JPH0449840Y2 - - Google Patents

Info

Publication number
JPH0449840Y2
JPH0449840Y2 JP1987128677U JP12867787U JPH0449840Y2 JP H0449840 Y2 JPH0449840 Y2 JP H0449840Y2 JP 1987128677 U JP1987128677 U JP 1987128677U JP 12867787 U JP12867787 U JP 12867787U JP H0449840 Y2 JPH0449840 Y2 JP H0449840Y2
Authority
JP
Japan
Prior art keywords
layer
electrode
light
moisture
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1987128677U
Other languages
Japanese (ja)
Other versions
JPS6433189U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1987128677U priority Critical patent/JPH0449840Y2/ja
Publication of JPS6433189U publication Critical patent/JPS6433189U/ja
Application granted granted Critical
Publication of JPH0449840Y2 publication Critical patent/JPH0449840Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Description

【考案の詳細な説明】[Detailed explanation of the idea]

[産業上の利用分野] この考案は、交流電圧によりエレクトロルミネ
センス発光する面状光源としての分散型EL発光
素子に関する。 [従来の技術とその問題点] 最近、液晶デイスプレイ等の面状光源として分
散型EL発光素子が注目されている。 一般に、分散型EL発光素子は、シアノエチル
セルロース等の有機バインダに蛍光体粒子を分散
させた発光層と、この発光層に積層して設けられ
シアノエチルロース等の高誘電率誘電体物質にチ
タン酸バリウム粉末等の白色高誘電率誘電体粉末
を混合されてなる反射絶縁層と、これら発光層及
び反射絶縁層を挟持して積層された一対の電極層
と、これら電極層に積層された一対の補水層と、
これら発光層、反射絶縁層、一対の電極及び一対
の補水層を包囲する一対の防湿保護層とから成つ
ている。 上記電極層は、反射絶縁層に積層されアルミニ
ウム等の導電金属からなる背面電極と、I.T.O等
の透明電極とから成つており、好適には、これら
両電極は専用インバータを介して交流電極に接続
されている。また、上記補水層は、ナイロン6等
の吸湿透性透明樹脂フイルムから成つており、こ
れら吸湿性透明樹脂フイルムは熱加圧によつて電
極層に熱圧着されている。 そして、このように構成された分散型EL発光
素子は、厚さが1.5ミリ以下であつて、幅を15〜
300ミリとし、長さを20〜500ミリとする大きさを
有している。 しかしながら、従来、このような分散型EL発
光素子では、厚さが薄いので、どうしても、発光
平面の中心部に対し周縁部が反つてしまい、一様
に平坦な発光平面が形成されないという不都合が
あつた。そして、液晶デイスプレイ等では、分散
型EL発光素子をバツク照明として組み込む収容
空間が規制されているので、このような周縁部の
反つた分散型EL発光素子は液晶デイスプレイ等
のバツク照明として用いられないか、強制的な外
からの力で無理に収容空間に挿入したとしても、
収容空間からはみ出して液晶面等と接触するか或
いは液晶面を持ち上げるという問題があつた。 従つて、この考案は、上述の事情に鑑みなされ
たものであつて、その目的とするところは、周縁
部の反りを極めて減少させた分散型EL発光素子
を提供することにある。 [問題点を解決するための手段] 本考案者は、分散型EL発光素子における「反
り」に関し、種々な考案をした結果、以下の簡単
な構造にて解決できることを見い出した。 即ち、分散型EL発光素子が、有機バインダ中
に均一に分散されたEL(エレクトロルミネセン
ス)発光蛍光体粒子を含む発光層と、この発光層
を挟持し材質の異なる透明電極及び背面電極から
なる一対の電極層と、発光層と接した各電極の内
面と対向する外面に熱圧着により積層され水分を
吸収することができ少なくとも一方が透光性であ
る一対の補水層と、発光層、電極層及び補水層を
包囲し、外気からの水分を略遮断し、周縁端部を
封止された一対の透光性防湿フイルムからなる防
湿保護層とから構成される場合、背面電極側の補
水層の厚さが透明電極側の厚さより厚くされてな
ることにより、この考案の目的は達成される。 [作用] 分散型EL発光素子の「反り」の主原因は、電
極層の構成材料の違いによる熱膨張率の相違と、
電極層に補水層を熱圧着することによる補水層の
収縮力とである。言い換えれば、例えば、透明電
極がポリエステルフイルムに、酸化錫を含有した
酸化インジウム微粉を塗布した構造であるとき、
この透明電極の線膨張率は約1.5×10-5/cm・
degであるのに対し、アルミニウムからなる背面
電極の線膨張率は約2.3×10-5/cm・degと、透
明電極の線膨張率の約1.5倍もある。このため、
分散型EL発光素子全体が温度上昇したとき、透
明電極と背面電極との膨張率の相違によつて分散
型EL発光素子の透明電極側が縮み、背面電極側
が延びる。そして、この場合、透明電極及び背面
電極に熱圧着された補水層の各々には常時収縮力
が負荷されているので、分散型EL発光素子にお
ける「反り」が大きくなる。 しかしながら、本考案によれば、背面電極側の
補水層の厚さが透明電極側の厚さより厚くされて
いるので、背面電極側の補水層の収縮力が背面電
極の膨張力に有効により大きく作用し、一方、透
明電極側の補水層の収縮力がより少なくなるの
で、ほぼ「反り」をなくすることができる。 また、防湿保護層における透明電極側を透光性
防湿フイルムが3弗化塩素エチレン材からなり、
一方、背面電極側の透光性防湿フイルムが、アル
ミニウム箔層を有した積層プラスチツク材からな
つている場合、背面電極側を周縁部の「反る」現
象が顕著に生起するが、この考案によれば、背面
電極側の補水層の厚さをさらに厚くすることによ
り、上記と同様に、背面電極側の補水層の収縮力
によつて背面電極側の透光性防湿フイルムによる
「反り」を補正することができる。 [実施例] 以下、図面を参照しながら、この考案の実施例
について説明する。 第1図には、この考案による分散型EL発光素
子の模式断面図が示されている。この分散型EL
発光素子は、発光層1及び絶縁反射層2と、これ
ら発光層1及び絶縁反射層2を挟持した電極層、
即ち、透明電極3及び背面電極4と、これら透明
電極3及び背面電極4に熱圧着により積層された
補水槽5,6と、これら発光層1、絶縁反射層
2、透明電極3、背面電極4及び補水槽5,6を
包囲して周縁端部を熱圧着により封止された防湿
性保護層7,8とから成つている。 発光層1は、例えば、銅で付活されると共に臭
素で共付活された硫化亜鉛蛍光体(ZnS:Cu,
Br)、銅で付活されると共にアルミニウム及び塩
素で共付活された硫化亜鉛蛍光体(ZnS:Cu,
Al,Cl)、マンガン付活硫化亜鉛蛍光体等の蛍光
体粒子を高誘電比率の有機バインダ溶液に分散さ
せ、この分散液を絶縁反射層2に乾燥塗布するこ
とにより、形成されている。 絶縁反射層2は、発光層1と同様な有機バイン
ダ溶液にチタン酸バリウム等の強誘電物質の粉末
を溶解させ、この溶解液を背面電極4に塗布乾燥
することにより、形成されている。 透明電極3は、ITO(酸化錫酸化インジウム合
