JPH04496B2 - - Google Patents

Info

Publication number
JPH04496B2
JPH04496B2 JP20109484A JP20109484A JPH04496B2 JP H04496 B2 JPH04496 B2 JP H04496B2 JP 20109484 A JP20109484 A JP 20109484A JP 20109484 A JP20109484 A JP 20109484A JP H04496 B2 JPH04496 B2 JP H04496B2
Authority
JP
Japan
Prior art keywords
polyamide
imide resin
molar ratio
reduced viscosity
japanese patent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP20109484A
Other languages
Japanese (ja)
Other versions
JPS6178835A (en
Inventor
Hiroshi Nishizawa
Toichi Sakata
Yoshuki Mukoyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP20109484A priority Critical patent/JPS6178835A/en
Publication of JPS6178835A publication Critical patent/JPS6178835A/en
Publication of JPH04496B2 publication Critical patent/JPH04496B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

産業䞊の利甚分野 本発明は耐熱性、溶融流動性、機械匷床および
経枈性にすぐれたポリアミドむミド暹脂の補造法
に関する 埓来技術 埓来、射出成圢が可胜な熱可塑性ポリアミドむ
ミド暹脂ずしおは、アモコ瀟補の商品名「トヌロ
ン」が知られおいる。これは耐熱性熱軟化枩
床玄285℃にすぐれおいるが、溶融流動性に
乏しく、特殊な成圢機が必芁ずされるなど䜿甚䞊
の制玄がある。この溶融流動性を著しく改善した
射出成圢甚ポリ゚ヌテルむミドずしお、ゞ゚ネラ
ル・゚レクトリツク瀟補の商品名「りルテム」が
あるが、耐熱性熱軟化枩床玄210℃が䞍十
分であり、250℃皋床の耐熱ハンダ性が芁求され
る甚途に䜿甚できない。したが぀お、耐熱性は
「トヌロン」に近く、溶融流動性は「りルテム」
に近い熱可塑性成圢材料が埅望されおいる。 䞊蚘したバランスのずれた耐熱性ず溶融流動性
をめざした熱可塑性ポリアミドむミド暹脂ずし
お、特開昭55−129421号公報、特開昭56−112933
号公報、特開昭58−79019号公報、特開昭58−
79020号公報、特開昭58−91723号公報、特開昭58
−91724号公報、特開昭58−91727号公報などに提
案されおいる。しかしながら、これらはポリアミ
ドむミド暹脂の䞻芁な構成材料ずしお高䟡なゞア
ミノゞプニル゚ヌテル、ポリ゚ヌテルゞアミン
又はゞアミノゞプニルスルホンなどを䜿甚する
ため経枈性の面で極めお䞍利であり、したが぀
お、汎甚の甚途には䞍適である。 安䟡なポリアミドむミド暹脂の補造法ずしおは
特に熱可塑性暹脂に限定しなければ、叀くから数
倚く知られおいる。安䟡なポリアミドむミド暹脂
の代衚的な補造法ずしおは次の぀の方法が知ら
れおいる。 (1) む゜シアネヌト法トリメリツト酞無氎物ず
ゞプニルメタン−4′−ゞむ゜シアネヌト
ずを反応させる方法たずえば、特公昭44−
19274号公報、特開昭54−44719号公報、特開昭
50−70452号公報、特開昭57−125220号公報。 (2) アミン法トリメリツト酞無氎物ず4′−
ゞアミノゞプニルメタンを反応させる方法
たずえば、特公昭49−4077号公報、特開昭57
−14622号公報、特開昭52−104596号公報。 䞊蚘の(1)、(2)の法で埗られるポリアミドむミド
暹脂を熱可塑性成圢材料ずしお怜蚎した結果、双
方ずも汎甚な芳銙族二成分系で埗られるため耐熱
性ず経枈性は十分であるが、溶融流動性が極めお
䜎いレベルのものしか埗られないこずがわか぀
た。たた、トリメリツト酞クロラむドず4′−
ゞアミノゞプニルメタンずを反応させる酞クロ
ラむド法は䞍十分な溶融流動性に加えお、副生す
る塩化氎玠の陀去粟補に極めお䞍経枈なプロセス
を必芁ずする点で、経枈性に欠けるたずえば、
特公昭42−15637号公報、特開昭57−182323号公
報。 本発明者らは、(2)のアミン法におけるトリメリ
ツト酞無氎物又はその誘導䜓ず4′−ゞアミノ
ゞプニルメタンの二成分に加えお、特定量のむ
゜フタル酞ずラクタムの二成分を特定の割合で䜵
甚するこずにより、驚くべきこずに、む゜フタル
酞ずラクタムのそれぞれ単独成分で倉性したもの
では埗られない、高床な溶融流動性が埗られるこ
ず、その結果、䞊蚘した耐熱性、溶融流動性、機
械匷床および経枈性のバランスにすぐれた熱可塑
性ポリアミドむミド暹脂が埗られるこずを芋いだ
した。 む゜フタル酞ずラクタムは工業的に安䟡な材料
であ぀お、経枈性の䞍利をもたらさない。 (1)のむ゜シアネヌト法で埗られるポリアミドむ
ミド暹脂にラクタムの単独成分を䜵甚するこずは
知られおいるたずえば、特公昭46−29730号公
報、特公昭56−34209号公報、特公昭58−18926号
公報、特開昭56−41218号公報。 たた、(1)のむ゜シアネヌト法で埗られるポリア
ミドむミド暹脂にむ゜フタル酞ずラクタムの二成
分を䜵甚するこずも既に知られおいるたずえ
ば、特公昭53−47157号公報、特開昭50−25698号
公報、特開昭53−106795号公報、特開昭58−
208323号公報、特開昭58−80326号公報。 しかし、(1)のむ゜シアネヌト法で埗られるポリ
アミドむミド暹脂は溶液重合法で埗られ、合成溶
媒ずしおはクレゟヌルなどの酞性溶媒か−メチ
ルピロリドンなどの塩基性溶媒が甚いられる。酞
性溶媒が甚いられる堎合には高分子量のポリアミ
ドむミド暹脂ができないため、耐熱性、機械的特
性に劣る。たた、塩基性溶媒が甚いられる堎合に
は奜たしくない副反応が生起するため溶融流動性
が著しく損なわれる欠点がある。 (2)のアミン法で埗られるポリアミドむミド暹脂
にむ゜フタル酞の単独成分を䜵甚するこずは知ら
れおいる特公昭49−4077号公報、特開昭57−
14622号公報。(2)のアミン法は副反応が比范的生
起しにくく、すぐれた溶融流動性の発珟が可胜で
あるが、しかし、む゜フタル酞の単独成分の倉性
では本発明の目的ずするバランスのずれた性胜
ずくに溶融流動性が埗られない。 たた、(2)のアミン法でむ゜フタル酞ず特定量の
ラクタムの二成分を䜵甚するこずも知られおいる
特公昭56−17374号公報。しかし、甚いるラク
タムの䜿甚量が倚過ぎるため、熱軟化枩床の䜎い
重合䜓しか埗られないずいう問題がある。 発明の目的 本発明は、䞊蚘した欠点のない耐熱性熱軟化
枩床、溶融流動性、機械匷床および経枈性のバ
ランスにすぐれたポリアミドむミド暹脂の補造法
を提䟛するこずを目的ずするものである。 発明の構成 本発明は、 () トリメリツト酞無氎物又はその誘導䜓 () 4′−ゞアミノゞプニルメタン () む゜フタル酞 () ラクタム を極性溶媒䞭、脱氎觊媒の存圚䞋で、を
0.03〜0.25モル比、
を 0.08〜0.25モル比および
 に察しおをほが等モルずなる割合
で反応させお、還元粘床を0.40以䞊ずするポリア
ミドむミド暹脂の補造法に関する。 本発明におけるトリメリツト酞無氎物の誘導䜓
ずしおは、トリメリツト酞、トリメリツト酞無氎
物ずアルコヌルずの゚ステル化物、䟋えばトリメ
リツト酞無氎物のメタノヌルハヌプステル化物
などが甚いられる。 トリメリツト酞無氎物又はその誘導䜓ずしおは
トリメリツト酞無氎物が奜たしく甚いられる。 本発明におけるラクタムずしおは䞀般匏 匏䞭、は〜20の敎数を衚わす のラクタムが甚いられる。奜たしくは、ε−カプ
ロラクタムが甚いられる。 本発明における極性溶媒ずしおは、生成するポ
リアミドむミド暹脂をよく溶解し、沞点が180℃
以䞊のものが奜たしく甚いられる。䟋えば−メ
チルピロリドン、−゚チルピロリドン、−ブ
チルピロリドン、プノヌル、クレゟヌル、キシ
レノヌル、スルホランなどが甚いられる。−メ
チルピロリドンが奜たしく甚いられる。 本発明における脱氎觊媒ずしおは、䟋えば䟡
又は䟡の有機ないし無機のりん化合物、䞀酞化
鉛、ホり酞、無氎ホり酞などが甚いられる。りん
酞、トリプニルホスプヌト、ホり酞、無氎ホ
り酞が奜たしく甚いられる。 む゜フタル酞は0.03
〜 0.25モル比はトリメリツト酞無氎物又
はその誘導䜓であるずなる割合で甚いられる。
0.03未満では溶融流動性が䜎䞋し、0.25を越える
ず耐熱性が䜎䞋する。 ラクタムは0.08〜0.
25モ ル比ずなる割合で甚いられる。0.08未満では溶
融流動性が䜎䞋し、0.25を越えるず耐熱性が著し
く䜎䞋する。特に、耐熱性ず溶融流動性のバラン
スを考慮するず、を0.
08〜 0.15モル比、を0.
10〜0.18 モル比ずなる割合で甚いるこずが奜たしい。 酞成分ずアミン成分の䜿
甚割合はに察するをほが等モ
ルずなるように甚いる。特に、
 1.02〜0.98モル比ずなる割合で甚いるこずが
奜たしい。 脱氎觊媒はに察しお0.1〜10重量
の範囲、ずくに〜重量の範囲が奜たしく
甚いられる。 重合は反応系から副生する氎を留去しながら進
