮散する60〜120℃範囲の温度
でおこない、イミド化は120〜400℃の温度域でお
こなうことが好適である。
In order to form this outer layer at the same time as the molding process, aromatic polyimide resin films with a glass transition temperature (Tg) of 300°C or higher are placed on both sides of a laminated film with a glass transition temperature (Tg) of lower than 300°C in the molding process. A method of applying heat and pressure at the same time is adopted. In addition, in order to form as a post-process of the molding process, the glass transition temperature (Tg) after imidization of the polyimide resin sheet formed by laminating and hot pressing is 30
A method is adopted in which a polyamic acid varnish (precursor of polyimide resin) that reaches a temperature of 0° C. or higher is applied, dried, and imidized. Application methods include doctor blade method,
Various methods such as a dipping method, a spray method, and a brush coating method can be applied. The drying process should be carried out at a temperature in the range of 60 to 120°C at which the solvent component (usually N-methyl-2-pyrrolidone or N,N-dimethylacetamide) evaporates, and the imidization should be carried out in the temperature range of 120 to 400°C. is suitable.

焼成炭化処理は、窒素、アルゴンなどの非酸化性雰囲気
に保持された炉を用い、800〜2100℃の温度に加
熱することによっておこなわれる。
The calcination carbonization treatment is performed by heating to a temperature of 800 to 2100° C. using a furnace maintained in a non-oxidizing atmosphere such as nitrogen or argon.

前記した本発明の工程で得られるポリイミド樹脂体はあ
る程度の厚さを有する硬質のシートであるため、焼成に
際して必ずしも炭素質押え板により挟圧した状態で炉に
充填する必要はなく、そのまま炉内にセットすることが
できる。
Since the polyimide resin body obtained in the process of the present invention described above is a hard sheet having a certain thickness, it is not necessarily necessary to fill it into the furnace while being compressed with carbonaceous presser plates during firing, and it can be placed in the furnace as it is. can be set to .

焼成炭化処理を経て製造されるガラス状カーボン材は、
厚さ1〜71の極めて高密度組織を備える無定形結晶構
造を呈している。
The glassy carbon material produced through firing carbonization process is
It exhibits an amorphous crystal structure with a very dense structure with a thickness of 1 to 71 mm.

〔作 用〕[For production]

本発明によれば、主材となる内層のシート部分を融点の
低いガラス転移温度(Tg) 300℃未満のポリイミ
ド樹脂フィルムを積層熱圧によって成形し、そのシート
面に融点の高いガラス転移温度(Tg)300℃以上の
ポリイミド樹脂で構成された外層を形成して原料樹脂体
とする。したがって、内層シートの成形時にはポリイミ
ド樹脂フィルムの積層熱圧を介して容易に所望厚の一体
に融着化したシートの成形ができ、該シートは表面に形
成された高融点ポリイミド樹脂の外層によって被覆固定
化される。この構造において外層を形成するガラス転移
温度(Tg) 300℃以上のポリイミド樹脂層は、融
点より熱分解温度が低い性状を有しているため焼成炭化
工程における昇温段階で軟化変形したり、他部材と融着
する現象を生じることはない。
According to the present invention, a polyimide resin film having a low melting point and a glass transition temperature (Tg) of less than 300°C is formed into a sheet portion of the inner layer, which is the main material, by laminating and hot pressing, and the sheet surface is coated with a polyimide resin film having a high melting point and a glass transition temperature (Tg) of less than 300°C. Tg) An outer layer made of polyimide resin having a temperature of 300° C. or higher is formed to form a raw resin body. Therefore, when forming the inner layer sheet, it is possible to easily form an integrally fused sheet with a desired thickness through lamination heat pressure of polyimide resin films, and the sheet is covered with an outer layer of high melting point polyimide resin formed on the surface. Fixed. In this structure, the polyimide resin layer that forms the outer layer with a glass transition temperature (Tg) of 300°C or higher has a thermal decomposition temperature lower than its melting point, so it may soften and deform during the heating stage of the firing carbonization process, or There is no phenomenon of fusion with other members.

い。stomach.

このような作用によって、常に焼成前のシート形状を保
った状態で円滑に焼成炭化され、組織損傷のない完全な
ガス不透過性の均質かつ高密度のガラス状カーボン材に
転化する。
Due to this action, the sheet is smoothly fired and carbonized while always maintaining its sheet shape before firing, and is converted into a homogeneous and high-density glassy carbon material that is completely gas-impermeable and has no tissue damage.

