JPH0450092B2 - - Google Patents

Info

Publication number
JPH0450092B2
JPH0450092B2 JP12999085A JP12999085A JPH0450092B2 JP H0450092 B2 JPH0450092 B2 JP H0450092B2 JP 12999085 A JP12999085 A JP 12999085A JP 12999085 A JP12999085 A JP 12999085A JP H0450092 B2 JPH0450092 B2 JP H0450092B2
Authority
JP
Japan
Prior art keywords
cutting tool
cut
shaft material
back cutting
stepped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12999085A
Other languages
Japanese (ja)
Other versions
JPS61289940A (en
Inventor
Kunio Isobe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP12999085A priority Critical patent/JPS61289940A/en
Publication of JPS61289940A publication Critical patent/JPS61289940A/en
Publication of JPH0450092B2 publication Critical patent/JPH0450092B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Forging (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、軸材の段付成形法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a stepped forming method for shaft members.

[従来の技術] 一般に、軸材に段付けする場合には、軸材の段
付部に背切工具によつて切込を加えた後、径小化
部を鍛伸成形する。
[Prior Art] Generally, when a shaft member is stepped, a cut is made in the stepped portion of the shaft member using a back cutting tool, and then a reduced diameter portion is forged and formed.

すなわち、第2図に示すように、鍛造軸材1の
段付部の両側に一対の背切工具2を押当て、背切
工具2を金敷3によつて押込み、軸材1の段付部
に適当な深さの切込を加えた後、軸材1を所定角
度回転させて再び背切工具2による上記切込作業
を繰り返すことにより、軸材1の段付部の全周に
切込を加える。このとき、軸材1の軸心の部分は
軸方向の引張応力の作用の下に伸変形し、欠陥を
生ずることがある。この欠陥は通常、鍛造、熱処
理等の工程が終了し、黒皮研削後の超音波探傷検
査で初めて発見され、しかも軸材を再生不可能な
欠陥品としてしまう。また、たとえば大型の鍛鋼
品の製造には数週間ないし数ケ月かかることか
ら、鍛付成形時に欠陥を発生させることは、工程
管理、生産効率、歩留り等の面で非常な障害とな
る。
That is, as shown in FIG. 2, a pair of back cutting tools 2 are pressed against both sides of the stepped portion of the forged shaft material 1, and the back cutting tools 2 are pushed in with the anvil 3 to cut the stepped portion of the shaft material 1. After making a cut to an appropriate depth, the shaft material 1 is rotated by a predetermined angle and the above-mentioned cutting operation is repeated again using the back cutting tool 2, thereby cutting the entire circumference of the stepped portion of the shaft material 1. Add. At this time, the axial center portion of the shaft member 1 may expand and deform under the action of the tensile stress in the axial direction, resulting in defects. This defect is usually discovered only after the forging, heat treatment, etc. processes have been completed, and by ultrasonic flaw detection after grinding, and the shaft material becomes a defective product that cannot be recycled. Furthermore, since it takes several weeks to several months to manufacture large steel forgings, for example, the occurrence of defects during forging poses a serious hindrance in terms of process control, production efficiency, yield, and the like.

そこで、本出願人は、上記段付成形における欠
陥の発生を防止する段付成形法を、特願昭59−
158966号(特開昭61−37342)によつて既に提案
している。この既に提案している段付成形法は、
一対の背切工具の背切比t/R[tは軸材の半径
方向に対する背切工具の限界切込量、Rは背切工
具による当該切込加工前の軸材の径小化部の半
径]を、軸材に欠陥を発生させることのない許容
背切比(0.08+6/θ)[θは背切工具のくさび
角(度)]以下に設定するようにしたものである。
Therefore, the present applicant proposed a stepped forming method for preventing the occurrence of defects in the stepped forming described above, in the patent application filed in 1983-
This has already been proposed in No. 158966 (Japanese Unexamined Patent Publication No. 61-37342). This stepped forming method, which has already been proposed,
Back cutting ratio t/R of a pair of back cutting tools [t is the limit cutting amount of the back cutting tool in the radial direction of the shaft material, R is the diameter reduction part of the shaft material before the cutting process by the back cutting tool radius] is set below the allowable back cutting ratio (0.08+6/θ) [θ is the wedge angle (degrees) of the back cutting tool] without causing defects in the shaft material.