めるこずが奜たしい。 重合濃床は反応初期では40〜50重量皋床でよ
く、反応埌期は高枩を保持するために65重量付
近に高濃床化するこずが奜たしい。 重合は、第䞀段階のむミド化、第二段階の高分
子量化によ぀お行なわれるが、重合枩床は、第䞀
段階のむミド化には160〜180℃皋床で行ない、第
二段階の高分子量化には205〜210℃付近で行なう
のが奜たしい。 本発明によ぀お補造されるポリアミドむミド暹
脂の還元粘床ゞメチルホルムアミド、0.5
dl、30℃は0.40以䞊ずされる。0.40未満である
ず機械匷床が劣る。 本発明によ぀お補造されるポリアミドむミド暹
脂は重合反応が終了埌、末端基封鎖剀で末端基を
封鎖するこずができる。 このような末端基封鎖剀ずしおは無氎フタル
酞、安息銙酞、無氎酢酞、アニリン、−ブチル
アミン、プニルむ゜シアネヌトなどが甚いられ
る。末端基を封鎖するこずにより、成圢時の熱安
定性が向䞊する。 本発明の補造法によ぀お埗られるポリアミドむ
ミド暹脂は重合終了埌の溶液に必芁に応じお曎に
䞊蚘した極性溶媒か䜎沞点の䞀般有機溶媒、䟋え
ば、クロロホルム、テトラヒドロフラン、ゞオキ
サン、トル゚ン、キシレンなどを加えお垌釈され
る。 本発明の補造法によ぀お埗られるポリアミドむ
ミド暹脂は溶液の状態でもあるいは粉末の状態で
も䜿甚できる。たた、必芁に応じお異皮重合䜓、
添加剀、充填剀、補匷剀などをブレンドするこず
ができる。 本発明におけるポリアミドむミド暹脂は必芁に
応じお成圢埌に熱凊理200〜300℃で〜24時
間するこずにより、物性を著しく向䞊させるこ
ずができる。 本発明の補造法によ぀お埗られるポリアミドむ
ミド暹脂は、䞻に熱可塑性成圢材料ずしおの甚途
に適しおいるが、他の甚途に䟛するこずももちろ
ん可胜である。䟋えば、耐熱塗料、耐熱シヌト、
耐熱接着剀、耐熱積局材料、耐熱摺動材料、耐熱
繊維、耐熱フむルムなどに有甚である。 発明の効果〕 本発明によ぀お、耐熱性、溶融流動性、機械匷
床及び経枈性のバランスにすぐれたポリアミドむ
ミド暹脂を埗るこずができる。 実斜䟋 以䞋、本発明を実斜䟋及び比范䟋によ぀お説
明する。 実斜䟋 
(Industrial Application Field) The present invention relates to a method for producing polyamide-imide resin that has excellent heat resistance, melt flowability, mechanical strength, and economic efficiency. (Prior Art) Conventionally, as a thermoplastic polyamide-imide resin that can be injection molded, The product name ``Torlon'' manufactured by Amoco is well known. Although it has excellent heat resistance (thermal softening temperature: approximately 285°C), it has limitations in use, such as poor melt flowability and the need for a special molding machine. There is a polyetherimide for injection molding with significantly improved melt flowability under the trade name ``Ultem'' manufactured by General Electric Company, but it has insufficient heat resistance (thermal softening temperature: approximately 210°C) and Cannot be used in applications that require heat-resistant solderability at temperatures around ℃. Therefore, the heat resistance is close to that of Torlon, and the melt fluidity is similar to that of Ultem.
There is a long-awaited need for a thermoplastic molding material similar to As a thermoplastic polyamide-imide resin aiming at the above-mentioned well-balanced heat resistance and melt fluidity, Japanese Patent Laid-Open Nos. 1983-129421 and 1982-112933 disclose
No. 79019, JP 58-79019, JP 58-
Publication No. 79020, Japanese Patent Application Laid-Open No. 1982-91723, Japanese Patent Application Publication No. 1983
This method has been proposed in JP-A-91724, Japanese Patent Laid-Open No. 58-91727, etc. However, these are extremely disadvantageous in terms of economy because they use expensive diaminodiphenyl ether, polyether diamine, or diaminodiphenylsulfone as the main constituent material of the polyamide-imide resin, and are therefore not suitable for general purpose use. It is unsuitable for Many methods for producing inexpensive polyamide-imide resins have been known for a long time, unless they are specifically limited to thermoplastic resins. The following two methods are known as typical methods for manufacturing inexpensive polyamide-imide resins. (1) Isocyanate method: A method of reacting trimellitic anhydride with diphenylmethane-4,4'-diisocyanate (for example,
Publication No. 19274, Japanese Patent Publication No. 54-44719, Japanese Patent Publication No. 1987-44719
50-70452, JP-A-57-125220). (2) Amine method: trimellitic anhydride and 4,4'-
A method of reacting diaminodiphenylmethane (for example, Japanese Patent Publication No. 49-4077, Japanese Unexamined Patent Application Publication No. 1988-57)
-14622, Japanese Patent Application Laid-open No. 104596/1983). As a result of examining the polyamide-imide resins obtained by methods (1) and (2) above as thermoplastic molding materials, it was found that both have sufficient heat resistance and economic efficiency because they are obtained as general-purpose aromatic two-component systems. It was found that only a very low level of melt fluidity could be obtained. In addition, trimellitic acid chloride and 4,4'-
The acid chloride method, which involves reacting with diaminodiphenylmethane, is uneconomical in that it has insufficient melt fluidity and requires an extremely uneconomical process to remove and purify by-product hydrogen chloride (for example,