金)等の透明導電性膜をコートしたポリエステル
フイルムから成つている。一方、背面電極はアル
ミニウム箔から成つている。 補水槽5,6は6−ナイロンから成つており、
200℃の温度で20Kg/cm2の圧力で各電極層3,4
に熱圧着されている。 防湿性保護層7,8は、内面にポリエチレン等
の熱可塑性樹脂を被覆された3弗化塩化エチレン
から成つており、各周縁端部は150℃の温度で20
Kg/cm2の圧力でヒートシール器により熱圧着して
封止されている。 このような構成の分散型EL発光素子において、
厚さの構成を示すと、発光層1ならびに、絶縁反
射層2が40μ、透明電極3が100μ、背面電極4が
100μ、補水槽5が100μ、補水槽6が200μ、吸湿
性保護層7,8が、100μである。ここで、特に
注目すべきことには、補水槽6の厚さは、補水槽
5の厚さの2倍に設けられていることである。 このような構成の分散型EL発光素子を以下の
大きさのものを製作した。 即ち、20mm×200mm,20mm×400mm,50mm×200
mm,50mm×400mm,100mm×200mm,100mm×400mm,
200mm×200mm及び400mm×400mmの8種類について
[Industrial Application Field] This invention relates to a distributed EL light-emitting element as a planar light source that emits electroluminescence using an alternating current voltage. [Prior art and its problems] Recently, distributed EL light emitting elements have been attracting attention as planar light sources for liquid crystal displays and the like. In general, a dispersed EL light-emitting element includes a light-emitting layer in which phosphor particles are dispersed in an organic binder such as cyanoethyl cellulose, and a barium titanate layer laminated on this light-emitting layer. A reflective insulating layer made of a mixture of white high-permittivity dielectric powder such as powder, a pair of electrode layers laminated with the light emitting layer and reflective insulating layer sandwiched therebetween, and a pair of water replenishing layers laminated on these electrode layers. layer and
It consists of a pair of moisture-proof protective layers surrounding the light-emitting layer, a reflective insulating layer, a pair of electrodes, and a pair of water replenishment layers. The above electrode layer consists of a back electrode laminated on a reflective insulating layer and made of a conductive metal such as aluminum, and a transparent electrode such as ITO, and preferably both of these electrodes are connected to an AC electrode via a dedicated inverter. has been done. Further, the water replenishing layer is made of a moisture-absorbing transparent resin film such as nylon 6, and these moisture-absorbing transparent resin films are thermocompression bonded to the electrode layer by heat pressurization. The dispersed EL light emitting device configured in this way has a thickness of 1.5 mm or less and a width of 15 mm to 15 mm.
It has a size of 300 mm and a length of 20 to 500 mm. However, conventionally, such distributed EL light-emitting elements have the disadvantage that, because of their thin thickness, the peripheral edge inevitably warps with respect to the center of the light-emitting plane, making it impossible to form a uniformly flat light-emitting plane. Ta. In addition, for LCD displays, etc., there are restrictions on the space in which distributed EL light emitting elements can be installed as back lighting, so such distributed EL light emitting elements with curved edges cannot be used as back lighting for LCD displays, etc. Or, even if it is forcibly inserted into the containment space by forced external force,