すなわち、上記既に提案している段付成形法に
よれば、段差の大きい軸材を成形する場合に、上
記限度内の切込を加え、径小化部を暫定的に成形
した後、再び切込を入れて径小化部を成形するこ
とを繰り返すことにより、欠陥の発生を防ぐこと
が可能となる。
That is, according to the stepped forming method already proposed above, when forming a shaft material with a large step, a cut within the above limit is added, the reduced diameter part is temporarily formed, and then the cut is made again. By repeatedly molding the diameter-reduced portion with a small amount of material, it is possible to prevent defects from occurring.

[発明が解決しようとする問題点] しかしながら、上記既に提案している段付成形
法にあつては、前記許容背切比によつて定まる欠
陥を発生させることのない限界切込量が比較的小
さい。したがつて、暫定的な径小化部の成形に時
間がかかり、鍛造軸材の温度が低下し、場合によ
つては鍛造軸材の加熱回数を増加する必要を生ず
る。
[Problems to be Solved by the Invention] However, in the stepped forming method already proposed above, the limit depth of cut without causing defects determined by the allowable back cut ratio is relatively small. small. Therefore, it takes time to form the temporary reduced diameter portion, the temperature of the forged shaft material decreases, and in some cases, it becomes necessary to increase the number of times the forged shaft material is heated.

本発明は、軸材に欠陥を発生させることのない
背切工具の限界切込量を拡張可能とすることを目
的とする。
An object of the present invention is to make it possible to expand the limit cutting depth of a back cutting tool without causing defects in the shaft material.

[問題点を解決するための手段] 本発明は、背切工具によつて軸材の段付部に切
込を加えた後、径小化部を鍛伸成形する軸材の段
付成形法において、上記段付部に加える仕込を、
くさび角θの一個の背切工具によつて段付部の片
側からのみ行ない、その限界切込量tを切込加工
前の軸材の半径Rに対して、 t/R≦0.15+(7.5/θ) 25度≦θ≦50度 に設定するようにしたものである。
[Means for Solving the Problems] The present invention provides a stepped forming method for a shaft material, in which a cut is made in the stepped portion of the shaft material using a back cutting tool, and then a diameter-reduced portion is forged and formed. , the preparation added to the stepped section is
A back cutting tool with a wedge angle θ is used to cut only from one side of the stepped part, and the limit cutting depth t is set to the radius R of the shaft material before cutting, t/R≦0.15+(7.5 /θ) 25 degrees≦θ≦50 degrees.

[作用] 本発明によれば、第1図に示すように、背切工
具2を用いて、鍛造軸材1の段付部の片側からの
み切込を加えることにより、軸材1の軸心に発生
する軸方向引張応力を大幅に低減し、また軸方向
伸歪も小とすることが可能となる。したがつて、
背切工具2による切込を前記限界切込量の範囲で
より深く設定する場合にも、軸材1に欠陥を発生
させることがない。すなわち、軸材に欠陥を発生
させることのない背切工具の限界切込量を拡張す
ることが可能となる。
[Function] According to the present invention, as shown in FIG. 1, the axial center of the shaft material 1 is cut by cutting only from one side of the stepped portion of the forged shaft material 1 using the back cutting tool 2. It becomes possible to significantly reduce the axial tensile stress generated in the axial direction, and also to reduce the axial elongation strain. Therefore,
Even when the cut by the back cutting tool 2 is set deeper within the range of the above-mentioned limit cut amount, defects will not occur in the shaft material 1. That is, it becomes possible to expand the limit cutting depth of the back cutting tool without causing defects in the shaft material.

[実施例] 以下、本発明成立の根拠について詳細に説明す
る。
[Example] Hereinafter, the basis for establishing the present invention will be explained in detail.