また、焼成炭化以前の工程で硬化剤その他の第3成分を
添加する必要がないから、得られるガラス状カーボンの
材質純度は頗る高い。
Further, since there is no need to add a curing agent or other third component in the process before firing and carbonization, the material purity of the obtained glassy carbon is extremely high.

〔実施例〕〔Example〕

以下、本発明の実施例を比較例と対比して説明する。 Examples of the present invention will be described below in comparison with comparative examples.

実施例1 下記の分子構造式(1)を有するガラス転移温度(Tg
) 285℃のポリイミド樹脂フィルム〔宇部興産■製
“ユービレックスR”、厚さ0.125mm )を20
枚積層し、温度300℃1圧力10kg/cmzの熱圧
条件でプレスして厚さ2.5m−のシートに成形した。
Example 1 Glass transition temperature (Tg) having the following molecular structural formula (1)
) Polyimide resin film (“Ubilex R” manufactured by Ube Industries, Ltd., thickness 0.125 mm) at 285°C was heated at 20°C.
The sheets were laminated and pressed at a temperature of 300° C. and a pressure of 10 kg/cmz to form a sheet with a thickness of 2.5 m.

ついで、このシート面に、イミド後においてガラス転移
温度(Tg) 500℃の下記分子構造式(2)を有す
るポリイミド樹脂に転化する性状の前駆体ボリアミンク
酸ワニス〔宇部興産■製“U−ワニスS”、濃度20%
〕を膜厚が約50μ−になるように均一に刷毛塗りした
Next, on this sheet surface, a precursor polyamine citric acid varnish ["U-Varnish S" manufactured by Ube Industries, Ltd.] which is converted into a polyimide resin having a glass transition temperature (Tg) of 500° C. and the following molecular structure formula (2) after imide is applied. ”, concentration 20%
] was applied uniformly with a brush to a film thickness of approximately 50 μm.

表1 塗布後のシートを、70℃および120℃の温度で各1
時間乾燥したのち、200℃および300℃の温度に各
2時間加熱して塗布樹脂を硬化させてイミド化した。
Table 1 The sheet after coating was heated at 70°C and 120°C for 1 time each.
After drying for an hour, the coated resin was cured and imidized by heating at 200° C. and 300° C. for 2 hours each.

このようにして外層を形成した樹脂シートを窒素ガス雰
囲気に保持された焼成炉に移し、1500℃の温度で焼
成炭化処理した。
The resin sheet on which the outer layer was formed in this manner was transferred to a firing furnace maintained in a nitrogen gas atmosphere, and subjected to firing carbonization treatment at a temperature of 1500°C.

得られたガラス状カーボン材は、厚さ21の無定形結晶
構造を呈しており、各種特性を測定したところ表1に示
す結果を得た。なお、比較のためにフラン樹脂を原料に
して製造された市販のガラス状カーボン材〔東海カーボ
ン■製、cc20)の特性を表1に併載した。
The obtained glassy carbon material had an amorphous crystal structure with a thickness of 21 mm, and various properties were measured and the results shown in Table 1 were obtained. For comparison, Table 1 also lists the characteristics of a commercially available glassy carbon material (manufactured by Tokai Carbon ■, CC20) manufactured using furan resin as a raw material.

表1の結果から、実施例によるガラス状カーボン材は従
来製品に比べて高密度で優れた強度特性を示す機能性状
を備えていることが認められる。
From the results in Table 1, it is recognized that the glassy carbon materials according to the examples have functional properties such as higher density and superior strength characteristics than conventional products.

実施例2 ピロメリット酸無水物と44−ジアミノジフェニルエー
テルとをN−メチル−2−ピロリドン溶媒中で12時間
攪拌してポリアミック酸フェス(濃度20%)を調製し
た。このポリアミック酸フェスは、イミド化するとガラ
ス転移温度(Tg) 420℃を有する下記の分子構造
式(3)のポリイミド樹脂に転化するものである。
Example 2 Pyromellitic anhydride and 44-diaminodiphenyl ether were stirred in N-methyl-2-pyrrolidone solvent for 12 hours to prepare a polyamic acid cloth (concentration 20%). When imidized, this polyamic acid resin is converted into a polyimide resin having a glass transition temperature (Tg) of 420°C and having the following molecular structure formula (3).