There was a problem that the liquid crystal surface protruded from the housing space and came into contact with the liquid crystal surface or the like or lifted the liquid crystal surface. Therefore, this invention was made in view of the above-mentioned circumstances, and its purpose is to provide a distributed EL light-emitting element in which the warpage of the peripheral portion is extremely reduced. [Means for Solving the Problems] The inventor of the present invention has made various ideas regarding the "warpage" in the distributed EL light emitting element, and has found that the problem can be solved with the following simple structure. That is, a dispersed EL light-emitting element consists of a light-emitting layer containing EL (electroluminescence) light-emitting phosphor particles uniformly dispersed in an organic binder, and a transparent electrode and a back electrode made of different materials that sandwich this light-emitting layer. A pair of electrode layers, a pair of water replenishment layers that are laminated by thermocompression bonding on the inner surface of each electrode that is in contact with the light emitting layer, and the opposite outer surface of each electrode and are capable of absorbing moisture and at least one of which is translucent; the light emitting layer, and the electrode. and a moisture-proof protective layer consisting of a pair of translucent moisture-proof films that surround the layer and the water replenishment layer, substantially block moisture from the outside air, and have their peripheral edges sealed, the water replenishment layer on the back electrode side. The object of this invention is achieved by making the thickness of the transparent electrode thicker than that of the transparent electrode side. [Effect] The main causes of "warpage" in distributed EL light emitting devices are differences in thermal expansion coefficient due to differences in the constituent materials of the electrode layers, and
This is the shrinkage force of the water replenishment layer due to thermocompression bonding of the water replenishment layer to the electrode layer. In other words, for example, when the transparent electrode has a structure in which fine indium oxide powder containing tin oxide is applied to a polyester film,
The linear expansion coefficient of this transparent electrode is approximately 1.5×10 -5 /cm・
deg, whereas the coefficient of linear expansion of the back electrode made of aluminum is approximately 2.3×10 -5 /cm·deg, which is approximately 1.5 times the coefficient of linear expansion of the transparent electrode. For this reason,
When the temperature of the entire distributed EL light emitting device increases, the transparent electrode side of the distributed EL light emitting device contracts and the back electrode side extends due to the difference in expansion coefficient between the transparent electrode and the back electrode. In this case, shrinkage force is constantly applied to each of the water replenishing layers thermocompression bonded to the transparent electrode and the back electrode, so that "warpage" in the distributed EL light emitting element becomes large. However, according to the present invention, since the thickness of the water replenishment layer on the back electrode side is thicker than the thickness on the transparent electrode side, the contraction force of the water replenishment layer on the back electrode side effectively affects the expansion force of the back electrode. On the other hand, since the shrinkage force of the water replenishing layer on the transparent electrode side is reduced, "warpage" can be almost eliminated. In addition, a transparent moisture-proof film is made of chlorine trifluoride ethylene material on the transparent electrode side of the moisture-proof protective layer.