(Japanese Patent Publication No. 42-15637, Japanese Patent Application Laid-open No. 182323/1983). In addition to the two components of trimellitic anhydride or its derivative and 4,4'-diaminodiphenylmethane in the amine method of (2), the present inventors added specific amounts of the two components of isophthalic acid and lactam to Surprisingly, by combining isophthalic acid and lactam in the same proportions, it is possible to obtain a high degree of melt fluidity that cannot be obtained by modifying each component individually.As a result, the heat resistance and melt fluidity described above are obtained. It was discovered that a thermoplastic polyamide-imide resin with an excellent balance of mechanical strength and economical efficiency can be obtained. Isophthalic acid and lactam are industrially inexpensive materials and pose no economic disadvantage. It is known that a single component of lactam is used in combination with the polyamide-imide resin obtained by the isocyanate method (1) (for example, Japanese Patent Publication No. 46-29730, Japanese Patent Publication No. 56-34209, Japanese Patent Publication No. 58-18926). (Japanese Patent Application Laid-open No. 56-41218). Furthermore, it is already known that the two components of isophthalic acid and lactam are used in combination with the polyamideimide resin obtained by the isocyanate method (1) (for example, Japanese Patent Publication No. 53-47157, Japanese Patent Application Laid-open No. 50-25698). Publication, JP-A-53-106795, JP-A-58-
208323, Japanese Patent Application Laid-Open No. 1983-80326). However, the polyamide-imide resin obtained by the isocyanate method (1) is obtained by a solution polymerization method, and the synthesis solvent used is an acidic solvent such as cresol or a basic solvent such as N-methylpyrrolidone. When an acidic solvent is used, a high molecular weight polyamideimide resin cannot be produced, resulting in poor heat resistance and mechanical properties. Furthermore, when a basic solvent is used, undesirable side reactions occur, resulting in a disadvantage that melt fluidity is significantly impaired. It is known that a single component of isophthalic acid is used in combination with the polyamide-imide resin obtained by the amine method (2) (Japanese Patent Publication No. 49-4077, JP-A-57-
14622). In the amine method (2), side reactions are relatively unlikely to occur and it is possible to develop excellent melt fluidity. (especially melt fluidity) cannot be obtained. It is also known to use the two components of isophthalic acid and a specific amount of lactam together in the amine method (2) (Japanese Patent Publication No. 17374/1982). However, since the amount of lactam used is too large, there is a problem in that only a polymer with a low heat softening temperature can be obtained. (Object of the invention) The object of the present invention is to provide a method for producing a polyamide-imide resin that does not have the above-mentioned drawbacks and has an excellent balance of heat resistance (thermal softening temperature), melt fluidity, mechanical strength, and economic efficiency. It is something. (Structure of the Invention) The present invention provides the following steps: () trimellitic anhydride or its derivative () 4,4'-diaminodiphenylmethane () isophthalic acid () lactam in a polar solvent in the presence of a dehydration catalyst, () ()/()+()=0.03~0.25 (molar ratio), (
) is reacted with () / () + () = 0.08 to 0.25 (molar ratio) and () + () in a ratio of almost equimolar ratio of () to polyamideimide with a reduced viscosity of 0.40 or more. Concerning a method for producing resin. As the derivative of trimellitic anhydride in the present invention, trimellitic acid, an esterified product of trimellitic acid anhydride and alcohol, for example, a methanol half ester of trimellitic acid anhydride, etc. are used. As trimellitic anhydride or its derivative, trimellitic anhydride is preferably used. The lactam in the present invention has the general formula (In the formula, n represents an integer from 2 to 20.) A lactam is used. Preferably, ε-caprolactam is used. The polar solvent used in the present invention is one that can dissolve the polyamideimide resin produced well and has a boiling point of 180°C.