二のポリアミ2り酸フェスに実施例1と同一条件により
成形したポリイミド樹脂(ガラス転移温度285℃)の
 シートを浸漬して表面に均一に付着させたのち、実施
例1と同様に乾燥、イミド化および焼成炭化処理を施し
た。
A sheet of polyimide resin (glass transition temperature: 285°C) molded under the same conditions as in Example 1 was immersed in the second polyamide resin sheet to uniformly adhere to the surface, then dried in the same manner as in Example 1. It was subjected to carbonization and calcination carbonization treatments.

上記の工程により10枚のガラス状カーボンシートを製
造し、焼成炭化過程における割れ、変形等の状況を調査
した。その結果を表2に示した。
Ten glassy carbon sheets were manufactured through the above steps, and conditions such as cracking and deformation during the firing and carbonization process were investigated. The results are shown in Table 2.

実施例3 実施例1と同一のポリイミド樹脂フィルム(ガラス転移
温度285℃)を18枚積層し、その両性面にガラス転
移温度(Tg) 500℃を有する厚さ0゜1251の
ポリイミド樹脂フィルム〔分子構造式(2)〕を重ねた
状態で、温度300℃1圧力10kg/cm”の熱圧条
件でプレスし、厚さ2.51の積層ポリイミドシートを
成形した。
Example 3 Eighteen polyimide resin films (glass transition temperature 285°C) identical to those in Example 1 were laminated, and a polyimide resin film with a thickness of 0°1251 and having a glass transition temperature (Tg) of 500°C on both sides [molecule Structural formula (2)] were stacked and pressed under hot pressure conditions of 300° C. and 10 kg/cm” of pressure to form a laminated polyimide sheet with a thickness of 2.5 mm.

このシートを実施例1と同様にして焼成炭化処理し、1
0枚のガラス状カーボンシートを製造した。この場合の
焼成炭化過程における割れ、変形等の状況を調査し、結
果を表2に併載した。
This sheet was subjected to firing carbonization treatment in the same manner as in Example 1.
0 glassy carbon sheets were manufactured. In this case, conditions such as cracking and deformation during the calcination carbonization process were investigated, and the results are also listed in Table 2.

比較例1 実施例1と同一条件で成形したポリイミド樹脂(ガラス
転移温度285℃)のシートを、そのまま窒素ガス雰囲
気中で1500℃の温度で焼成炭化処理して10枚のガ
ラス状カーボンシートを製造した。この場合の焼成炭化
過程における割れ、変形等の状況を調査し、その結果を
表2に併載した。
Comparative Example 1 A sheet of polyimide resin (glass transition temperature 285°C) molded under the same conditions as Example 1 was fired and carbonized at a temperature of 1500°C in a nitrogen gas atmosphere to produce 10 glassy carbon sheets. did. In this case, conditions such as cracking and deformation during the calcination carbonization process were investigated, and the results are also listed in Table 2.

表2 比較例2 ガラス転移温度(Tg) 500℃を有する厚さ0゜1
25+u+のポリイミド樹脂フィルム〔分子構造式(2
)〕を20枚積層積重300 ’Cおよび400℃の温
度で10kg/c@”の圧力をかけてプレスした。
Table 2 Comparative Example 2 Thickness 0°1 with glass transition temperature (Tg) 500°C
25+u+ polyimide resin film [Molecular structural formula (2
)] were laminated and pressed at a temperature of 300'C and 400°C under a pressure of 10kg/c@''.

しかし、この場合には樹脂フィルムが軟化、融着せず、
一体成形することができなかった。
However, in this case, the resin film does not soften or fuse, and
It was not possible to mold it in one piece.

〔発明の効果〕〔Effect of the invention〕

以上のとおり、本発明によればガラス転移温度(Tg)
が300℃未満のポリイミド樹脂シートの外面に300
″C以上のポリイミド樹脂層を形成した構造の原料樹脂
体を焼成炭化することにより、厚さ71−程度までのシ
ート状を有し、高密度で優れた機能性状を具備するガラ
ス状カーボン材を収率よく製造することができる。した
がって、高度のガス不透過性、耐熱性、化学的安定性な
どが同時に要求される用途部材として極めて有用である
As described above, according to the present invention, the glass transition temperature (Tg)
300°C on the outer surface of the polyimide resin sheet whose temperature is less than 300°C.
By firing and carbonizing a raw material resin body with a structure in which a polyimide resin layer of C or higher is formed, a glass-like carbon material having a sheet shape of up to 71 mm in thickness and having high density and excellent functional properties is produced. It can be produced with good yield. Therefore, it is extremely useful as a material for applications that require a high degree of gas impermeability, heat resistance, chemical stability, etc. at the same time.

