JPH0449262B2 - - Google Patents

Info

Publication number
JPH0449262B2
JPH0449262B2 JP58061753A JP6175383A JPH0449262B2 JP H0449262 B2 JPH0449262 B2 JP H0449262B2 JP 58061753 A JP58061753 A JP 58061753A JP 6175383 A JP6175383 A JP 6175383A JP H0449262 B2 JPH0449262 B2 JP H0449262B2
Authority
JP
Japan
Prior art keywords
light
receiving element
element array
shielding partition
infrared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58061753A
Other languages
Japanese (ja)
Other versions
JPS59186363A (en
Inventor
Yoshihiro Myamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP58061753A priority Critical patent/JPS59186363A/en
Priority to US06/596,706 priority patent/US4609820A/en
Priority to DE8484302329T priority patent/DE3483371D1/en
Priority to EP84302329A priority patent/EP0125016B1/en
Publication of JPS59186363A publication Critical patent/JPS59186363A/en
Publication of JPH0449262B2 publication Critical patent/JPH0449262B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/04Optical or mechanical part supplementary adjustable parts
    • G01J1/06Restricting the angle of incident light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/04Optical or mechanical part supplementary adjustable parts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/06Arrangements for eliminating effects of disturbing radiation; Arrangements for compensating changes in sensitivity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02162Coatings for devices characterised by at least one potential jump barrier or surface barrier for filtering or shielding light, e.g. multicolour filters for photodetectors
    • H01L31/02164Coatings for devices characterised by at least one potential jump barrier or surface barrier for filtering or shielding light, e.g. multicolour filters for photodetectors for shielding light, e.g. light blocking layers, cold shields for infrared detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/0295Constructional arrangements for removing other types of optical noise or for performing calibration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/10Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
    • G01J5/28Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors using photoemissive or photovoltaic cells
    • G01J2005/283Array

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Light Receiving Elements (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Description

【発明の詳細な説明】 (a) 発明の技術分野 本発明は冷却型光電変換装置に係り、特に装置
内の冷却ヘツド上に実装した赤外線受光素子アレ
イに対する背景輻射光の入射を制限するコール
ド・シールドの構造に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (a) Technical Field of the Invention The present invention relates to a cooled photoelectric conversion device, and in particular to a cold photoelectric conversion device that limits background radiation from entering an infrared receiving element array mounted on a cooling head in the device. This concerns the structure of the shield.

(b) 技術の背景 一般に半導体から成る赤外線検知用の光電変換
素子は、入射光量に対応した出力を生じ、常温よ
りも、はるかに低い温度に冷却しないと良好に動
作しない性質がある。故に例えば、一部に赤外線
透過窓をけた外筒と、該赤外線透過窓に対向して
冷却ヘツドを設けた内筒からなるデユワ構造の真
空断熱容器を用いて前記光電変換素子を、該真空
断熱容器内の真空側冷却ヘツド上に設置し、該冷
却ヘツドを介して液体窒素等によつて所定の低温
に冷却して動作させている。
(b) Background of the Technology Photoelectric conversion elements for infrared detection, which are generally made of semiconductors, produce an output that corresponds to the amount of incident light, and they have the property of not operating well unless they are cooled to a temperature much lower than room temperature. Therefore, for example, the photoelectric conversion element can be stored in a vacuum-insulated container using a vacuum-insulated container with a dewar structure consisting of an outer cylinder partially having an infrared-transmitting window and an inner cylinder having a cooling head opposite the infrared-transmitting window. It is installed on a cooling head on the vacuum side inside the container, and is operated by cooling it to a predetermined low temperature with liquid nitrogen or the like via the cooling head.

また、一方前記光電変換素子に対する視野角
は、素子前面に設けたコールド・シールドの、入
射光の範囲を規定する視野決定用の開口部形状
と、該開口部と素子受光面間の距離によつて定め
られる。
On the other hand, the viewing angle for the photoelectric conversion element depends on the shape of the field-of-view determining opening in the cold shield provided on the front of the element, which defines the range of incident light, and the distance between the opening and the element's light-receiving surface. It is determined that

そしてこのコールド・シールドは更に、前記光
電変換素子と共に極低温に冷却されて検知視野以
外の背景輻射光の入射を防止している。
This cold shield is further cooled to an extremely low temperature together with the photoelectric conversion element to prevent background radiation from entering outside the detection field of view.