背切工具による段付成形時に、軸材の軸心に生
ずる歪の積分値は、背切工具の切込による材料の
軸方向伸びとなつて計測できる。そこで、直径
100mm、長さ145mmの白色プラステイシンビレツト
を作り、軸方向の標線間隔が85mmの標線をその円
周面に罫書き、その中央部にくさび角(頂角)θ
が45度の背切工具でビレツト一周に切込を加え、
その伸びを測定した。その伸びを第3図に示す。
ここで、図中の○印は従来のように一対の背切工
具で切込んだ場合の結果であるのに対し、●印は
本発明法による場合の結果であり、従来法と異な
る点は背切工具を1個とした点にある。すなわ
ち、第1図に示すように、平金敷3の上に軸材1
を置き、その上に1個の三角背切工具2を置いて
切込を加え、軸材1を少し回転しては切込むこと
を繰り返し、所定の深さまで切込む方法である。
本発明法によれば、軸方向の伸びは従来法より少
ないこと、すなわち軸心部の伸歪量は小さいこと
が認められる。
The integral value of the strain that occurs in the axial center of the shaft material during stepped forming using the back cutting tool can be measured as the axial elongation of the material due to the cutting depth of the back cutting tool. Therefore, the diameter
Make a white plasticine billet of 100 mm and length 145 mm, mark the circumferential surface with gauge lines with an axial gauge interval of 85 mm, and mark the wedge angle (apex angle) θ in the center.
Add a cut around the billet with a 45 degree back cutting tool,
The elongation was measured. The growth is shown in Figure 3.
Here, the ○ mark in the figure is the result when cutting with a pair of back cutting tools as in the conventional method, while the ● mark is the result when using the method of the present invention, and the difference from the conventional method is The point is that there is only one back cutting tool. That is, as shown in FIG.
In this method, a triangular spine cutting tool 2 is placed on top of the triangular cutting tool 2 to make a cut, and the shaft member 1 is rotated slightly and the cutting is repeated until the cut is made to a predetermined depth.
According to the method of the present invention, it is recognized that the elongation in the axial direction is smaller than that of the conventional method, that is, the amount of elongation and strain in the axial center portion is small.

また、同一寸法のビレツト軸心部に直径6mmの
小型圧力検出器を埋め込み、切込時の軸方向応力
を測定した結果を第4図に示す。ここで、図中の
○印は従来法による場合の結果であり、●印は本
発明法による場合の結果である。切込量の増大に
伴つて従来法、本発明法ともに軸方向引張応力は
増大するが、本発明法による場合の力が引張応力
が低いことが認められる。
In addition, a small pressure detector with a diameter of 6 mm was embedded in the axial center of a billet of the same size, and the axial stress at the time of cutting was measured. The results are shown in FIG. Here, the ○ marks in the figure are the results obtained by the conventional method, and the ● marks are the results obtained by the method of the present invention. Although the axial tensile stress increases with the increase in the depth of cut in both the conventional method and the method of the present invention, it is recognized that the tensile stress in the case of the method of the present invention is low.

すなわち、本発明法による場合には、背切工具
による切込時に、軸心部はより低い応力の作用の
下で伸変形するものの、その伸量も従来法より少
なく、したがつて軸心部に欠陥が発生しにくくな
ることが明らかである。
That is, in the case of the method of the present invention, although the axial center part expands and deforms under the action of a lower stress when making a cut with the back cutting tool, the amount of elongation is smaller than that of the conventional method, and therefore the axial center part It is clear that defects are less likely to occur.

