JPH0449426Y2 - - Google Patents
Info
- Publication number
- JPH0449426Y2 JPH0449426Y2 JP1986162334U JP16233486U JPH0449426Y2 JP H0449426 Y2 JPH0449426 Y2 JP H0449426Y2 JP 1986162334 U JP1986162334 U JP 1986162334U JP 16233486 U JP16233486 U JP 16233486U JP H0449426 Y2 JPH0449426 Y2 JP H0449426Y2
- Authority
- JP
- Japan
- Prior art keywords
- vibration
- piping
- joint
- vibration isolation
- precision
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000002955 isolation Methods 0.000 claims description 17
- 238000010521 absorption reaction Methods 0.000 claims description 2
- 230000005540 biological transmission Effects 0.000 description 6
- 229920001971 elastomer Polymers 0.000 description 5
- 239000005060 rubber Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 238000006073 displacement reaction Methods 0.000 description 3
- 239000004088 foaming agent Substances 0.000 description 3
- 230000005284 excitation Effects 0.000 description 2
- 239000004604 Blowing Agent Substances 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Supports For Pipes And Cables (AREA)
- Vibration Prevention Devices (AREA)
Description
【考案の詳細な説明】
(産業上の利用分野)
本考案は、ポンプ等の振動発生源から配管を介
して連結された精密機器類への振動伝達を防止す
る防振構造に関するものである。[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a vibration isolation structure that prevents vibration from being transmitted from a vibration source such as a pump to precision equipment connected via piping.
(従来の技術)
半導体製造装置、レーザ装置、NC制御機器等
の精密機器類は、内外部からの振動を受けるとそ
の性能に悪影響を生じるため、防振架台上に設置
されるのが一般的である。また、最近では、地震
等に備えて精密機器類の支持台を免振構造とした
ものも普及している。(Prior technology) Precision equipment such as semiconductor manufacturing equipment, laser equipment, and NC control equipment is generally installed on vibration-proof frames because vibrations from inside and outside will adversely affect their performance. It is. Furthermore, recently, support stands for precision instruments that have a vibration-isolating structure have become popular in preparation for earthquakes and the like.
一方、上記の精密機器類は、作動時に冷却水や
洗浄水を用いるため、配管を介してポンプ等に接
続されている場合が多く、ポンプ等で生じる振動
が配管及び床を通じて精密機器類に伝達される難
点がある。 On the other hand, since the precision equipment mentioned above uses cooling water or cleaning water during operation, it is often connected to a pump, etc. through piping, and the vibrations generated by the pump, etc. are transmitted to the precision equipment through the piping and the floor. There are some drawbacks.
このため、従来では、配管の途中に防振継手を
介装して振動を吸収すると共に、ポンプ及び精密
機器類を振動絶縁基礎上に載置して床からの振動
を絶縁している。 For this reason, conventionally, a vibration isolating joint is inserted in the middle of the piping to absorb the vibration, and the pump and precision instruments are placed on a vibration insulating foundation to insulate the vibration from the floor.
(考案が解決しようとする課題)
しかし、従来の防振構造では、配管を伝わる振
動を完全には遮断できない欠点があり、精密機器
類を高精度化する際のネツクになつている。(Problem that the invention aims to solve) However, conventional vibration isolation structures have the drawback of not being able to completely block vibrations transmitted through piping, which has become a bottleneck in improving the precision of precision instruments.
本考案は上記事情に鑑みてなされたもので、ポ
ンプ等の振動発生源から配管を介して精密機器類
に伝達される振動を確実に絶縁することができる
防振構造を提供することにある。 The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a vibration isolation structure that can reliably isolate vibrations transmitted from a vibration source such as a pump to precision instruments via piping.