On the other hand, when the translucent moisture-proof film on the back electrode side is made of a laminated plastic material with an aluminum foil layer, the phenomenon of "warping" of the peripheral edge on the back electrode side occurs significantly. According to the above, by increasing the thickness of the water replenishment layer on the back electrode side, the shrinkage force of the water replenishment layer on the back electrode side can prevent the "warping" caused by the translucent moisture-proof film on the back electrode side. Can be corrected. [Example] Hereinafter, an example of this invention will be described with reference to the drawings. FIG. 1 shows a schematic cross-sectional view of a distributed EL light emitting device according to this invention. This distributed EL
The light emitting element includes a light emitting layer 1, an insulating reflective layer 2, an electrode layer sandwiching the light emitting layer 1 and the insulating reflective layer 2,
That is, the transparent electrode 3 and the back electrode 4, the water refill tanks 5 and 6 laminated on the transparent electrode 3 and the back electrode 4 by thermocompression bonding, and the light emitting layer 1, the insulating reflective layer 2, the transparent electrode 3, and the back electrode 4. and moisture-proof protective layers 7 and 8 surrounding the water replenishment tanks 5 and 6 and having their peripheral edges sealed by thermocompression bonding. The light-emitting layer 1 is made of, for example, a zinc sulfide phosphor (ZnS:Cu,
Br), zinc sulfide phosphor activated with copper and coactivated with aluminum and chlorine (ZnS:Cu,
It is formed by dispersing phosphor particles such as Al, Cl) or manganese-activated zinc sulfide phosphor in an organic binder solution with a high dielectric ratio, and drying and applying this dispersion to the insulating reflective layer 2. The insulating reflective layer 2 is formed by dissolving powder of a ferroelectric substance such as barium titanate in an organic binder solution similar to that of the light emitting layer 1, and applying this solution to the back electrode 4 and drying it. The transparent electrode 3 is made of a polyester film coated with a transparent conductive film such as ITO (tin oxide indium oxide alloy). On the other hand, the back electrode is made of aluminum foil. The water replenishment tanks 5 and 6 are made of 6-nylon.
Each electrode layer 3, 4 at a temperature of 200℃ and a pressure of 20Kg/ cm2
It is heat-pressed. The moisture-proof protective layers 7 and 8 are made of trifluorochlorinated ethylene coated with a thermoplastic resin such as polyethylene on the inner surface, and each peripheral edge is heated to 20°C at a temperature of 150°C.
It is sealed by thermocompression bonding using a heat sealer at a pressure of Kg/cm 2 . In a distributed EL light emitting element with such a configuration,
The thickness of the light emitting layer 1 and the insulating reflective layer 2 is 40μ, the transparent electrode 3 is 100μ, and the back electrode 4 is 40μ.
The thickness of the refill tank 5 is 100μ, the thickness of the refill tank 6 is 200μ, and the thickness of the hygroscopic protective layers 7 and 8 is 100μ. What should be particularly noted here is that the thickness of the refill tank 6 is twice the thickness of the refill tank 5. Dispersed EL light emitting devices with such a configuration were fabricated with the following sizes. i.e. 20mm x 200mm, 20mm x 400mm, 50mm x 200
mm, 50mm×400mm, 100mm×200mm, 100mm×400mm,
About 8 types of 200mm x 200mm and 400mm x 400mm