出願人  東海カーボン株式会社 代理人 弁理士 高 畑 正 他Applicant: Tokai Carbon Co., Ltd. Agent: Patent attorney Tadashi Takahata and others

Claims (1)

【特許請求の範囲】[Claims] 1、300℃未満のガラス転移温度(Tg)を有するポ
リイミド樹脂の薄膜フィルムを積層熱圧して一定厚さの
シートに成形し、このシート面に前記成形工程と同時に
もしくは後工程として300℃以上のガラス転移温度(
Tg)を有するポリイミド樹脂の外層を形成したのち、
非酸化性雰囲気中800〜2100℃の温度で焼成炭化
処理することを特徴とする高密度ガラス状カーボン材の
製造方法。
1. Thin films of polyimide resin having a glass transition temperature (Tg) of less than 300°C are laminated and hot-pressed to form a sheet of a constant thickness, and the surface of this sheet is heated at 300°C or more at the same time as the above-mentioned forming process or as a post-process. Glass-transition temperature(
After forming an outer layer of polyimide resin having Tg),
A method for producing a high-density glassy carbon material, characterized by carrying out a firing carbonization treatment at a temperature of 800 to 2100°C in a non-oxidizing atmosphere.
JP2160280A 1990-06-18 1990-06-18 Method for producing high density glassy carbon material Expired - Lifetime JPH0776083B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2160280A JPH0776083B2 (en) 1990-06-18 1990-06-18 Method for producing high density glassy carbon material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2160280A JPH0776083B2 (en) 1990-06-18 1990-06-18 Method for producing high density glassy carbon material

Publications (2)

Publication Number Publication Date
JPH0450108A true JPH0450108A (en) 1992-02-19
JPH0776083B2 JPH0776083B2 (en) 1995-08-16

Family

ID=15711581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2160280A Expired - Lifetime JPH0776083B2 (en) 1990-06-18 1990-06-18 Method for producing high density glassy carbon material

Country Status (1)

Country Link
JP (1) JPH0776083B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010159176A (en) * 2009-01-07 2010-07-22 Sumitomo Electric Ind Ltd Method of manufacturing heat dissipating sheet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010159176A (en) * 2009-01-07 2010-07-22 Sumitomo Electric Ind Ltd Method of manufacturing heat dissipating sheet

Also Published As

Publication number Publication date
JPH0776083B2 (en) 1995-08-16

Similar Documents

Publication Publication Date Title
KR101826855B1 (en) Manufacturing method for graphite sheet
US20050124781A1 (en) Poly amic acid system for polyimides
WO2019187621A1 (en) Method for manufacturing graphite sheet and polyimide film for graphite sheet
CN114630856B (en) Polyimide film for graphite sheet and graphite sheet produced therefrom
TW201819294A (en) Polyimide film for roll-type graphitization and method for manufacturing graphite film wherein the polyimide film is obtained from the reaction of diamine compound and dianhydride to provide a proper mechanical strength for avoiding cracks or breakages
KR20190127005A (en) Multilayer graphite sheet having excellent electromagnetic shielding property and thermal conductivity, and preparation method thereof
CN110143023A (en) Flexibility coat copper plate preparation method and printed circuit board
JPH0450108A (en) Production of high-density vitreous carbonaceous material
JPH03279207A (en) Production of graphite
KR20160146113A (en) Preparation method for polyimide film using microwave
JP3215978B2 (en) Method for producing glassy carbon coating
JP4218716B2 (en) Aromatic polyimide powder and molded article comprising the aromatic polyimide powder
JPS61127654A (en) Cyrindrical mica composite material and manufacture
JPH01168865A (en) Production of article coated with copper film
JPS61247734A (en) Polyimide composition and its production and utilization
JPS61162526A (en) Novel polyamide-imide resin and production thereof
JPH07138070A (en) Production of carbonaceous material coated with glassy carbon
KR20170121131A (en) Preparation method for polyimide film using microwave
JPH0776084B2 (en) Method for producing high density glassy carbon film
JPH01294742A (en) Graphite film molding
JPH0397744A (en) Production of polyamide-imide resin prepreg
KR20240099060A (en) Preparation method of high thermal conductive polyimide composites film, and the polyimide composites film thereby
JP3198120B2 (en) Method for producing glassy carbon plate
JPH04314754A (en) Composition for producing flexible heat-resistant insulation sheet or film and flexible heat-resistant insulation sheet or film
JPH0588850B2 (en)