(課題を解決するための手段)
上記目的を達成するため、本考案では振動発生
源から配管を介して連結された精密機器類の防振
構造において、上記配管途中に複数の防振継手を
直列に介装すると共に、防振継手間の配管部分を
重量物に連結し、該重量物を振動吸収層を介して
基礎に設置している。(Means for solving the problem) In order to achieve the above object, in the present invention, in the vibration isolation structure of precision instruments connected from the vibration source through piping, a plurality of vibration isolation joints are connected in series in the middle of the piping. At the same time, the piping between the vibration-isolating joints is connected to a heavy object, and the heavy object is installed on the foundation via a vibration-absorbing layer.
(作用)
本考案に係る防振構造では、配管途中に介装さ
れた防振継手間の配管部分に重量物の連結し、且
つ該重量物を振動吸収層を介して基礎に設置する
ことにより、防振継手の振動伝達率を低減させて
その防振作用を向上させることができ、しかも残
りの振動を精密機器類寄りの防振継手で吸収でき
る。(Function) In the vibration isolation structure according to the present invention, a heavy object is connected to the piping part between the vibration isolating joints interposed in the middle of the piping, and the heavy object is installed on the foundation via a vibration absorption layer. It is possible to reduce the vibration transmission rate of the anti-vibration joint and improve its anti-vibration effect, and furthermore, the remaining vibration can be absorbed by the anti-vibration joint used for precision equipment.
(実施例)
第1図には本考案に係る防振構造を示してあ
る。(Example) FIG. 1 shows a vibration isolation structure according to the present invention.
精密機器10は防振ゴム11や図示省略の免振
装置を介してコンクリートブロツク12上に載置
されている。このコンクリートブロツク12は基
礎13の凹所内に発泡剤14の層を介して埋設さ
れており、これらにより振動に対する絶縁基礎が
構成されている。 The precision instrument 10 is placed on a concrete block 12 via a vibration isolator 11 and a vibration isolator (not shown). This concrete block 12 is buried in a recess of a foundation 13 with a layer of foaming agent 14 interposed therebetween, thereby forming an insulating foundation against vibrations.
また、精密機器10の側面には配管15の一端
が接続されており、該配管15の他端はポンプ1
6に接続されている。ポンプ16は配管15を通
じて精密機器10に所定の流体を送り込むための
もので支持台17により基礎13上に載置されて
いる。 Further, one end of a pipe 15 is connected to the side surface of the precision instrument 10, and the other end of the pipe 15 is connected to a pump 1.
6. The pump 16 is for sending a predetermined fluid to the precision instrument 10 through the piping 15, and is placed on the foundation 13 by a support stand 17.
上記配管15の途中には2か所に亘つてベロー
ズ型の防振継手18,19が介装されており、両
防振継手18,19間の配管部分はロツド20を
介してコンクリートブロツク21に連結されてい
る。このコンクリートブロツク21は基礎13の
別の凹所内に発泡剤14の層を介して埋設されて
いおり、これらにより振動に対する絶縁基礎が構
成されている。 Bellows-type anti-vibration joints 18 and 19 are interposed at two locations in the middle of the piping 15, and the piping portion between both anti-vibration joints 18 and 19 is connected to a concrete block 21 via a rod 20. connected. This concrete block 21 is buried in a separate recess of the foundation 13 via a layer of foaming agent 14, thereby forming an insulating foundation against vibrations.
一般に、防振継手の振動伝達率τ(出口側の
力/入口側の力)は、加振振動数をf、防振継手
の固有振動数をfnとすると、
τ=|1/1−(f/fn)2| ……(1)
で表わされる。 In general, the vibration transmissibility τ (outlet side force/inlet side force) of an anti-vibration joint is calculated as follows, where f is the excitation frequency and fn is the natural frequency of the anti-vibration joint. f/fn) 2 | ...(1)
また、固有振動数をfnは、防振継手のばね定数
をk、重力加速度をg、伝達側の重量をWとする
と、
で表わされる。 Also, let fn be the natural frequency, k be the spring constant of the anti-vibration joint, g be the gravitational acceleration, and W be the weight of the transmission side. It is expressed as
従つて、(2)式でWを大きくすればfnは小さくな
り、fは一定の振動数であるからf/fnは大きく
なる。このため第3図のグラフからも分かるよう
に、振動数比f/fn>1の範囲ではfnが小さくな
ると、即ちf/fnが大きくなると、半径方向及び
軸方向の振動伝達率τも小さくなつて伝達される
振動が減少する。 Therefore, if W is increased in equation (2), fn becomes smaller, and since f is a constant frequency, f/fn becomes larger. Therefore, as can be seen from the graph in Figure 3, in the frequency ratio f/fn > 1, as fn becomes smaller, that is, as f/fn becomes larger, the vibration transmissibility τ in the radial and axial directions also becomes smaller. This reduces the vibrations transmitted.