【表】 まず、背面電極4側の防湿性保護層8′はポリ
エステルフイルム部12μに30μのアルミニウム蒸
着部9を設け、このアルミニウム蒸着部9にポリ
エチレン部30μをコートしたものを使用してい
る。 次に、補水槽5及び6′は6−ナイロンから構
成されているが、透明電極3側の補水槽5の厚さ
が100μと上述の実施例と同様であるのに対し、
背面電極4側の補水槽6′の厚さが250μと厚くさ
れている。 このように構成された分散型EL発光素子を上
述と同様にして中心部からコーナー部への最大変
位量を測定し、それらの平均値を求めた。その結
果、表2に示されるように、極めて「反り」のな
い平坦な平面が得られた。 [発明の効果] 以上、説明したように、この考案によれば、簡
単な構造により、「反り」のない平坦な平面を有
した分散型EL発光素子が得られた。
First, the moisture-proof protective layer 8' on the back electrode 4 side is made of a polyester film section 12μ with a 30μ aluminum vapor deposition section 9, which is coated with a 30μ polyethylene section. Next, the water tanks 5 and 6' are made of 6-nylon, but the water tank 5 on the transparent electrode 3 side is 100μ thick, the same as in the above embodiment,
The thickness of the water tank 6' on the rear electrode 4 side is made thicker at 250μ. The maximum displacement from the center to the corners of the dispersed-type EL light-emitting device thus constructed was measured in the same manner as described above, and the average value was calculated. As a result, as shown in Table 2, a flat surface with extremely little "warping" was obtained. [Effects of the Invention] As described above, according to this invention, a dispersed-type EL light-emitting device having a flat surface with no "warping" was obtained with a simple structure.

