JPH0449683Y2 - - Google Patents
Info
- Publication number
- JPH0449683Y2 JPH0449683Y2 JP1984116230U JP11623084U JPH0449683Y2 JP H0449683 Y2 JPH0449683 Y2 JP H0449683Y2 JP 1984116230 U JP1984116230 U JP 1984116230U JP 11623084 U JP11623084 U JP 11623084U JP H0449683 Y2 JPH0449683 Y2 JP H0449683Y2
- Authority
- JP
- Japan
- Prior art keywords
- drive
- wheels
- drive unit
- drive wheels
- vehicle body
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000003638 chemical reducing agent Substances 0.000 claims description 3
- 238000000034 method Methods 0.000 description 7
- 238000007796 conventional method Methods 0.000 description 1
Landscapes
- Non-Deflectable Wheels, Steering Of Trailers, Or Other Steering (AREA)
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
Description
【考案の詳細な説明】
産業上の利用分野
本考案は走路面に設けられた誘導線により誘導
されて走行する無人誘導台車に関する。[Detailed Description of the Invention] Industrial Application Field The present invention relates to an unmanned guided vehicle that travels while being guided by a guide line provided on a running road surface.
従来の技術
車体の前後部にふ個或いはそれ以上の自由輪が
装着され、中央部左右に装着された2個の駆動輪
相互の速度差により舵取りを行う無人誘導台車の
自由輪及び駆動輪の装着方式としては、第2図及
び第3図に示すように車体に直接駆動輪を固定し
自由輪をばねを介して支持する第1方式と、第4
図に示すように車体に自由輪を固定し駆動輪をば
ねを介して支持する第2方式とがある。Conventional technology Two or more free wheels are attached to the front and rear of the vehicle body, and the free wheels and drive wheels of an unmanned guided vehicle are steered by the speed difference between the two drive wheels attached to the left and right of the center part. As shown in Figures 2 and 3, there are two mounting methods: the first method, in which the drive wheel is directly fixed to the vehicle body and the free wheel is supported via a spring, and the fourth method.
As shown in the figure, there is a second method in which the free wheel is fixed to the vehicle body and the drive wheel is supported via a spring.
考案が解決しようとする問題点
前記第1方式は自由輪がばねにより支持されて
いるため、台車の発進時及び停止時には前後に揺
れるので積荷の積卸しの際の車体の位置が不安定
となり、積荷の自動移載に支障を生じる。前記第
2方式は駆動輪がばねにより支持されているの
で、走路面に凹凸がある場合にはばねの長さが変
化し、それに応じて駆動輪の接地圧が変化するた
め、走路面の状況によつては接地圧が不足して駆
動輪がスリツプを起こし、台車の走行が円滑に行
われない恐れがある。Problems to be Solved by the Invention In the first method, since the free wheel is supported by a spring, it swings back and forth when the bogie starts and stops, making the position of the car body unstable when loading and unloading cargo. This will cause problems in the automatic transfer of cargo. In the second method, the drive wheels are supported by springs, so if the running road surface is uneven, the length of the spring changes, and the ground pressure of the drive wheels changes accordingly, so it depends on the road surface condition. In some cases, the ground pressure may be insufficient and the drive wheels may slip, causing the bogie to not run smoothly.
問題点を解決するための手段
本考案は前記第2方式の改良を図るもので、駆
動輪に常に必要な接地圧を与えるために、駆動輪
が装着されている駆動ユニツトに駆動用の原動機
を含む駆動機構(例えばバツテリ、モータ、コン
トローラ、減速機等)を一体として組込むことに
より駆動機構の重量を死荷重として駆動輪に加え
て、常にほぼ所定圧以上の接地圧を得られるよう
にしたものである。Means for Solving the Problems The present invention aims to improve the second method, and in order to constantly provide the necessary ground pressure to the drive wheels, a driving prime mover is attached to the drive unit to which the drive wheels are attached. By incorporating the drive mechanism (e.g. battery, motor, controller, reducer, etc.) into one piece, the weight of the drive mechanism is added to the drive wheels as a dead load, so that a ground pressure that is almost always equal to or higher than the specified pressure can be obtained. It is.
実施例
以下本考案の実施例について図面にもとづいて
説明する。Embodiments Hereinafter, embodiments of the present invention will be described based on the drawings.
第1図は車体の前後部に4個の自由輪を有しバ
ツテリ電源により駆動輪を駆動する電動式無人誘
導台車の実施例の側面図である。 FIG. 1 is a side view of an embodiment of an electric unmanned guided vehicle having four free wheels at the front and rear of the vehicle body and driving the drive wheels by a battery power source.
第1図において駆動ユニツト2は左右2個の駆
動輪1,1′と、原動機としてのモータ3、バツ
テリ4、コントローラ5及び減速機6により構成
された駆動機構とを含んでいる。従つて駆動輪
1,1′は上記駆動機構により駆動されると共に、
駆動ユニツト全体の重量を支持しているので、駆
動輪1,1′の接地圧は常に所定圧以上の状態を
保つている。 In FIG. 1, a drive unit 2 includes two left and right drive wheels 1, 1', and a drive mechanism including a motor 3 as a prime mover, a battery 4, a controller 5, and a speed reducer 6. Therefore, the drive wheels 1, 1' are driven by the above drive mechanism, and
Since the weight of the entire drive unit is supported, the ground pressure of the drive wheels 1, 1' is always maintained at a predetermined pressure or higher.
