JPH0449889B2 - - Google Patents

Info

Publication number
JPH0449889B2
JPH0449889B2 JP59230278A JP23027884A JPH0449889B2 JP H0449889 B2 JPH0449889 B2 JP H0449889B2 JP 59230278 A JP59230278 A JP 59230278A JP 23027884 A JP23027884 A JP 23027884A JP H0449889 B2 JPH0449889 B2 JP H0449889B2
Authority
JP
Japan
Prior art keywords
lens barrel
declination
detection means
east
switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59230278A
Other languages
Japanese (ja)
Other versions
JPS61110007A (en
Inventor
Masahiro Nakamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OOTAKE SEISAKUSHO JUGEN
Original Assignee
OOTAKE SEISAKUSHO JUGEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OOTAKE SEISAKUSHO JUGEN filed Critical OOTAKE SEISAKUSHO JUGEN
Priority to JP23027884A priority Critical patent/JPS61110007A/en
Publication of JPS61110007A publication Critical patent/JPS61110007A/en
Publication of JPH0449889B2 publication Critical patent/JPH0449889B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Telescopes (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は赤道儀における鏡筒の向きの検出装置
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a device for detecting the orientation of a lens barrel in an equatorial mount.

[従来技術] この種従来の赤道儀Xは、第3図に示すように
赤経微動イと赤緯微動ロを手で回すことにより赤
経軸ハと赤緯軸ニの先端部が矢印方向に各々回動
し、赤緯軸ニ先端の筒受けホに挟持した鏡筒ヘを
任意の方向に向けることが可能であり、その際の
赤経と赤緯の変位は赤経軸ハ及び赤緯軸ニに各々
環設された赤経目盛環ト及び赤緯目盛環チにて見
取るものであつた。
[Prior art] This kind of conventional equatorial mount It is possible to rotate the lens barrel, which is held in the tube holder E at the tip of the declination axis D, in any direction, and the displacement of right ascension and declination at that time can be adjusted according to the right ascension axis C and the declination axis. This can be seen from the right ascension scale ring and the declination scale ring ring, which are placed on each of the latitude and latitude axes.

ところが近年、赤道儀Xの赤経軸ハと赤緯軸ニ
にモーターを取りつけてこれをマイクロコンピユ
ーター(以下マイコン)にて制御し、単にマイコ
ンのキーボードを操作するのみで赤経軸ハと赤緯
軸ニを目指す天体に向けて回転させたり、あるい
は赤経軸ハと赤緯軸ニに各々インクリメント型ロ
ータリーエンコーダを環設して各々の回転量を読
み取り、これをマイコンにて演算処理し現在鏡筒
ヘが向いている方向の赤経値と赤緯値をデジタル
表示させるといつた試みが多々為されている。し
かるに、こういつたマイコンを使用して赤経軸ハ
と赤緯軸ニを回転させたり赤経値と赤緯値を表示
しようとする場合には、赤緯に関して次のような
問題が発生する。
However, in recent years, motors have been attached to the right ascension and declination axes of the equatorial mount You can rotate axis 2 toward the target celestial body, or install incremental rotary encoders on right ascension axis and declination axis 2 to read the amount of rotation of each axis, process this with a microcomputer, and use the current mirror. Many attempts have been made to digitally display the right ascension and declination values of the direction in which the tube is facing. However, when using such a microcontroller to rotate the right ascension axis C and declination axis D, or to display the right ascension and declination values, the following problems regarding declination will occur. .

つまり赤緯は天の北極で+90°、天の赤道で0°、
天の南極で−90°となるから、第4図に示すよう
に鏡筒ヘが赤緯60°を向くといつた場合には鏡筒
ヘが東方向を向いた状態と西方向を向いた状態の
2通りあることになる。(尚、この場合の西東は
便宜上のものであり赤経軸ハに対し右側を東、左
側を西としている。)そこでマイコンcに赤緯50°
の指示を与えた場合には、マイコンcは演算して
モーターmに10°分だけ赤緯軸ニを回転させる指
令信号を出すことになるが、第4図から判るよう
に、モーターmは赤緯軸ニを鏡筒ヘが東方向のと
きは右回転させ、西方向のときは左回転させねば
ならないことになる。つまり鏡筒ヘの向きによつ
てマイコンcはモーターmの回転方向を逆にしな
ければならないのである。
In other words, the declination is +90° at the celestial north pole, 0° at the celestial equator,
Since the angle is -90° at the celestial south pole, if we say that the lens barrel is oriented toward a declination of 60° as shown in Figure 4, the lens barrel will be facing east and west. There are two possible states. (In this case, west-east is for convenience, and the right side of the right ascension axis C is east, and the left side is west.) Therefore, microcontroller c is set to 50° declination.
When an instruction is given, microcomputer c calculates and issues a command signal to motor m to rotate the declination axis N by 10 degrees, but as can be seen from Figure 4, motor m The latitude axis must be rotated clockwise when the lens barrel is in the east direction, and counterclockwise when it is in the west direction. In other words, the microcomputer c must reverse the direction of rotation of the motor m depending on the orientation toward the lens barrel.