ところで、背切工具による切込時に発生する上
記の応力、伸びは、いわゆる背切工具のくさび効
果によるものなので、くさび角θを小さくする
と、応力、伸びはそれぞれ小さくなり、より深く
切込んでも欠陥の発生がないこととなる。ここ
で、三角背切工具の使用方法を詳細に述べると、
第5図Aのように軸材1の左側の段付部を作るた
めにほぼくさび角θが45度の背切工具2の一方の
くさび面で切込を加えた後、引き続いて右側の段
付部のための切込を加えるが、この時、第5図A
に示すように、背切工具2を90度回転し、他方の
くさび面での切込を加える。そこで、断面が三角
形の三角背切工具2でくさび角θを小さく(θ<
45度)すると、第5図Bのように一方のくさび面
しか利用できず、第5図Aのように左右の段付部
の成形のためには、第5図Bの斜辺の向きと対称
な別の三角背切工具に取替える必要があり、ま
た、金敷3との接触幅が狭いため、不安定で、切
込時に回転してしまうおそれもある。しかしなが
ら、この問題は、第5図C、第6図に示すような
L字形の断面をしたL型背切工具2を用いること
により解決できる。すなわち、このL型背切工具
2によれば、くさび角が小さくても安定で、しか
も両くさび面を利用し、本発明による切込作業を
より深く、より能率的に行なうことが可能とな
る。
By the way, the stress and elongation mentioned above that occur when cutting with a back cutting tool are due to the so-called wedge effect of the back cutting tool, so if the wedge angle θ is made smaller, the stress and elongation will become smaller, and even if the cut is made deeper, defects will not occur. This means that there will be no occurrence of Here, we will explain in detail how to use the triangular back cutting tool.
As shown in Fig. 5A, in order to make a step on the left side of the shaft material 1, a cut is made with one wedge surface of the back cutting tool 2 whose wedge angle θ is approximately 45 degrees, and then the right step is made. Add a cut for the attachment part, but at this time, see Figure 5A.
As shown in , rotate the back cutting tool 2 90 degrees and make a cut with the other wedge surface. Therefore, we used a triangular back cutting tool 2 with a triangular cross section to reduce the wedge angle θ (θ<
45 degrees), only one wedge surface can be used as shown in Fig. 5B, and in order to form the left and right stepped parts as shown in Fig. 5A, the direction of the oblique side is symmetrical to that of Fig. 5B. It is necessary to replace it with another triangular spine cutting tool, and since the contact width with the anvil 3 is narrow, it is unstable and may rotate during cutting. However, this problem can be solved by using an L-shaped back cutting tool 2 having an L-shaped cross section as shown in FIGS. 5C and 6. That is, according to this L-shaped back cutting tool 2, it is stable even if the wedge angle is small, and moreover, by utilizing both wedge surfaces, it is possible to perform deeper and more efficient cutting operations according to the present invention. .

つぎに、本発明における背切工具の限界切込量
について、具体的実施結果に基づいて説明する。
Next, the limit depth of cut of the back cutting tool in the present invention will be explained based on specific implementation results.

(実施結果1) 1250℃に均一加熱された外径(2R)1500mm、
長さ3000mmのNi−CrMoV鋼からなる軸材につい
て、軸中央の長さ2000mmの両側に外径1000mmの径
小化部を成形するため、くさび角θが50度の背切
工具を用いて、本発明による段付成形法を行つ
た。すなわち、加熱炉から抽出した軸材を平金敷
上に載せて、更にその上に1個の三角背切工具を
おいてプレスにより圧下し、切込を加えた。切込
量はt=225mmであり、したがつて背切比はt/
R=225/750=0.3である。切込を加えた後、平
金敷で鍛伸成形し、外径1000mmまで鍛伸成形し
た。この鍛付軸材を熱処理、冷却後に、軸方向全
長にわたつて超音波探傷検査した結果、両段付部
軸心からは何の欠陥も検出されなかつた。この結
果を前記特願昭59−158966号に係る従来法による
場合と比較して示せば第7図の通りである。すな
わち、従来法においては、一対の三角背切工具
(くさび角θ=45度)で切込量t=225mm、すなわ
ち背込比t/R=0.3まで切込んだ場合に欠陥の
発生を見た。(第7図においてθ=45度の×印)。
そこで、従来法では、限界切込量をt/R=0.08
+6/θ以下とし、くさび角θ=45度の場合に上
記t/R=0.21であるから、切込量t=150mm
(t/R=0.2)まで切込を行なつて、径小化部を
外径1200mmに暫定的に加工した後、再び切込を加
えて外径1000mmの径小化部を成形した(第7図の
θ=45度の○印)。このように、従来法では切込
を2回に分けて行なつているが、本発明法によれ
ば、背切工具による1回の切込深さ、すなわち限
界切込量をt/R=0.3とするまで欠陥の発生が
見られなかつた。
(Execution result 1) Outer diameter (2R) 1500mm uniformly heated to 1250℃,
For a shaft material made of Ni-CrMoV steel with a length of 3000 mm, in order to form reduced diameter parts with an outer diameter of 1000 mm on both sides of the shaft center length of 2000 mm, a back cutting tool with a wedge angle θ of 50 degrees was used. A stepped molding method according to the present invention was carried out. That is, the shaft material extracted from the heating furnace was placed on a flat anvil, and one triangular back-cutting tool was placed on top of the shaft material, and it was pressed down with a press to make a cut. The depth of cut is t=225mm, so the back cut ratio is t/
R=225/750=0.3. After making the cuts, it was forged and stretched with a flat anvil until it reached an outer diameter of 1000mm. After heat treatment and cooling, this forged shaft material was subjected to ultrasonic flaw detection over its entire length in the axial direction, and as a result, no defects were detected from the axes of both stepped portions. The results are shown in FIG. 7 in comparison with the conventional method disclosed in Japanese Patent Application No. 59-158966. In other words, in the conventional method, defects were observed when cutting to a depth of cut t = 225 mm, that is, a back depth ratio t/R = 0.3, with a pair of triangular back cutting tools (wedge angle θ = 45 degrees). . (X mark at θ=45 degrees in Figure 7).
Therefore, in the conventional method, the limit depth of cut is t/R=0.08
+6/θ or less, and when the wedge angle θ = 45 degrees, the above t/R = 0.21, so the depth of cut t = 150 mm
(t/R=0.2) to temporarily machine the reduced diameter part to an outer diameter of 1200 mm, and then cut again to form a reduced diameter part with an outer diameter of 1000 mm. (○ mark at θ = 45 degrees in Figure 7). In this way, in the conventional method, the cutting is performed in two steps, but according to the method of the present invention, the depth of cut in one cut by the back cutting tool, that is, the limit depth of cut, is set as t/R= No defects were observed up to 0.3.