駆動ユニツト2の前後中心線上にはピボツト
7,7′が設けられ、それぞれ駆動ユニツトフレ
ーム8に設けられたピボツト受9,9′により支
持されて駆動ユニツト2が自由に横揺れ(ローリ
ング)できるようになつているので、走路面の左
右方向の凹凸に対して左右の駆動輪1,1′が常
に接触するようになつている。積荷11を積載す
る車体10の前後下端には自由に方向変換ができ
る4個の自由輪12が装着されているので、車体
10の走行方向は自由に変換可能となつている。 Pivots 7 and 7' are provided on the front and rear center line of the drive unit 2, and are supported by pivot receivers 9 and 9' provided on the drive unit frame 8, respectively, so that the drive unit 2 can freely roll. As a result, the left and right drive wheels 1, 1' are always in contact with the unevenness of the running road surface in the left and right direction. Four free wheels 12 that can freely change the direction are attached to the front and rear lower ends of the vehicle body 10 on which the cargo 11 is loaded, so that the traveling direction of the vehicle body 10 can be freely changed.
駆動ユニツトフレーム8の前後部にはスライド
軸受14,14′が設けられ、車体10の前後部
のスライド軸13,13′がそれぞれ嵌入されて
いるので、駆動ユニツトフレーム8は車体10に
対し自由に上下方向にスライドすることができ、
走路面の前後方向の凹凸に対しても駆動輪1,
1′が常に接地できるようになつている。 Slide bearings 14, 14' are provided at the front and rear of the drive unit frame 8, and the slide shafts 13, 13' at the front and rear of the vehicle body 10 are fitted, respectively, so that the drive unit frame 8 can be freely moved relative to the vehicle body 10. Can slide up and down,
The drive wheels 1,
1' can always be grounded.
以上の構成により、台車の走行中には走路面の
あらゆる方向の凹凸に対して駆動輪1,1′が常
に接地状態を保ち且つ常に駆動ユニツト2と駆動
ユニツトフレーム8の合計重量が駆動輪1,1′
に死荷重として負荷されているので、左右の駆動
輪1,1′の接地圧は走路面の凹凸に関係なく常
に所定圧以上に保つことができる。 With the above configuration, while the bogie is running, the drive wheels 1 and 1' always remain in contact with the ground against irregularities in all directions on the running road surface, and the total weight of the drive unit 2 and the drive unit frame 8 is always equal to the drive wheel 1. ,1′
Since the dead load is applied to the left and right drive wheels 1, 1', the ground pressure of the left and right drive wheels 1, 1' can always be maintained at a predetermined pressure or higher regardless of the unevenness of the running road surface.
台車の走行の際の舵取りは走路面に設けられた
誘導線15と台車に取付けられたガイドセンサー
16によるコントローラ5の作動により左右の駆
動輪1,1′それぞれの速度を制御して舵取りを
行い誘導されることは従来の方法と同一である。 When the bogie is running, steering is performed by controlling the speeds of the left and right drive wheels 1, 1' through the operation of the controller 5 using the guide wire 15 provided on the running road surface and the guide sensor 16 attached to the bogie. What is induced is the same as in the conventional method.
尚駆動ユニツトと駆動ユニツトフレームの合計
重量が駆動輪1,1′の接地圧として不足する場
合には、車体10と駆動ユニツトフレーム8との
間にばね16を装入しておくことによつて車体1
0の重量を有効に利用することができる。 If the total weight of the drive unit and drive unit frame is insufficient for the ground pressure of the drive wheels 1, 1', a spring 16 may be inserted between the vehicle body 10 and the drive unit frame 8. Vehicle body 1
0 weight can be used effectively.
考案の効果
上記説明したとおり、本考案により台車の走行
中に走行路に凹凸があつた場合でも各駆動輪の接
地圧はほぼ一定に保たれるので、常に台車の安定
した走行状態を確保することができる。Effects of the invention As explained above, with this invention, the ground pressure of each drive wheel is kept almost constant even when there are irregularities in the running path while the bogie is running, so the stable running condition of the bogie is always ensured. be able to.
第1図は本考案による無人誘導台車の側面図、
第2図及び第3図は従来の第1方式の無人誘導台
車の側面図、第4図は従来の第2方式の無人誘導
台車の側面図である。
1,1′……駆動輪、2……駆動ユニツト、5
……コントローラ、7,7′……ピボツト、9,
9′……ピボツト受、10……車体、12……自
由輪、13,13′……スライド軸、14,1
4′……スライド軸受、15……誘導線、16…
…ガイドセンサー。
Figure 1 is a side view of the unmanned guided vehicle according to the present invention.