ここで、Wは防振継手18の下流側の重量、即
ち配管15の重量と固定点の重量との和になるか
ら、第1図のように重量のあるコンクリートブロ
ツク21を配管15に連結すれば、固有振動数fn
及び振動伝達率τが小さくなつて零に近づくこと
になる。 Here, W is the weight of the downstream side of the anti-vibration joint 18, that is, the sum of the weight of the pipe 15 and the weight of the fixed point, so it is necessary to connect the heavy concrete block 21 to the pipe 15 as shown in Fig. 1. For example, the natural frequency fn
and the vibration transmissibility τ decreases and approaches zero.
また、防振継手19を配管の下流側に接続する
と、防振継手18の振動伝達率をτ1、防振継手1
9振動伝達率をτ2とすると、全体の振動伝達率τ
は、
τ=τ1+τ2
で表わされる。 Furthermore, when the vibration-proof joint 19 is connected to the downstream side of the piping, the vibration transmission coefficient of the vibration-proof joint 18 is τ1, and the vibration-proof joint 1 is
9 If the vibration transmissibility is τ2, then the overall vibration transmissibility τ
is expressed as τ=τ1+τ2.
τ1は上記のように固定点を設けたことにより極
めて小さく、この小さい振動はさらに防振継手1
9で吸収されるから、精密機器10には振動が殆
ど伝わらない。 τ1 is extremely small due to the provision of fixed points as described above, and this small vibration is further reduced by vibration-proof joint 1.
9, the vibration is hardly transmitted to the precision instrument 10.
一方、ポンプ16の振動の一部は、支持台17
を通じて基礎13へと伝達され、精密機器10側
へと向かう。しかし、この振動は、伝達経路途中
にある発泡剤14の層と防振ゴム11によつてほ
ぼ完全に吸収される。 On the other hand, part of the vibration of the pump 16 is caused by
The signal is transmitted to the foundation 13 through the cable, and then to the precision equipment 10 side. However, this vibration is almost completely absorbed by the layer of foaming agent 14 and the vibration isolating rubber 11 located in the middle of the transmission path.
図2には耐震作用をも兼備した防振構造を示し
てある。尚、本実施例では図1に示した実施例と
構成を同じくする部分に同一符号を用いてある。 Figure 2 shows a vibration isolation structure that also has earthquake resistance. In this embodiment, the same reference numerals are used for parts having the same configuration as the embodiment shown in FIG.
この防振構造では、精密機器10を床22に載
置して、該床22とコンクリートブロツク12と
の間に縦長の防振ゴム11を介装し、該防振ゴム
11を貫通するアンカー23で床22とコンクリ
ートブロツク12を連結してある。この場合、免
振装置をコンクリートブロツク12と床22の間
に挿入するようにしてもよい。 In this anti-vibration structure, a precision instrument 10 is placed on a floor 22, a vertical anti-vibration rubber 11 is interposed between the floor 22 and a concrete block 12, and an anchor 23 is inserted through the anti-vibration rubber 11. The floor 22 and concrete block 12 are connected to each other. In this case, a vibration isolation device may be inserted between the concrete block 12 and the floor 22.