(c) 従来技術と問題点 ところで、従来の多素子型赤外線検知素子、例
えば、一次元的に配列した赤外線受光素子アレイ
に対するコールド・シールドとしては、例えば前
記赤外線受光素子アレイの各受光素子の配列ピツ
が通例、数μm〜数十μm程度と極めて微少な為、
各受光素子にそれぞれ対応した個別の視野決定用
開口部を列設することは、その製造上、また構造
上困難なるため、第1図の概略斜視図に示すよう
に、一次元的に配列した赤外線受光素子アレイ1
の全受光面に対向して、長四角形のスリツト状視
野決定用開口部4が平行になるように、かつ所定
距離をもつてコールド・シールド3が配置されて
いる。
(c) Prior Art and Problems By the way, as a cold shield for a conventional multi-element infrared sensing element, for example, an infrared sensing element array arranged one-dimensionally, for example, the arrangement of each of the sensing elements of the infrared sensing element array is useful. Because pits are usually extremely small, ranging from a few μm to several tens of μm,
Since it is difficult to arrange individual field-of-view determining openings corresponding to each light-receiving element in terms of manufacturing and structural reasons, they are arranged one-dimensionally as shown in the schematic perspective view of Figure 1. Infrared receiving element array 1
A cold shield 3 is placed so that the rectangular slit-shaped field-of-view determining opening 4 is parallel to the entire light-receiving surface of the cold shield 3 and is spaced apart from it by a predetermined distance.

然しながら、上記の如きコールド・シールド3
の視野決定用開口部4の形状にあつては、前記受
光素子アレイ1の、中央部の受光素子2aと両端
部の受光素子2bでの有効視野角が異なつてい
る。即ち、前記受光素子アレイ1に対する入射光
量が、両端部で減少するといつた所謂シエーデイ
ング(Shading)が生ずる不都合があつた。よつ
て前記各受光素子2の信号出力が不均一になり、
中央部から両端部に向かつて感度の低下した受光
素子2を配列したのと同様の構成となり、赤外線
受光素子アレイ1にとつて好ましくない現象を呈
していた。
However, cold shield 3 as mentioned above
Regarding the shape of the field-of-view determining opening 4, the effective viewing angles of the light-receiving elements 2a at the center and the light-receiving elements 2b at both ends of the light-receiving element array 1 are different. That is, there is a problem in that so-called shading occurs when the amount of light incident on the light receiving element array 1 decreases at both ends. Therefore, the signal output of each of the light receiving elements 2 becomes non-uniform,
The structure is similar to that of arranging the light receiving elements 2 whose sensitivity decreases from the center toward both ends, which is an undesirable phenomenon for the infrared light receiving element array 1.

そこで前記受光素子アレイ1の受光面と、コー
ルド・シールド3の視野決定用開口部4との間隔
を大きくとることにより前記シエーデイング現象
が、かなり改善されるが、この場合コールド・シ
ールド3の構造が大きくなり当該装置が大型化す
る問題がある。
Therefore, by increasing the distance between the light-receiving surface of the light-receiving element array 1 and the field-of-view determining aperture 4 of the cold shield 3, the shading phenomenon can be considerably improved, but in this case, the structure of the cold shield 3 is There is a problem in that the size of the device increases.

(d) 発明の目的 本発明は、上記従来の欠点に鑑み、一次元的に
配列した赤外線受光素子アレイの全受光素子面に
対する、コールド・シールドの視野決定用開口部
をブラインド形状に改善して、前記赤外線受光素
子アレイの各受光素子面に対する視野角を均一化
し、もつてシエーデイング現象を排除するように
した新規な冷却型光電変換装置を提供することを
目的とするものである。
(d) Purpose of the Invention In view of the above-mentioned conventional drawbacks, the present invention improves the visual field determination opening of the cold shield to have a blind shape for the entire light receiving element surface of the one-dimensionally arranged infrared receiving element array. It is an object of the present invention to provide a novel cooled photoelectric conversion device that equalizes the viewing angle for each light-receiving element surface of the infrared light-receiving element array, thereby eliminating the shading phenomenon.