Those mentioned above are preferably used. For example, N-methylpyrrolidone, N-ethylpyrrolidone, N-butylpyrrolidone, phenol, cresol, xylenol, sulfolane, etc. are used. N-methylpyrrolidone is preferably used. As the dehydration catalyst in the present invention, for example, trivalent or pentavalent organic or inorganic phosphorus compounds, lead monoxide, boric acid, boric anhydride, etc. are used. Phosphoric acid, triphenyl phosphate, boric acid, and boric anhydride are preferably used. Isophthalic acid () is ()/()+()=0.03
~0.25 (molar ratio) (() is trimellitic anhydride or its derivative).
If it is less than 0.03, melt fluidity will decrease, and if it exceeds 0.25, heat resistance will decrease. Lactam () is ()/()+()=0.08~0.
It is used at a ratio of 25 (molar ratio). If it is less than 0.08, melt fluidity will decrease, and if it exceeds 0.25, heat resistance will decrease significantly. In particular, when considering the balance between heat resistance and melt fluidity, () is () / () + () = 0.
08 to 0.15 (molar ratio), () to ()/() + () = 0.
It is preferable to use it in a ratio of 10 to 0.18 (molar ratio). The ratio of the acid component (()+()) and the amine component () is such that the ratio of () to ()+() is approximately equimolar. In particular, ()/()+()
= 1.02 to 0.98 (molar ratio). The dehydration catalyst is preferably used in an amount of 0.1 to 10% by weight, particularly 1 to 5% by weight based on ()+(). It is preferable to proceed with the polymerization while distilling off by-product water from the reaction system. The polymerization concentration may be about 40 to 50% by weight at the early stage of the reaction, and is preferably increased to around 65% by weight at the latter stage of the reaction in order to maintain a high temperature. Polymerization is carried out by imidization in the first stage and polymerization in the second stage. It is preferable to carry out the reaction at a temperature around 205 to 210°C. Reduced viscosity of polyamideimide resin produced according to the present invention (dimethylformamide, 0.5g/
dl, 30℃) is considered to be 0.40 or higher. If it is less than 0.40, mechanical strength will be poor. The terminal groups of the polyamideimide resin produced according to the present invention can be blocked with an end group blocking agent after the polymerization reaction is completed. As such a terminal group blocking agent, phthalic anhydride, benzoic acid, acetic anhydride, aniline, n-butylamine, phenyl isocyanate, etc. are used. By capping the terminal groups, thermal stability during molding is improved. The polyamide-imide resin obtained by the production method of the present invention is prepared by adding the above-mentioned polar solvents or low-boiling general organic solvents such as chloroform, tetrahydrofuran, dioxane, toluene, xylene, etc. to the solution after polymerization, if necessary. Additionally, it is diluted. The polyamideimide resin obtained by the production method of the present invention can be used in the form of a solution or powder. In addition, if necessary, different polymers,
Additives, fillers, reinforcing agents, etc. can be blended. The physical properties of the polyamide-imide resin of the present invention can be significantly improved by subjecting it to heat treatment (at 200 to 300°C for 1 to 24 hours) after molding, if necessary. The polyamide-imide resin obtained by the production method of the present invention is mainly suitable for use as a thermoplastic molding material, but it is of course possible to use it for other uses. For example, heat-resistant paint, heat-resistant sheets,
It is useful for heat-resistant adhesives, heat-resistant laminated materials, heat-resistant sliding materials, heat-resistant fibers, heat-resistant films, etc. (Effect of the invention) According to the present invention, a polyamide-imide resin having an excellent balance of heat resistance, melt fluidity, mechanical strength, and economical efficiency can be obtained. (Example) The present invention will be described in Example 1 and This will be explained using a comparative example. Example 1