一方、第6図に示すインクリメント型ロータリ
ーエンコーダeを使用して赤緯軸ニの回転量を読
みとりマイコンcで演算処理して赤緯値を表示し
ようとする場合にも鏡筒ヘの向きによる問題が発
生する。
On the other hand, when attempting to read the rotation amount of the declination axis D using the incremental rotary encoder e shown in Fig. 6 and display the declination value by processing it with the microcomputer c, there is also a problem due to the orientation to the lens barrel. occurs.

つまりこのロータリーエンコーダeは、発光ダ
イオードリ,リ′から発しスリツト板ヌの左右ス
リツトル,ル′群を通つた光が、赤緯軸ニに環着
した回転板ヲ周辺部全域に亘り周方向等間隔に貫
刻したスリツトワ群を透過すると、これをフオト
ダイオードカ,カ′によつて電流に変え整流回路
ヨを経て2つの矩形波列CW,CCWとして出力
するものであり(第7図参照)、この2つの矩形
波列CW,CCWは位相が90°(電気角)ずれて発生
するからこれをいずれか先に到達した時点で残る
一方の矩形波列CW,CCWを遮断するゲート回
路タを介せばゲート回路タからは赤緯軸ニの回転
方向によりいずれか一方の矩形波列CW,CCW
のみがマイコンcに入力されることになり、当該
マイコンcにこの矩形波列CW,CCWを計数さ
せて赤緯軸ニの変位量を測定させ、現在内部に記
憶している赤緯値に例えば矩形波列CWが入力さ
れた場合には加算させ、矩形波列CCWが入力さ
れた場合には減算させて赤緯値を表示させようと
する場合、第5図イに示すように鏡等ヘが東方向
に向いた状態のときは、右回転をすればロータリ
ーエンコーダeにより2つの矩形波列CW,
CCWが出力されゲート回路タで矩形波列CWが
遮断され矩形波列CCWが出力されるから、マイ
コンcはこれを計数して内部に記憶している赤緯
値から減算して表示し、左回転をしたときは逆に
マイコンcには矩形波列CWが入力されるから加
算して表示することになる。ところが第5図ロに
示すように鏡筒ヘが西方向に向いた状態ではこれ
が逆になつてしまうことになる。
In other words, in this rotary encoder e, the light emitted from the light emitting diode ri' and passed through the left and right slits of the slit plate nu, and the slit plate nu, is transmitted over the entire peripheral area of the rotary plate, which is attached to the declination axis, in the circumferential direction, etc. When the wave passes through a group of slits etched at intervals, it is converted into current by a photodiode and outputted as two rectangular wave trains CW and CCW via a rectifier circuit (see Figure 7). Since these two rectangular wave trains CW and CCW are generated with a phase difference of 90 degrees (electrical angle), a gate circuit is required to cut off the remaining rectangular wave trains CW and CCW when they arrive at whichever comes first. Then, the gate circuit outputs either one of the rectangular wave trains CW or CCW depending on the direction of rotation of the declination axis.
will be input to the microcomputer c, and the microcomputer c will count these rectangular wave trains CW and CCW to measure the amount of displacement of the declination axis N, and add it to the currently internally stored declination value, for example. If you want to display the declination value by adding when the rectangular wave train CW is input and subtracting when the rectangular wave train CCW is input, the When the is facing east, rotating clockwise will generate two rectangular wave trains CW,
CCW is output, the gate circuit blocks the rectangular wave train CW, and the rectangular wave train CCW is output. When rotating, the rectangular wave train CW is input to the microcomputer c, so it is added and displayed. However, as shown in Figure 5B, when the lens barrel faces west, this becomes the opposite.