(実施結果2) 1180℃に均一加熱された外径(2R)1200mmの
3%Cr鋼塊の中央1550mmの両側に外径600mmの径
小化部を成形するため、くさび角θが25度の本発
明によるL型背切工具を用いた切込を加えた。軸
材を平金敷上に置き、更にその上に1個のL型背
切工具を置き、プレスにより圧下して切込量t=
270mmまで切込を加えた。切込の過程では、背切
工具が不安定に回転することもなく、従来のくさ
び角θがほぼ45度の三角背切工具による切込作業
と同様に円滑に作業ができた。その後、平金敷に
よつて外径600mmに成形した後、熱処理して冷却
した。その後、軸方向の全長にわたつて超音波探
傷検査したが、無欠陥であつた。この場合、背切
比はt/R=270/600=0.45であり、この結果を
第7図に示す。
(Execution result 2) In order to form reduced diameter parts with an outer diameter of 600 mm on both sides of the center 1550 mm of a 3% Cr steel ingot with an outer diameter (2R) of 1200 mm that was uniformly heated to 1180 °C, a wedge angle θ of 25 degrees was used. A cut was made using an L-shaped back cutting tool according to the present invention. Place the shaft material on a flat anvil, place an L-shaped back cutting tool on top of it, and press down with a press to make cutting depth t=
The depth of cut was added to 270mm. During the cutting process, the back cutting tool did not rotate unstablely, and the cutting process was carried out as smoothly as the conventional triangular back cutting tool with a wedge angle θ of approximately 45 degrees. Thereafter, it was molded to an outer diameter of 600 mm using a flat anvil, then heat treated and cooled. Thereafter, the entire length in the axial direction was subjected to ultrasonic flaw detection, and no defects were found. In this case, the back-cut ratio is t/R=270/600=0.45, and the results are shown in FIG.

(実施結果3) 第8図は、より広範な背切工具のくさび角θと
許容背切比t/Rとの関係を示す実施結果であ
り、○印は無欠陥を示し、×印は直径1.0mm相当以
下の超音波欠陥が存在したことを示す。
(Implementation Result 3) Figure 8 shows the results of implementation showing the relationship between the wedge angle θ and the allowable back cutting ratio t/R of a wider range of back cutting tools. This indicates that an ultrasonic defect of 1.0 mm or less was present.

なお、背切工具のくさび角θの適正範囲につい
ては、実験により、下記、を確認した。
Regarding the appropriate range of the wedge angle θ of the back cutting tool, the following was confirmed through experiments.