【衚】【table】

【衚】 䞊蚘成分を枩床蚈、かきたぜ機、窒玠導入管、
氎分定量噚を぀けた四぀口フラスコにおくはんし
ながら入れ、窒玠ガスを通しながら160℃に昇枩
した。埐々に枩床を䞊げ、留出する氎を系倖に陀
去しながら、時間で175℃に昇枩した。次いで
205℃に昇枩し、205〜210℃の枩床範囲で反応を
進めた。反応終点をガヌドナヌ粘床で管理し、還
元粘床ゞメチルホルムアミド、0.5dl、30℃、
以䞋同様0.41のポリアミドむミド暹脂を埗た。
埗られたポリアミドむミド暹脂溶液を−メチル
ピロリドンで玄25重量になるように垌釈し、こ
の溶液をミキサヌで匷力にかくはんした氎䞭に投
䞋し、固圢のポリアミドむミド暹脂を回収した。
この固圢暹脂を熱氎でよく掗浄した埌、倚量の氎
で煮沞掗浄した。これを取した埌、130℃の熱
颚也燥機で時間也燥させお粉末のポリアミドむ
ミド暹脂を埗た。 実斜䟋 
[Table] The above ingredients are measured using a thermometer, stirrer, nitrogen inlet pipe,
The mixture was placed in a four-necked flask equipped with a moisture meter, and heated to 160°C while passing nitrogen gas. The temperature was gradually raised to 175° C. in 4 hours while distilled water was removed from the system. then
The temperature was raised to 205°C, and the reaction proceeded in the temperature range of 205-210°C. The end point of the reaction was controlled by Gardner viscosity, and the reduced viscosity (dimethylformamide, 0.5/dl, 30℃,
The same applies hereafter) A polyamideimide resin of 0.41 was obtained.
The obtained polyamide-imide resin solution was diluted with N-methylpyrrolidone to about 25% by weight, and this solution was poured into water that was vigorously stirred with a mixer to recover a solid polyamide-imide resin.
After thoroughly washing this solid resin with hot water, it was boiled and washed with a large amount of water. After taking this, it was dried in a hot air dryer at 130°C for 6 hours to obtain a powdered polyamide-imide resin. Example 2

【衚】 䞊蚘成分を甚いた以倖は実斜䟋ず党く同様の
装眮、操䜜で行ない、還元粘床0.43の粉末ポリア
ミドむミド暹脂を埗た。 実斜䟋 
[Table] A powder polyamide-imide resin having a reduced viscosity of 0.43 was obtained by using the same equipment and operation as in Example 1 except that the above components were used. Example 3

【衚】 䞊蚘成分を甚いた以倖は実斜䟋ず党く同様の
装眮、操䜜で行ない、還元粘床0.49の粉末ポリア
ミドむミド暹脂を埗た。 実斜䟋 
[Table] A powder polyamide-imide resin having a reduced viscosity of 0.49 was obtained by using the same equipment and operation as in Example 1 except that the above components were used. Example 4

【衚】 䞊蚘成分を甚いた以倖は実斜䟋ず党く同様の
装眮、操䜜で行ない、還元粘床0.41の粉末ポリア
ミドむミド暹脂を埗た。 実斜䟋 
[Table] A powdered polyamide-imide resin having a reduced viscosity of 0.41 was obtained by using the same equipment and operation as in Example 1 except for using the above components. Example 5