つまり鏡筒ヘが右回転すればマイコンcには矩
形波列CCWが入力されるのであるからマイコン
cは内部に記憶している赤緯値から減算して表示
することになるが、鏡筒ヘが西向きの状態で右回
転するいうことは赤緯は高くなるのであるから、
マイコンcは記憶している赤緯値に加算して表示
しなければならないのであり、同様に左回転した
時には減算して表示しなければならないのであ
る。即ち鏡筒ヘの向きによつてはマイコンcは、
内部の演算処理を逆にしなくてはならないのであ
る。
In other words, when the lens barrel rotates clockwise, the rectangular wave train CCW is input to the microcomputer c, so the microcomputer c subtracts it from the internally stored declination value and displays it. If it rotates to the right while facing west, the declination will be higher, so
Microcomputer c must add the value to the stored declination value and display it, and similarly, when the vehicle rotates to the left, it must subtract and display the value. In other words, depending on the orientation to the lens barrel, the microcomputer c can
The internal arithmetic processing must be reversed.

以上のように赤道儀Xをマイコンcにて制御し
ようとする際には、0°〜90°〜0°〜−90°という赤
緯目盛の特殊性により鏡筒ヘの向きによつてモー
ターmの回転方向を逆転させたり、ロータリーエ
ンコーダeより得られる信号の処理を逆にする必
要があるため、常にマイコンcには鏡筒ヘの向き
を指示しなくてはならないのである。
As mentioned above, when trying to control the equatorial mount X with the microcomputer c, the motor m Since it is necessary to reverse the direction of rotation of the lens and reverse the processing of the signal obtained from the rotary encoder e, it is necessary to always instruct the microcomputer c about the direction of the lens barrel.

[発明が解決しようとする問題点] しかして本発明はこういつた赤道儀を制御する
マイコンに対し鏡筒の向きを検知入力する赤道儀
における鏡筒東西方向の検出方法及び装置を提供
せんとするものである。
[Problems to be Solved by the Invention] However, it is an object of the present invention to provide a method and apparatus for detecting the east-west direction of the lens barrel in an equatorial mount, which detects and inputs the orientation of the lens barrel to a microcomputer that controls such an equatorial mount. It is something to do.

[問題点を解決するための手段] 本発明装置は赤緯軸の下固定側に環着された赤
緯目盛環上の目盛+90°から−90°の片側半周に沿
つて延在した被検知手段と、前記赤緯軸の鏡筒と
一体回転する上回転側に前記被検知手段を回転摺
れ違い時検知自在に設けた検知手段とからなるも
のである。
[Means for Solving the Problems] The device of the present invention has a declination scale ring attached to the lower fixed side of the declination axis. and a detection means, which is provided with the detection means on the upper rotation side of the declination axis that rotates integrally with the lens barrel, so as to be able to detect rotational misalignment.

[実施例] 次に本発明装置を第1図乃至第2図につき説明
する。
[Example] Next, the apparatus of the present invention will be explained with reference to FIGS. 1 and 2.

本発明装置Aは、赤緯軸1の下固定側1aに環
設された赤緯目盛環2上の指示+90°から−90°の
左片側半周に亘り赤緯目盛環2沿いに突出延在し
た被検知手段たる半円環形突片3と、赤緯軸1の
上回転側1b外周1側の赤緯目盛環2を中に挟ん
で半円環形突片3と対向可能な位置に固定され、
前記半円環形突片3上に先端が触接自在なスイツ
チバー4を片持突出した検知手段たるマイクロス
イツチ5よりなる。図中6は上回転側1b頂端に
T字状に形成した筒受け1cに調節設定自在に挿
着した鏡筒で、上回転側1bを中心として一体回
転する。
The device A of the present invention protrudes and extends along the declination scale ring 2 over a half-circle on the left side from +90° to -90° indicated on the declination scale ring 2 provided on the lower fixed side 1a of the declination axis 1. The declination scale ring 2 on the upper rotation side 1b outer periphery 1 side of the declination axis 1 is sandwiched between the semicircular protrusion 3, which is the detected means, and the declination scale ring 2 is fixed at a position where it can face the semicircular protrusion 3. ,
It consists of a micro switch 5 which is a detection means and has a switch bar 4 whose tip can be freely touched on a cantilever projecting on the semi-circular projection piece 3. In the figure, reference numeral 6 denotes a lens barrel that is adjustably inserted into a tube holder 1c formed in a T-shape at the top end of the upper rotation side 1b, and rotates integrally around the upper rotation side 1b.