背切工具のくさび角θが50度を超えて大きく
なるほど(θ>50度)、切込み時における軸材
のだれ変形が大きくなり、背切工具の切れ味が
悪くなる。
As the wedge angle θ of the back cutting tool increases beyond 50 degrees (θ>50 degrees), the drooping deformation of the shaft material during cutting increases, and the sharpness of the back cutting tool deteriorates.

軸材の欠陥発生を防止する点からは、背切工
具のくさび角θを小とするほどよいが、くさび
角θが25度より小さくなると(θ<25度)、背
切工具切刃が薄くなり、熱間加工中に切刃の変
形、割れを生じてしまう。
From the point of view of preventing defects in the shaft material, the smaller the wedge angle θ of the back cutting tool, the better. However, if the wedge angle θ is smaller than 25 degrees (θ < 25 degrees), the cutting edge of the back cutting tool will become thinner. This results in deformation and cracking of the cutting edge during hot working.

すなわち、上記(実施結果1)、(実施結果2)、
(実施結果3)によれば、本発明における背切工
具の限界切込量は、第7図に網目線で示すような
領域、すなわちその限界切込量をtとし、切込加
工前の軸材の半径をRとするとき、 t/R≦0.15+(7.5/θ) ……(1) 25度≦θ≦50度 ……(2) で定まる範囲まで拡張可能であることが認められ
る。
That is, the above (implementation result 1), (implementation result 2),
According to (implementation result 3), the limit depth of cut of the back cutting tool in the present invention is defined as the area shown by the mesh line in FIG. When the radius of the material is R, it is recognized that it can be extended to the range determined by t/R≦0.15+(7.5/θ)...(1) 25 degrees≦θ≦50 degrees...(2).

したがつて、本発明によれば、1個の背切工具
による切込を加えることにより、従来法の一対の
三角背切工具で切込を行なうのね比べ、限界切込
量を深くとることが可能となる。これにより、軸
材に形成する段付量が大きい場合に、従来法のよ
うに限界切込量まで切込んで暫定的に径小化部を
成形する工程を省くことが可能となり、段付加工
の能率を向上し、場合によつては軸材に加える加
熱回数を減少することも可能となる。
Therefore, according to the present invention, by adding a depth of cut with one back cutting tool, the limit depth of cut can be made deeper than when cutting is performed with a pair of triangular back cutting tools in the conventional method. becomes possible. This makes it possible to omit the process of cutting to the limit depth of cut and temporarily forming a reduced diameter part, which is required in conventional methods, when the amount of steppedness to be formed on the shaft material is large. In some cases, it becomes possible to reduce the number of times the shaft material is heated.

[発明の効果] 以上のように、本発明は、背切工具によつて軸
材の段付部に切込を加えた後、径小化部を鍛伸成
形する軸材の段付成形法において、上記段付部に
加える切込を、くさび角θの一個の背切工具によ
つて段付部の片側からのみ行ない、その限界切込
量tを切込加工前の軸材の半径Rに対して、 t/R≦0.15+(7.5/θ) 25度≦θ≦50度 に設定するようにしたものである。したがつて、
軸材に欠陥を発生させることのない背切工具の限
界切込量を拡張することが可能となる。
[Effects of the Invention] As described above, the present invention provides a stepped forming method for a shaft material, in which a cut is made in the stepped portion of the shaft material using a back cutting tool, and then a diameter-reduced portion is forged and formed. In this case, the cut into the stepped part is made only from one side of the stepped part using a back cutting tool with a wedge angle θ, and the limit cutting depth t is set as the radius R of the shaft material before cutting. t/R≦0.15+(7.5/θ) 25 degrees≦θ≦50 degrees. Therefore,
It becomes possible to expand the limit cutting depth of the back cutting tool without causing defects in the shaft material.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施状態を示す正面図、第2
図は従来法を示す正面図、第3図はビレツトの切
込量と軸方向伸びとの関係を示す線図、第4図は
ビレツトの切込量と軸方向引張応力の関係を示す
線図、第5図A〜Cは背切工具の使用状態を示す
模式図、第6図はL型背切工具を示す正面図、第
7図は背切工具のくさび角と許容背切比との関係
を示す線図、第8図は背切工具のくさび角と許容
背切比と欠陥の有無との関係を示す相関図であ
る。 1……軸材、2……背切工具。
Fig. 1 is a front view showing the state of implementation of the present invention;
The figure is a front view showing the conventional method, Figure 3 is a diagram showing the relationship between billet depth of cut and axial elongation, and Figure 4 is a diagram showing the relationship between billet depth of cut and axial tensile stress. , Figures 5A to 5C are schematic diagrams showing how the back-cutting tool is used, Figure 6 is a front view showing the L-shaped back-cutting tool, and Figure 7 is a diagram showing the wedge angle of the back-cutting tool and the allowable back-cutting ratio. FIG. 8 is a diagram showing the relationship between the wedge angle of the back cutting tool, the allowable back cutting ratio, and the presence or absence of defects. 1... Shaft material, 2... Back cutting tool.