また、配管15の下流側に防振継手19に代え
て長尺のフレキシブル継手19Aを接続して、精
密機器10の振動変位に追従できる構成にしてい
る。 Furthermore, a long flexible joint 19A is connected to the downstream side of the piping 15 instead of the vibration-proof joint 19, so that the structure can follow the vibration displacement of the precision instrument 10.
一方、ポンプ16の支持台17に下面にも縦長
の防振ゴム24を取り付けて、全体をボルト25
により基礎13上に支持させ、支持台17の外側
に断面L字形のストツパ26を設置してある。こ
のストツパ26は支持台17の上面及び側面と所
定の間隔をおいて配置され、その下部はアンカー
27により基礎13に固定されている。 On the other hand, a vertically long anti-vibration rubber 24 is also attached to the lower surface of the support stand 17 of the pump 16, and the entire body is attached with bolts 25.
A stopper 26 having an L-shaped cross section is installed on the outside of the support base 17. This stopper 26 is arranged at a predetermined distance from the upper and side surfaces of the support base 17, and its lower part is fixed to the foundation 13 by an anchor 27.
尚、床22や支持台17の耐震構造自体は公知
の手段で十分である。 Incidentally, for the earthquake-resistant structure of the floor 22 and the support base 17, known means are sufficient.
上述の防振構造では、ポンプ16から配管15
へ伝わつた振動を、防振継手18と固定点のコン
クリートブロツク21で絶縁することができ、ま
た地震に対しては長尺のフレキシブル継手19A
と防振ゴム11,24で十分に対応することがで
きる。また、ストツパ26によりポンプ16の支
持台17の上下及び左右方向の変位を規制するこ
とができる。さらに、フレキシブル継手19Aも
ベローズ形であることから、変位の吸収のみなら
ず、ある程度の防振作用を発揮させて振動伝達を
抑制することができる。 In the vibration isolation structure described above, the pipe 15 from the pump 16
The vibration transmitted to the building can be insulated by the anti-vibration joint 18 and the concrete block 21 at the fixed point, and the long flexible joint 19A can be used to prevent earthquakes.
The anti-vibration rubbers 11 and 24 can sufficiently cope with this problem. Further, the stopper 26 can restrict displacement of the support base 17 of the pump 16 in the vertical and horizontal directions. Furthermore, since the flexible joint 19A is also bellows-shaped, it can not only absorb displacement but also exhibit a certain degree of vibration damping effect to suppress vibration transmission.
(考案の効果)
以上詳述したように、本考案によれば、防振継
手の振動伝達率を低減させてその防振作用を向上
させることができ、しかも残りの振動を精密機器
類寄りの防振継手で吸収できるので、振動発生源
から配管を介して精密機器類に伝達される振動を
ほぼ完全に遮断することができる。(Effects of the invention) As detailed above, according to the invention, it is possible to reduce the vibration transmission rate of the anti-vibration joint and improve its anti-vibration effect, and moreover, it is possible to reduce the remaining vibrations to those of precision equipment. Since vibration can be absorbed by the anti-vibration joint, it is possible to almost completely block the vibration transmitted from the vibration source to the precision equipment via the piping.
第1図は防振構造を示す簡略側面図、第2図は
耐震作用をも兼備した防振構造を示す簡略側面
図、第3図は加振振動数と振動伝達率の関係を示
すグラフである。
図中、10……精密機器、13……基礎、14
……発泡剤、15……配管、16……ポンプ、1
8,19……防振継手、19A……フレキシブル
継手、20……ロツド、21……コンクリートブ
ロツク。
Figure 1 is a simplified side view showing the vibration isolation structure, Figure 2 is a simplified side view showing the vibration isolation structure that also has earthquake resistance, and Figure 3 is a graph showing the relationship between excitation frequency and vibration transmissibility. be. In the diagram, 10... Precision equipment, 13... Fundamentals, 14
...Blowing agent, 15 ... Piping, 16 ... Pump, 1
8, 19... Anti-vibration joint, 19A... Flexible joint, 20... Rod, 21... Concrete block.