なお被検知手段および検知手段はこれに限定さ
れず、赤緯軸1および赤緯目盛環2を非磁性体と
し被検知手段を磁性体とするとともに、検知手段
を近接スイツチとして下固定側1aと上回転側1
bの摺れ合端面に埋込んで外部に露呈しないよう
にしても良く、また検知手段を光や超音波を検出
媒体とする反射形検知スイツチとしても一向に構
わない。
Note that the detected means and the detection means are not limited to these, but the declination axis 1 and the declination scale ring 2 are made of non-magnetic materials, the detected means is made of a magnetic material, and the detection means is a proximity switch, which is connected to the lower fixed side 1a. Upper rotation side 1
It may be embedded in the sliding end surface of b so as not to be exposed to the outside, or the detection means may be a reflective detection switch using light or ultrasonic waves as a detection medium.

[作用] 本発明装置Aは以上のように構成するから、鏡
筒6を東方向に向けたときにはスイツチバー4が
半円環形突片3からはずれマイクロスイツチ5は
on状態となり、逆に西方向に向いた時にはスイ
ツチバー4が突片3上に乗り上がりマイクロスイ
ツチ5はoff状態となり鏡筒6の向きによつてon,
off2つの切換操作信号たる接点信号を得ることが
できる。したがつて適宜手段を介して接続される
マイコンは、この接点信号により鏡筒6の向きを
判別切換操作することができるから、前述の赤緯
50°という指示に対してモーターmをいずれの方
向に切換回転させるべきかを判定して正しい方向
にモーターmを切換回転させたり、又入力されて
くる矩形波列CW,CCWを計数して加算すべき
か減算すべきかを判定切換操作して正確に赤緯値
を表示することができることになる。
[Function] Since the device A of the present invention is constructed as described above, when the lens barrel 6 is directed eastward, the switch bar 4 is disengaged from the semicircular protrusion 3 and the micro switch 5 is
On the other hand, when facing west, the switch bar 4 rides on the protrusion 3 and the micro switch 5 is turned off, depending on the orientation of the lens barrel 6.
It is possible to obtain contact signals that are two switching operation signals, OFF. Therefore, a microcomputer connected via an appropriate means can determine and switch the orientation of the lens barrel 6 based on this contact signal, so that the above-mentioned declination can be changed.
Determines in which direction motor m should be rotated in response to an instruction of 50°, and rotates motor m in the correct direction.It also counts and adds the input rectangular wave sequences CW and CCW. This means that the declination value can be accurately displayed by performing a switching operation to determine whether it should be subtracted or not.

[効果] 以上のように本発明は赤道儀を制御するマイコ
ンにとつて極めて重要な情報となる鏡筒の向きを
検知するものであつて、赤道儀のマイコン制御に
おいて極めて優れた効果を奏する。
[Effects] As described above, the present invention detects the orientation of the lens barrel, which is extremely important information for a microcomputer that controls an equatorial mount, and has extremely excellent effects in microcomputer control of an equatorial mount.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は赤道儀における鏡筒東西方向の検出装
置の一実施例を示す構成図、第2図は第1図−
線視断面図、第3図は赤道儀の側面図、第4図
乃至第5図イ,ロはマイコンを使用した赤道儀の
欠陥説明図、第6図乃至第7図は各々インクリメ
ント型ロータリーエンコーダの概略的斜面図とそ
の出力並形図である。 A……赤道儀における鏡筒東西方向の検出装
置、1……赤緯軸、1a……下固定側、1b……
上回転側、2……赤緯目盛環、3……突片、4…
…スイツチバー、5……マイクロスイツチ、6…
…鏡筒。
Fig. 1 is a configuration diagram showing an embodiment of a detector for detecting the east-west direction of the lens barrel in an equatorial mount, and Fig.
Linear sectional view, Figure 3 is a side view of the equatorial mount, Figures 4 and 5 A and B are illustrations of defects in the equatorial mount using a microcomputer, and Figures 6 and 7 are incremental rotary encoders. A schematic slope diagram and its output parallel diagram. A... Device for detecting the east-west direction of the lens barrel in the equatorial mount, 1... Declination axis, 1a... Lower fixed side, 1b...
Upper rotation side, 2...Declination scale ring, 3...Protrusion piece, 4...
...Switch bar, 5...Micro switch, 6...
...lens barrel.