【衚】 䞊蚘成分を甚いた以倖は実斜䟋ず党く同様の
装眮、操䜜で行ない、還元粘床0.45の粉末ポリア
ミドむミド暹脂を埗た。 実斜䟋 
[Table] A powder polyamide-imide resin having a reduced viscosity of 0.45 was obtained by using the same equipment and operation as in Example 1 except that the above components were used. Example 6

【衚】 䞊蚘成分を甚いた以倖は実斜䟋ず党く同様の
装眮、操䜜で行ない、還元粘床0.43の粉末ポリア
ミドむミド暹脂を埗た。 実斜䟋 
[Table] A powder polyamide-imide resin having a reduced viscosity of 0.43 was obtained by using the same equipment and operation as in Example 1 except that the above components were used. Example 7

【衚】【table】

【衚】 䞊蚘成分を甚いた以倖は実斜䟋ず党く同様の
装眮、操䜜で行ない、還元粘床0.53の粉末ポリア
ミドむミド暹脂を埗た。 比范䟋 
[Table] A powder polyamide-imide resin having a reduced viscosity of 0.53 was obtained by using the same equipment and operation as in Example 1 except that the above components were used. Comparative example 1

【衚】 䞊蚘成分を甚いた以倖は実斜䟋ず党く同様の
装眮、操䜜で行ない、還元粘床0.50の粉末ポリア
ミドむミド暹脂を埗た。 比范䟋 
[Table] A powder polyamide-imide resin having a reduced viscosity of 0.50 was obtained by using the same equipment and operation as in Example 1 except that the above components were used. Comparative example 2

【衚】 䞊蚘成分を甚いた以倖は実斜䟋ず党く同様の
装眮、操䜜で行ない、還元粘床0.47の粉末ポリア
ミドむミド暹脂を埗た。 比范䟋 
[Table] A powder polyamide-imide resin having a reduced viscosity of 0.47 was obtained by using the same equipment and operation as in Example 1 except that the above components were used. Comparative example 3

【衚】 䞊蚘成分を甚いた以倖は実斜䟋ず党く同様の
装眮、操䜜で行ない、還元粘床0.53の粉末ポリア
ミドむミド暹脂を埗た。 比范䟋 
[Table] A powder polyamide-imide resin having a reduced viscosity of 0.53 was obtained by using the same equipment and operation as in Example 1 except that the above components were used. Comparative example 4

【衚】【table】

【衚】 䞊蚘成分を甚いた以倖は実斜䟋ず党く同様の
装眮、操䜜で行ない、還元粘床0.47の粉末ポリア
ミドむミド暹脂を埗た。 比范䟋 
[Table] A powdered polyamide-imide resin having a reduced viscosity of 0.47 was obtained by using the same equipment and operation as in Example 1 except that the above components were used. Comparative example 5

【衚】 䞊蚘成分を甚いた以倖は実斜䟋ず党く同様の
装眮、操䜜で行ない、還元粘床0.43の粉末ポリア
ミドむミド暹脂を埗た。 比范䟋 
[Table] A powder polyamide-imide resin having a reduced viscosity of 0.43 was obtained by using the same equipment and operation as in Example 1 except that the above components were used. Comparative example 6

【衚】 䞊蚘成分を甚いた以倖は実斜䟋ず党く同様の
装眮、操䜜で行ない、還元粘床0.35の粉末ポリア
ミドむミド暹脂を埗た。 比范䟋 
[Table] A powdered polyamide-imide resin having a reduced viscosity of 0.35 was obtained by using the same equipment and operation as in Example 1 except for using the above components. Comparative example 7

【衚】 䞊蚘成分を甚いた以倖は実斜䟋ず党く同様の
装眮、操䜜で行ない、還元粘床0.35の粉末ポリア
ミドむミド暹脂を埗た。 比范䟋 
[Table] A powdered polyamide-imide resin having a reduced viscosity of 0.35 was obtained by using the same equipment and operation as in Example 1 except for using the above components. Comparative example 8

【衚】 䞊蚘成分を甚いた以倖は実斜䟋ず党く同様の
装眮、操䜜で行ない、還元粘床0.48の粉末ポリア
ミドむミド暹脂を埗た。 比范䟋 
[Table] A powder polyamide-imide resin having a reduced viscosity of 0.48 was obtained by using the same equipment and operation as in Example 1 except that the above components were used. Comparative example 9

【衚】 䞊蚘成分を枩床蚈、かきたぜ機、窒玠導入管を
぀けた四぀口フラスコにかくはんしながら入れ、
窒玠ガスを通しながら100℃に昇枩し、この枩床
で時間、次いで125℃で時間、140℃で時
間、さらに175℃で時間反応を進めた。埗られ
たポリアミドむミド暹脂溶液を実斜䟋ず党く同
様な操䜜をしお、還元粘床0.35の粉末ポリアミド
むミド暹脂を埗た。 比范䟋 10
[Table] Add the above ingredients to a four-necked flask equipped with a thermometer, stirrer, and nitrogen inlet tube while stirring.
The temperature was raised to 100°C while passing nitrogen gas, and the reaction was continued at this temperature for 1 hour, then at 125°C for 2 hours, at 140°C for 2 hours, and further at 175°C for 4 hours. The obtained polyamide-imide resin solution was subjected to exactly the same operation as in Example 1 to obtain a powdered polyamide-imide resin having a reduced viscosity of 0.35. Comparative example 10