2 and 3 are side views of a conventional first type unmanned guided vehicle, and FIG. 4 is a side view of a conventional second type unmanned guided vehicle. 1, 1'... Drive wheel, 2... Drive unit, 5
...Controller, 7,7'...Pivot, 9,
9'... Pivot receiver, 10... Vehicle body, 12... Free wheel, 13, 13'... Slide shaft, 14, 1
4'...Slide bearing, 15...Guiding wire, 16...
...Guide sensor.
Claims (1)
由輪が装着され、中央部左右にそれぞれ1個の駆
動輪が装着されてこれ等の駆動輪相互の速度差に
より舵取りを行う無人誘導台車において、前記左
右のそれぞれの駆動輪とこれ等を駆動するモー
タ、バツテリ、コントローラ及び減速機を含む駆
動機構とから駆動ユニツトを構成し、前記駆動ユ
ニツトをピボツト及びピボツト受により駆動ユニ
ツトフレームに左右方向に揺動自在に装備すると
ともに、前記駆動ユニツトフレームをスライド軸
及びスライド軸受により前記車体に上下方向にス
ライド自在に装備し、それによつて走路面に凹凸
がある場合でも前記左右駆動輪の接地圧が所定圧
以上に保たれるようにしたことを特徴とする無人
誘導台車。 In an unmanned guided bogie, one or more free wheels are attached to each of the front and rear of the vehicle body, and one drive wheel is attached to each of the left and right sides of the center part, and steering is performed by the speed difference between these drive wheels. A drive unit is constituted by the left and right drive wheels and a drive mechanism including a motor, a battery, a controller, and a speed reducer for driving these, and the drive unit is attached to the drive unit frame in the left-right direction by a pivot and a pivot receiver. In addition, the driving unit frame is installed to be able to freely swing in the vertical direction on the vehicle body using a slide shaft and a slide bearing, so that the ground pressure of the left and right drive wheels can be maintained even when the running road surface is uneven. An unmanned guided trolley characterized by being maintained at a predetermined pressure or higher.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11623084U JPS6133105U (en) | 1984-07-31 | 1984-07-31 | Unmanned guided trolley |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11623084U JPS6133105U (en) | 1984-07-31 | 1984-07-31 | Unmanned guided trolley |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6133105U JPS6133105U (en) | 1986-02-28 |
JPH0449683Y2 true JPH0449683Y2 (en) | 1992-11-24 |
Family
ID=30675174
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11623084U Granted JPS6133105U (en) | 1984-07-31 | 1984-07-31 | Unmanned guided trolley |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6133105U (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015111348A (en) * | 2013-12-06 | 2015-06-18 | 三菱自動車工業株式会社 | Automatic guided vehicle |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014186449A (en) * | 2013-03-22 | 2014-10-02 | Kojima Press Industry Co Ltd | Unmanned carrier |
JP6287700B2 (en) * | 2014-09-02 | 2018-03-07 | 株式会社ダイフク | Article conveying device |
FR3065939B1 (en) * | 2017-05-05 | 2021-01-15 | Scallog | LOAD TRANSFER ROBOT |
ES2697921B2 (en) * | 2017-07-26 | 2020-06-22 | Univ Catalunya Politecnica | OMNIDIRECTIONAL PLATFORM |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59118562A (en) * | 1982-12-22 | 1984-07-09 | 株式会社ダイフク | Self-advancing cart |
-
1984
- 1984-07-31 JP JP11623084U patent/JPS6133105U/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59118562A (en) * | 1982-12-22 | 1984-07-09 | 株式会社ダイフク | Self-advancing cart |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015111348A (en) * | 2013-12-06 | 2015-06-18 | 三菱自動車工業株式会社 | Automatic guided vehicle |
Also Published As
Publication number | Publication date |
---|---|
JPS6133105U (en) | 1986-02-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH09263140A (en) | Unmanned service car | |
JPH0449683Y2 (en) | ||
KR910000938B1 (en) | Guided vehicle with steered axles | |
JPS63297165A (en) | Unmanned vehicle for transportation | |
JP2023154808A (en) | Automatic carrier vehicle | |
JP3154236B2 (en) | Drive unit for transport vehicles | |
JPH06239270A (en) | Endless track vehicle | |
JPH11240446A (en) | Automated guided vehicle | |
JP7298978B2 (en) | trolley and vehicle | |
JPH0755612Y2 (en) | Three-wheel unmanned vehicle | |
JP2715177B2 (en) | Moving car | |
JPS6411505B2 (en) | ||
JPH09169271A (en) | Motor-driven carrier | |
JPS62113655A (en) | Travel car associated with magnetic adsorbing wheel | |
JP2524385Y2 (en) | Electric traveling device | |
JPH0122730Y2 (en) | ||
JPH0478656A (en) | Rail travelling truck | |
JPS616074A (en) | Crawler transporter | |
JPS6027719Y2 (en) | Rail running bogie | |
JP3044266B2 (en) | Travel control method for carrier vehicles | |
JP2547179Y2 (en) | Driven wheels of tracked bogies | |
JP2022184293A (en) | Traction gear and unmanned carrier with the same | |
JPH10100906A (en) | Omnidirectional travelling truck | |
JPH0218642Y2 (en) | ||
JPH01178012A (en) | Unmanned carrier |