(e) 発明の構成 そしてこの目的は本発明によれば、赤外線受光
素子アレイの前面に、入射光の範囲を規定する視
野決定用の開口部を備えたコールドシールドを有
して成り、該コールドシールドは、その開口部に
前記受光素子アレイの受光面に対して垂直で、か
つ該受光素子アレイの配列方向に交差するように
一定間隔をもつて並列した複数の遮光仕切板を該
受光面より離間した高さ位置に配置して成り、該
遮光仕切板の間隔と幅および前記受光素子アレイ
の受光面から設置高さによつて、各受光素子の見
る有効視野角を隣接する複数の遮光仕切板の間隙
を通して設定するようにしたことを特徴とする冷
却型光電変換装置を提供することによつて達成さ
れる。
(e) Structure of the Invention According to the present invention, this object comprises a cold shield provided with an aperture for determining the field of view that defines the range of incident light on the front surface of the infrared receiving element array; The shield has a plurality of light-shielding partition plates arranged in parallel at regular intervals perpendicular to the light-receiving surface of the light-receiving element array and intersecting with the arrangement direction of the light-receiving element array in the opening thereof, from the light-receiving surface. The effective viewing angle of each light-receiving element is determined by the distance and width of the light-shielding partition plates and the installation height from the light-receiving surface of the light-receiving element array. This is achieved by providing a cooled photoelectric conversion device characterized in that it is set through a gap between plates.

(f) 発明の実施例 以下図面を用いて本発明の実施例について詳細
に説明する。
(f) Embodiments of the invention Examples of the invention will be described in detail below with reference to the drawings.

第2図は本発明に係る冷却型光電変換装置にお
けるコールド・シールドの開口部の構造の一実施
例を示す概略斜視図であり、第3図は本発明に係
る第2図のコールド・シールドの開口部と赤外線
受光素子アレイの全受光素子面との関係を説明す
る模式図である。
FIG. 2 is a schematic perspective view showing an embodiment of the structure of the opening of the cold shield in the cooled photoelectric conversion device according to the present invention, and FIG. 3 is a schematic perspective view of the cold shield of FIG. FIG. 3 is a schematic diagram illustrating the relationship between the opening and the entire light-receiving element surface of the infrared light-receiving element array.

まず第2図に示すように、本発明においては図
示しない冷却ヘツド上に一次元的に配列した、赤
外線受光素子アレイ1の全受光素子面に対して所
定高さを持つて対向しているコールド・シールド
3の視野決定用開口部4の形状を、例えば該開口
部4内に、前記受光素子アレイ1の受光面に対し
て垂直で、かつ該受光素子アレイ1の配列方向に
直交するように、一定間隔をもつて並列した複数
の遮光仕切板21が図示のように該受光面より離
間した所定高さ位置に配置した構成がとられてい
る。但しこの場合、各遮光仕切板21によつて構
成された所定間隔部22は、対向する前記受光素
子アレイ1の各受光素子2面と個々に対応させる
必要はない。
First, as shown in FIG. 2, in the present invention, a cooling head is arranged one-dimensionally on a cooling head (not shown), and faces at a predetermined height with respect to all the light-receiving element surfaces of the infrared light-receiving element array 1. - The shape of the field-of-view determining opening 4 of the shield 3 is set, for example, in the opening 4 so that it is perpendicular to the light-receiving surface of the light-receiving element array 1 and perpendicular to the arrangement direction of the light-receiving element array 1. As shown in the figure, a plurality of light-shielding partition plates 21 arranged in parallel at regular intervals are arranged at a predetermined height position apart from the light-receiving surface. However, in this case, the predetermined interval portions 22 formed by the light-shielding partition plates 21 do not need to correspond individually to the two surfaces of the light-receiving elements of the opposing light-receiving element array 1.