【衚】 䞊蚘成分を枩床蚈、かきたぜ機、窒玠導入管を
぀けた四぀口フラスコにかくはんしながら入れ、
窒玠ガスを通しながら150℃に昇枩し、この枩床
で時間、次いで170℃で時間、さらに200℃で
12時間反応を進めた。埗られたポリアミドむミド
暹脂溶液をクレゟヌルで玄25重量になるように
垌釈し、この溶液をミキサヌで匷力にかくはんし
たメタノヌル䞭に投䞋し、固圢のポリアミドむミ
ド暹脂を回収した。この固圢暹脂を倚量のメタノ
ヌルで煮沞掗浄した。これを取した埌、枛圧
䞋、80℃で時間也燥させお、還元粘床0.12の粉
末ポリアミドむミド暹脂を埗た。 比范䟋 11 アモコ瀟補の商品名「トヌロン」4000T粉末
ポリアミドむミド暹脂の耐熱性熱軟化枩床
ず溶融流動性を評䟡し、結果を衚に瀺した。 比范䟋 12 ゞ゚ネラル・゚レクトリツク瀟補の商品名「り
ルテム」1000ペレツト状のポリ゚ヌテルむミド
暹脂の耐熱性熱軟化枩床ず溶融流動性を評
䟡し、結果を衚に瀺した。 実斜䟋の〜及び比范䟋〜12のポリアミド
むミド暹脂の耐熱性熱軟化枩床、溶融流動性
及び機械匷床を評䟡した。結果を衚、衚及び
衚に瀺した。 熱軟化枩床はパヌキン゚ルマヌ瀟補「TMS−
型」熱物理詊隓機を甚い、荷重100・、ぺ
ネトレヌシペン法で枬定した。 溶融流動性は島接補䜜所瀟補の「高化匏フロヌ
テスタヌ、CFT−500」を甚いお枬定した。十分
に也燥した詊料1.5を300℃に加熱したシリンダ
ヌ内に入れお分間単留させた埌、300Kg・の
荷重でダむス䞭倮ノズル盎埄1.0mm、長さmm
から抌出す方法で枬定した。 機械匷床アむゟツト衝撃倀はアむゟツト衝
撃詊隓機東掋粟機補を甚い、ハンマヌ荷重
2.742Kg・、打䞊角150°で枬定した。詊料は2.5
mmφの抌出し棒を甚いた。
[Table] Add the above ingredients to a four-necked flask equipped with a thermometer, stirrer, and nitrogen inlet tube while stirring.
Heat to 150℃ while passing nitrogen gas, then at this temperature for 2 hours, then at 170℃ for 2 hours, and then at 200℃.
The reaction proceeded for 12 hours. The obtained polyamide-imide resin solution was diluted with cresol to a concentration of about 25% by weight, and this solution was poured into methanol that had been vigorously stirred with a mixer to recover a solid polyamide-imide resin. This solid resin was boiled and washed with a large amount of methanol. After this was taken, it was dried at 80° C. for 6 hours under reduced pressure to obtain a powdered polyamideimide resin with a reduced viscosity of 0.12. Comparative Example 11 Heat resistance (thermal softening temperature) of Amoco's product name "Torlon" 4000T (powdered polyamide-imide resin)
The melt fluidity was evaluated and the results are shown in Table 2. Comparative Example 12 The heat resistance (thermal softening temperature) and melt fluidity of "Ultem" 1000 (a pellet-like polyetherimide resin) manufactured by General Electric Company were evaluated, and the results are shown in Table 2. The heat resistance (thermal softening temperature), melt fluidity, and mechanical strength of the polyamide-imide resins of Examples 1 to 7 and Comparative Examples 1 to 12 were evaluated. The results are shown in Tables 1, 2 and 3. Thermal softening temperature is determined by PerkinElmer's "TMS-
Measurement was carried out using a "Model 1" thermophysical testing machine with a load of 100 g·f and the penetration method. Melt fluidity was measured using a "Koka Type Flow Tester, CFT-500" manufactured by Shimadzu Corporation. After putting 1.5g of a sufficiently dried sample into a cylinder heated to 300℃ and allowing it to distill for 3 minutes, it was passed through the center nozzle of the die (diameter 1.0mm, length 2mm) with a load of 300Kg・f.
It was measured by extrusion method. Mechanical strength (Izotsu impact value) was measured using an Izotsu impact tester (manufactured by Toyo Seiki) using a hammer load.
Measured at 2.742Kg・f and launch angle of 150°. The sample is 2.5
An extruded rod of mmφ was used.

【衚】【table】

【衚】【table】

【衚】 衚、衚及び衚から実斜䟋〜のポリア
ミドむミド暹脂は耐熱性ず溶融流動性が「りルテ
ム」ず「トヌロン」の䞭間的な倀を瀺しおおり、
ずくに耐熱性成圢材料ずしおバランスにすぐれお
いるこずが瀺される。 たた、還元粘床を0.4以䞊ずするこずにより、
機械匷床に優れ、アむゟツト衝撃倀が0.5以䞊ず
なるこずが瀺される。 たた、本発明の補造法によ぀お埗られるポリア
ミドむミド暹脂は汎甚で安䟡な材料で構成される
ので、経枈性にもすぐれおいる。
[Table] From Tables 1, 2, and 3, the polyamide-imide resins of Examples 1 to 7 have heat resistance and melt fluidity that are intermediate between those of "Ultem" and "Torlon."
It is shown that it is particularly well-balanced as a heat-resistant molding material. In addition, by setting the reduced viscosity to 0.4 or more,
It is shown to have excellent mechanical strength, with an Izot impact value of 0.5 or higher. Furthermore, since the polyamideimide resin obtained by the production method of the present invention is made of a general-purpose and inexpensive material, it is also highly economical.