Claims (1)

【特許請求の範囲】 1 赤緯軸の下固定側に環着された赤緯目盛環上
の目盛+90°から−90°の片側半周に沿つて延在し
た被検知手段と、前記赤緯軸の鏡筒と一体回転す
る上回転側に前記被検知手段を回転摺れ違い時検
知自在に設けた検知手段とからなる赤道儀におけ
る鏡筒東西方向の検出装置。 2 被検知手段と検知手段は、突出延在した半円
環形突片と、回転摺れ違い時当該突片に接触自在
なスイツチバーを突出するマイクロスイツチであ
る特許請求の範囲第1項記載の赤道儀における鏡
筒東西方向の検出装置。 3 被検知手段と検知手段は、磁性体と無接点ス
イツチである特許請求の範囲第1項記載の赤道儀
における鏡筒東西方向の検出装置。 4 検知手段は、光や超音波を媒体とする反射形
検知スイツチである特許請求の範囲第1項記載の
赤道儀における鏡筒東西方向の検出装置。
[Scope of Claims] 1. A detection means extending along one half circumference of the scale from +90° to -90° on a declination scale ring attached to the lower fixed side of the declination axis; 1. A detection device for detecting the east-west direction of a lens barrel in an equatorial mount, comprising a detection means provided on an upper rotation side that rotates integrally with the lens barrel so as to be able to detect when rotational misalignment occurs. 2. The equator according to claim 1, wherein the detection means and the detection means are a semicircular protrusion that extends and a micro switch that protrudes a switch bar that can freely come into contact with the protrusion when the rotations and slides slip. A detection device for the east-west direction of the lens barrel. 3. The detection device for the east-west direction of the lens barrel in an equatorial mount according to claim 1, wherein the detection means and the detection means are a magnetic body and a non-contact switch. 4. The detection device for the east-west direction of the lens barrel in an equatorial mount according to claim 1, wherein the detection means is a reflective detection switch using light or ultrasonic waves as a medium.
JP23027884A 1984-11-02 1984-11-02 Method and apparatus for detecting east and west direction of lens barrel in equatorial telescope Granted JPS61110007A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23027884A JPS61110007A (en) 1984-11-02 1984-11-02 Method and apparatus for detecting east and west direction of lens barrel in equatorial telescope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23027884A JPS61110007A (en) 1984-11-02 1984-11-02 Method and apparatus for detecting east and west direction of lens barrel in equatorial telescope

Publications (2)

Publication Number Publication Date
JPS61110007A JPS61110007A (en) 1986-05-28
JPH0449889B2 true JPH0449889B2 (en) 1992-08-12

Family

ID=16905295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23027884A Granted JPS61110007A (en) 1984-11-02 1984-11-02 Method and apparatus for detecting east and west direction of lens barrel in equatorial telescope

Country Status (1)

Country Link
JP (1) JPS61110007A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5364056A (en) * 1976-11-18 1978-06-08 Hewlett Packard Yokogawa Location surveying instrument capable of measuring distance and angle

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5364056A (en) * 1976-11-18 1978-06-08 Hewlett Packard Yokogawa Location surveying instrument capable of measuring distance and angle

Also Published As

Publication number Publication date
JPS61110007A (en) 1986-05-28

Similar Documents

Publication Publication Date Title
US5746005A (en) Angular position sensor
US4584577A (en) Angular position sensor
US4320293A (en) Angle-position transducer
GB1514648A (en) Sensor for measuring angular motion about a vertical axis
JP2006119082A (en) Steering angle detecting device
US3902252A (en) Magnetic field directional sensor
JPS63272322A (en) Apparatus for detecting curvature of leading end part of endoscope
US4139951A (en) Remote indicating compass
JP6926434B2 (en) Encoder device, drive device, stage device, and robot device
JPH0449889B2 (en)
JPH0241854A (en) Position reading system of machine tool part capable of being turned at 360×
US4954803A (en) Magnetic-resistor sensor and a magnetic encoder using such a sensor
JPH02120613A (en) Azimuth meter
JPH11118517A (en) Sensor for body of rotation
US3233245A (en) Folded trace for recorders
JP2602908B2 (en) Rotation angle detector
JPS5845510A (en) Rotary encoder
JPH0318712A (en) Earth magnetism azimuth sensor
JP2578842B2 (en) Azimuth measuring method by optical azimuth measuring device and apparatus used for the azimuth measuring method
JPH03183911A (en) Digital resolver
GB2067755A (en) Magnetic compass
JPH01263520A (en) Plotter apparatus for bearing lane
JPH07324945A (en) Position detection apparatus
JPH04152208A (en) Explosion-proof optical encoder
JPS6392281A (en) Auxiliary magnetic field positioning device