Claims (1)
器類の防振構造において、 上記配管途中に複数の防振継手を直列に介装す
ると共に、 防振継手間の配管部分を重量物に連結し、 該重量物を振動吸収層を介して基礎に設置し
た、 ことを特徴とする防振構造。[Scope of Claim for Utility Model Registration] In a vibration isolation structure for precision equipment connected from a vibration source through piping, a plurality of vibration isolation joints are interposed in series in the middle of the piping, and the vibration isolation between the vibration isolation joints is A vibration isolation structure characterized in that a piping part is connected to a heavy object, and the heavy object is installed on a foundation via a vibration absorption layer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1986162334U JPH0449426Y2 (en) | 1986-10-24 | 1986-10-24 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1986162334U JPH0449426Y2 (en) | 1986-10-24 | 1986-10-24 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6368586U JPS6368586U (en) | 1988-05-09 |
JPH0449426Y2 true JPH0449426Y2 (en) | 1992-11-20 |
Family
ID=31089497
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1986162334U Expired JPH0449426Y2 (en) | 1986-10-24 | 1986-10-24 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0449426Y2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009216233A (en) * | 2008-03-13 | 2009-09-24 | Shinryo Corp | Vibration reducing method for pipe system |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6017499B2 (en) * | 1979-10-12 | 1985-05-02 | 株式会社 サタケ | Polished rice conditioning method |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5994630U (en) * | 1982-12-17 | 1984-06-27 | 三菱重工業株式会社 | Vibration isolator |
JPS6017499U (en) * | 1983-07-14 | 1985-02-06 | 石川島播磨重工業株式会社 | Piping equipment support device in guard cell in fast breeder reactor |
JPS60133285U (en) * | 1984-02-15 | 1985-09-05 | 石川島播磨重工業株式会社 | Earthquake protection equipment for piping |
-
1986
- 1986-10-24 JP JP1986162334U patent/JPH0449426Y2/ja not_active Expired
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6017499B2 (en) * | 1979-10-12 | 1985-05-02 | 株式会社 サタケ | Polished rice conditioning method |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009216233A (en) * | 2008-03-13 | 2009-09-24 | Shinryo Corp | Vibration reducing method for pipe system |
Also Published As
Publication number | Publication date |
---|---|
JPS6368586U (en) | 1988-05-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO1994024457A1 (en) | Vibration-isolation support | |
JPH0449426Y2 (en) | ||
RU2279584C1 (en) | Rubber vibration isolator for equipment | |
JP4392567B2 (en) | Seismic isolation device | |
KR101266831B1 (en) | Tuned Mass Damper Using Metal Plate Spring and Vibration Isolation Base Using the Tuned Mass Damper | |
JP2001336572A (en) | Damper and building using the same | |
JP2019139105A (en) | Sound reduction system | |
JPH10183805A (en) | Soundproof double floor | |
WO1997021046A1 (en) | Vibration damping apparatus | |
JP5320031B2 (en) | Damping building | |
JPS6221946B2 (en) | ||
JP4651502B2 (en) | Anti-vibration frame structure of clean room | |
JP2003253800A (en) | Floor vibration damping structure | |
JPH09303616A (en) | Antiseismic piping | |
JP2984710B2 (en) | Seismic isolation / vibration isolation system for structures | |
JP2010196839A (en) | Damping device | |
JPH07252967A (en) | Vibration prevention structure | |
JPH029172Y2 (en) | ||
JPH11182775A (en) | Base isolating piping connecting method | |
JP2001286016A (en) | Gas-insulated switch | |
JPS6332278Y2 (en) | ||
JP2002098188A (en) | Vibration isolation structure with damping function | |
JPH02236354A (en) | Floor seismic isolation structure | |
JPH0533894A (en) | Vibration isolation structure for underground pipes | |
JP3463110B2 (en) | Three-dimensional seismic isolation device for seismic isolation floor |