Claims (1)

【特蚱請求の範囲】  () トリメリツト酞無氎物又はその誘導䜓 () 4′−ゞアミノゞプニルメタン () む゜フタル酞 () ラクタム を極性溶媒䞭、脱氎觊媒の存圚䞋で、を
0.03〜0.25モル比、
を 0.08〜0.25モル比および
 に察しおをほが等モルずなる割合
で反応させお、還元粘床を0.40以䞊ずするこずを
特城ずするポリアミドむミド暹脂の補造法。  ラクタムがε−カプロラクタムである特蚱請
求の範囲第項蚘茉のポリアミドむミド暹脂の補
造法。  極性溶媒が−メチルピロリドンである特蚱
請求の範囲第項又は第項蚘茉のポリアミドむ
ミド暹脂の補造法。  を1.02〜0.98モ
ル比、 を0.08〜0.15モル比
、 を0.10〜0.18モル比ずな
る割合 で甚いる特蚱請求の範囲第項、第項又は第
項蚘茉のポリアミドむミド暹脂の補造法。
[Scope of Claims] 1 () Trimellitic anhydride or its derivative () 4,4'-diaminodiphenylmethane () Isophthalic acid () Lactam is prepared by treating () in a polar solvent in the presence of a dehydration catalyst. )/()+()=0.03-0.25 (molar ratio), (
) is reacted with () / () + () = 0.08 to 0.25 (molar ratio) and () + () in a ratio of approximately equal moles of () to make the reduced viscosity 0.40 or more. Characteristic manufacturing method of polyamide-imide resin. 2. The method for producing a polyamideimide resin according to claim 1, wherein the lactam is ε-caprolactam. 3. The method for producing a polyamideimide resin according to claim 1 or 2, wherein the polar solvent is N-methylpyrrolidone. 4 () to ()/()+()=1.02-0.98 (molar ratio), () to ()/()+()=0.08-0.15 (molar ratio), () to ()/()+ Claims 1, 2 or 3 used at a ratio of ( ) = 0.10 to 0.18 (molar ratio)
2. Method for producing polyamideimide resin described in Section 1.
JP20109484A 1984-09-26 1984-09-26 Production of polyamide-imide resin Granted JPS6178835A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20109484A JPS6178835A (en) 1984-09-26 1984-09-26 Production of polyamide-imide resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20109484A JPS6178835A (en) 1984-09-26 1984-09-26 Production of polyamide-imide resin

Publications (2)

Publication Number Publication Date
JPS6178835A JPS6178835A (en) 1986-04-22
JPH04496B2 true JPH04496B2 (en) 1992-01-07

Family

ID=16435294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20109484A Granted JPS6178835A (en) 1984-09-26 1984-09-26 Production of polyamide-imide resin

Country Status (1)

Country Link
JP (1) JPS6178835A (en)

Also Published As

Publication number Publication date
JPS6178835A (en) 1986-04-22

Similar Documents

Publication Publication Date Title
US6207786B1 (en) Ternary systems of benzoxazine, epoxy, and phenolic resins
Sivasankarapillai et al. Lignin valorization by forming toughened lignin-co-polymers: Development of hyperbranched prepolymers for cross-linking
JPS598728A (en) Preparation of aromatic polyamide
JPH07188412A (en) Production of high-molecular polyamide- imide resin
EP4028450B1 (en) Polyamide-imide polymer and process for its manufacture
JPH04496B2 (en)
JP2017025310A (en) Sydnone as component corresponding to thermosetting resin excellent in heat resistance
JPH02117957A (en) Polyamide-imade resin composition
Chen et al. Synthesis and properties of novel meltable fluorinated aromatic oligoimides endcapped with 4-phenylethynylphthalic anhydride
JPS62230847A (en) Polyamide-imide resin composition
JPH0218422A (en) Aromatic polyamide-imide resin and production hereof
CN110078917B (en) Thermoplastic soluble polyimide and preparation method and application thereof
JP3103503B2 (en) Method for producing polyamideimide resin by direct polymerization method
EP4028449B1 (en) Process for the manufacture of polyamide-imide polymer
JPH0129382B2 (en)
JPS62209138A (en) Thermoplastic aromatic polyamideimide copolymer
USRE29617E (en) Aryl methylene polymers prepared from chloral, bromal or glyoxalic acid
JP3221710B2 (en) Bisimide compounds, polyimide resin compositions using these compounds, and carbon fiber reinforced polyimide resin compositions
JPS62161835A (en) Polyamide imide resin
JPS6243420A (en) Production of polyamide-imide resin
Lin et al. Facile Synthesis of New Aromatic Polyamides Based on 1, 2‐Dihydro‐2‐(4‐carboxylphenyl)‐4‐[4‐(4‐carboxylphenoxy)‐3‐methylphenyl] phthalazin‐1‐one
JPH02180927A (en) Production of aromatic polyamide-imide
KR20190071316A (en) Polyamideimide-based block copolymers and polyamideimide-based article comprising the same
JPH02115229A (en) Production of polyamide-imide resin
JPH02142829A (en) Production of polyamide-imide molding resin