Claims (1)

【特許請求の範囲】 1 背切工具によつて軸材の段付部に切込を加え
た後、径小化部を鍛伸成形する軸材の段付成形法
において、上記段付部に加える仕込を、くさび角
θの一個の背切工具によつて段付部の片側からの
み行ない、その限界切込量tを切込加工前の軸材
の半径Rに対して、 t/R≦0.15+(7.5/θ) 25度≦θ≦50度 に設定することを特徴とする軸材の段付成形法。
[Scope of Claims] 1. In a stepped forming method for a shaft material in which a cut is made in a stepped portion of a shaft material using a back cutting tool, and then a diameter-reduced portion is forged and formed, the stepped portion is The additional preparation is performed only from one side of the stepped part using a back cutting tool with a wedge angle θ, and the limit cutting depth t is set as t/R≦ with respect to the radius R of the shaft material before cutting. 0.15+(7.5/θ) A stepped forming method for shaft material characterized by setting 25 degrees ≦ θ ≦ 50 degrees.
JP12999085A 1985-06-17 1985-06-17 Stepping forming method for shaft material Granted JPS61289940A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12999085A JPS61289940A (en) 1985-06-17 1985-06-17 Stepping forming method for shaft material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12999085A JPS61289940A (en) 1985-06-17 1985-06-17 Stepping forming method for shaft material

Publications (2)

Publication Number Publication Date
JPS61289940A JPS61289940A (en) 1986-12-19
JPH0450092B2 true JPH0450092B2 (en) 1992-08-13

Family

ID=15023424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12999085A Granted JPS61289940A (en) 1985-06-17 1985-06-17 Stepping forming method for shaft material

Country Status (1)

Country Link
JP (1) JPS61289940A (en)

Also Published As

Publication number Publication date
JPS61289940A (en) 1986-12-19

Similar Documents

Publication Publication Date Title
JP2007136487A (en) Method of hot forging
JPH0450092B2 (en)
CN111014952A (en) Welding method of cold-rolled 25# steel solid laser welding machine
JP3266053B2 (en) Anvil for free forging
JPS5844942A (en) Trimming method for end face of link for catapillar and its punching unit
JPS6365412B2 (en)
JP2002126940A (en) Method for shearing steel bar
JPS6358656B2 (en)
JP7489951B2 (en) Shear processing method and shear processing device
JPH02104432A (en) Manufacture of lengthwise complex cutter
JPS61115685A (en) Manufacture of seam welded steel tube
JPS5819373B2 (en) Forging method for metal materials
JPH09327743A (en) Crack generation preventing method in cogging
JP2003191011A (en) Method for manufacturing metallic tube
JPH0775848A (en) Forging method of stepped shaft material
JPS5817704B2 (en) Osmanthus Cylinder No. Seizouhouhou
JP2000312942A (en) Cold ring rolling method of non-symmetric shape ring and device therefor
CN111331064A (en) Forming method of large-size plate forging
JPS62284049A (en) Titanium alloy slab for hot rolling
SU946751A1 (en) Roll for cold cross wedge rolling
SU863116A1 (en) Method of drawing works of hard deformable metals and alloys
SU1196170A1 (en) Method of dividing rolled stock
JPH06238385A (en) Forging of stepped shaft stock
JPH06344029A (en) Bending crack preventing method and working line
JPH10192901A (en) Manufacture of round billet for manufacturing seamless steel tube good in workability