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この考案の一実施例による分散型
EL発光素子の部分断面図、第2図は、この考案
の変形例による分散型EL発光素子の部分断面図
である。 1……発光層、2……絶縁反射層、3……透明
電極、4……背面電極、5,6,6′……補水槽、
7,8,8′……防湿性保護層、9……アルミニ
ウム蒸着部。
Figure 1 shows a distributed system according to an embodiment of this invention.
FIG. 2 is a partial sectional view of a distributed EL light emitting device according to a modification of this invention. 1... Light emitting layer, 2... Insulating reflective layer, 3... Transparent electrode, 4... Back electrode, 5, 6, 6'... Refilling tank,
7, 8, 8'... Moisture-proof protective layer, 9... Aluminum vapor deposited part.

Claims (1)

【実用新案登録請求の範囲】 (1) 有機バインダ中に均一に分散されたEL(エレ
クトロルミネセンス)発光蛍光体粒子を含む発
光層と、この発光層を挟持し材質の異なる透明
電極及び背面電極からなる一対の電極層と、上
記発光層と接した各電極の内面と対向する外面
に熱圧着により積層され水分を吸収することが
でき少なくとも一方が透光性である一対の補水
層と、上記発光層、電極層及び補水層を包囲
し、外気からの水分を略遮断し、周縁端部を封
止された一対の透光性防湿フイルムからなる防
湿保護層とから構成される分散型EL発光素子
において、上記背面電極側の補水層の厚さが透
明電極側の厚さより厚くされてなることを特徴
とする分散型EL発光素子。 (2) 上記電極層は、酸化錫を含有した酸化インジ
ウム微粉を蒸着したポリエステルフイルムから
なる透明電極と、アルミニウムからなる背面電
極とから構成されており、上記補水層は同一の
ナイロン材からなつており、上記背面電極に積
層された補水層の厚さは、透明電極に積層され
た補水層の厚さの約2倍であることを特徴とす
る実用新案登録請求の範囲第1項に記載の分散
型EL発光素子。 (3) 上記電極層は、酸化錫を含有した酸化インジ
ウム微粉を塗布したポリエステルフイルムから
なる透明電極と、アルミニウムからなる背面電
極とから構成され、また、上記防湿保護層にお
ける透明電極側の透光性防湿フイルムが3弗化
塩化エチレン材からなり、一方、背面電極側の
透光性防湿フイルムが、アルミニウム箔層を有
した積層プラスチツク材からなつており、上記
補水層は同一のナイロン材からなつており、上
記背面電極に積層された補水層の厚さは、透明
電極に積層された補水層の厚さの約2.5倍であ
ることを特徴とする実用新案登録請求の範囲第
1項に記載の分散型EL発光素子。
[Claims for Utility Model Registration] (1) A light-emitting layer containing EL (electroluminescence) light-emitting phosphor particles uniformly dispersed in an organic binder, and a transparent electrode and a back electrode sandwiching this light-emitting layer and made of different materials. a pair of water replenishment layers which are laminated by thermocompression bonding on the inner surface and opposite outer surface of each electrode in contact with the light emitting layer and are capable of absorbing moisture and at least one of which is translucent; Dispersed EL light-emitting device consisting of a moisture-proof protective layer consisting of a pair of translucent moisture-proof films that surrounds the light-emitting layer, electrode layer, and water replenishment layer, substantially blocks moisture from the outside air, and has its peripheral edges sealed. 1. A distributed EL light emitting device, characterized in that the thickness of the water replenishing layer on the back electrode side is greater than the thickness on the transparent electrode side. (2) The above electrode layer is composed of a transparent electrode made of a polyester film on which indium oxide fine powder containing tin oxide is deposited, and a back electrode made of aluminum, and the above water replenishment layer is made of the same nylon material. and the thickness of the water replenishment layer laminated on the back electrode is approximately twice the thickness of the water replenishment layer laminated on the transparent electrode. Dispersed EL light emitting element. (3) The electrode layer is composed of a transparent electrode made of a polyester film coated with fine indium oxide powder containing tin oxide, and a back electrode made of aluminum. The transparent moisture-proof film is made of ethylene trifluorochloride, while the transparent moisture-proof film on the back electrode side is made of a laminated plastic material with an aluminum foil layer, and the water replenishing layer is made of the same nylon material. and the thickness of the water replenishment layer laminated on the back electrode is about 2.5 times the thickness of the water replenishment layer laminated on the transparent electrode, as set forth in claim 1 of the utility model registration claim. Dispersed EL light emitting device.
JP1987128677U 1987-08-24 1987-08-24 Expired JPH0449840Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1987128677U JPH0449840Y2 (en) 1987-08-24 1987-08-24

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1987128677U JPH0449840Y2 (en) 1987-08-24 1987-08-24

Publications (2)

Publication Number Publication Date
JPS6433189U JPS6433189U (en) 1989-03-01
JPH0449840Y2 true JPH0449840Y2 (en) 1992-11-24

Family

ID=31382240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1987128677U Expired JPH0449840Y2 (en) 1987-08-24 1987-08-24

Country Status (1)

Country Link
JP (1) JPH0449840Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4657144A (en) * 1985-02-25 1987-04-14 Philip Morris Incorporated Method and apparatus for detecting and removing foreign material from a stream of particulate matter

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6134892A (en) * 1984-07-27 1986-02-19 アルプス電気株式会社 Method of producing electroluminescent element

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6134892A (en) * 1984-07-27 1986-02-19 アルプス電気株式会社 Method of producing electroluminescent element

Also Published As

Publication number Publication date
JPS6433189U (en) 1989-03-01

Similar Documents

Publication Publication Date Title
US5469019A (en) Thin electroluminescent lamp and process for fabricating the same
JP2002208478A (en) Electroluminescent element
JPH0449840Y2 (en)
EP0188881B1 (en) Electroluminescence device
JPH06223972A (en) El panel structural body
JPH0765950A (en) Dispersion type el element
US5246789A (en) AC powder type EL panel and method of manufacturing the same
EP0202330A1 (en) Electroluminescent panels.
JPH02192691A (en) El luminous element
JP2003068447A (en) El lamp and its manufacturing method
JPH08288066A (en) Dispersed powder type electroluminescent element
JPH0629913Y2 (en) Distributed EL light emitting device
JPH02177293A (en) Electroluminescence element
JP2000260561A (en) El panel
JPS6251192A (en) Electric field light emitting element
US3052811A (en) Electroluminescent cell
JPH0422369Y2 (en)
JPH06223969A (en) Organic dispersion type el panel
JP2000164348A (en) El panel
JP2774542B2 (en) Manufacturing method of dispersion type EL element
JPH0439679Y2 (en)
JPH0115117Y2 (en)
JPH0824073B2 (en) Electroluminescent device and method of manufacturing the same
JPH07122367A (en) Dispersion type field emission element
JPH06223968A (en) Organic dispersion type el panel