しかして、上記のように前記受光素子アレイ1
に対するコールド・シールド3の視野決定用開口
部4をブラインド形状に構成することにより、第
3図の模式図に示すように前記受光素子アレイ1
の各受光面31での視野角は、前記各遮光仕切板
21によつて一様に規定される。そして例えば、
図における各遮光仕切板21の幅Lが2、各遮光
仕切板21間の間隔Dが1、素子面に対する遮光
仕切板21の高さHを4とした場合、遮光仕切板
21直下の素子面Aでの有効視野角は、27.72゜、
また遮光仕切板21間の中央直下の素子面Bでの
有効視野角は、27.48゜と殆どゆらぐことはない。
よつて前記コールド・シールド3の視野決定用開
口部4の形状を構成するのに、遮光仕切板21の
幅L、各遮光仕切板21間の間隔D、素子面に対
する遮光仕切板21の高さHを適当に選択するこ
とによつて受光素子アレイ1に要求される視野角
を容易に決定することが可能となり、図示しない
共通の光学系を介してコールドシールド3の開口
部4へ入射する光は、該開口部4内の前記遮光仕
切板21の各間隙を通して受光素子アレイ1の各
受光素子2に均等に受光されるようになる。従つ
て、受光素子アレイ1の中央部の受光素子2aか
ら両端部の受光素子2bに対して生じるシエーデ
イング現象も解消される。
Therefore, as described above, the light receiving element array 1
By configuring the visual field determining opening 4 of the cold shield 3 in a blind shape, the light receiving element array 1 is formed as shown in the schematic diagram of FIG.
The viewing angle at each light-receiving surface 31 is uniformly defined by each light-shielding partition plate 21 . And for example,
If the width L of each light-shielding partition plate 21 in the figure is 2, the interval D between each light-shielding partition plate 21 is 1, and the height H of the light-shielding partition plate 21 with respect to the element surface is 4, then the element surface directly below the light-shielding partition plate 21 The effective viewing angle at A is 27.72°,
Further, the effective viewing angle on the element surface B directly below the center between the light-shielding partition plates 21 is 27.48°, which hardly fluctuates.
Therefore, to configure the shape of the field-of-view determining opening 4 of the cold shield 3, the width L of the light-shielding partition plate 21, the distance D between each light-shielding partition plate 21, and the height of the light-shielding partition plate 21 with respect to the element surface are determined. By appropriately selecting H, it is possible to easily determine the viewing angle required for the photodetector array 1, and the light entering the opening 4 of the cold shield 3 via a common optical system (not shown) can be easily determined. The light is uniformly received by each light receiving element 2 of the light receiving element array 1 through each gap of the light shielding partition plate 21 in the opening 4. Therefore, the shading phenomenon that occurs from the light receiving element 2a at the center of the light receiving element array 1 to the light receiving elements 2b at both ends is also eliminated.

なお以上の実施例では、一次元配列の赤外線受
光素子アレイを例にとつて説明したが、本発明は
これに限らず二次元配列の赤外線受光素子アレイ
にも同様に適用可能なことは勿論である。
In the above embodiments, a one-dimensional array of infrared light-receiving elements has been described as an example, but the present invention is of course not limited to this, and is equally applicable to a two-dimensional array of infrared light-receiving elements. be.

(g) 発明の効果 以上の説明から明らかなように、本発明に係る
冷却型光電変換装置によれば、赤外線受光素子ア
レイの、全受光素子面に対向配置したコールド・
シールドの視野決定用開口部に、該受光素子アレ
イの配列方向に交差する形に、複数枚の遮光仕切
板を、ブインド状態に所定間隔で並列し、かつ受
光素子面より離間した高さ位置に配置した構成と
することにより、共通の光学系を介してコールド
シールドの視野決定用開口部へ入射する光は、該
開口部に設けた前記複数の遮光仕切板の各間隙を
通して前記受光素子アレイの各受光素子に入射さ
れるので、該受光素子アレイ上の各受光素子面で
の有効視野角をほぼ一定に規定することが可能と
なり、従来の如きシエーデイング現象が解消され
る。よつて各受光素子にわたつて均等な出力信号
が得られるようになり、当該冷却型光電変換装置
の性能を大幅に向上することができる。またコー
ルド・シールドを小型に構成できる等、優れた利
点を有する。
(g) Effects of the Invention As is clear from the above explanation, according to the cooled photoelectric conversion device of the present invention, the cold photoelectric conversion device of the infrared light receiving element array is arranged so as to face all the light receiving element surfaces.
A plurality of light-shielding partition plates are arranged in parallel at predetermined intervals in a blind state in a field-of-view determining opening of the shield in a manner that intersects with the arrangement direction of the light-receiving element array, and at a height position spaced apart from the light-receiving element surface. With this configuration, light entering the field-of-view determining opening of the cold shield through a common optical system passes through each gap of the plurality of light-shielding partition plates provided in the opening and passes through the light-receiving element array. Since the light is incident on each light-receiving element, it becomes possible to define the effective viewing angle on each light-receiving element surface on the light-receiving element array to be substantially constant, and the conventional shading phenomenon is eliminated. Therefore, uniform output signals can be obtained across each light receiving element, and the performance of the cooled photoelectric conversion device can be greatly improved. It also has excellent advantages, such as the ability to make the cold shield compact.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の冷却型光電変換装置における、
コールド・シールドの開口部の構造を説明する概
略斜視図、第2図は本発明に係る冷却型光電変換
装置における、コールド・シールドの開口部の構
造の一実施例を示す概略斜視図、第3図は本発明
に係る第2図の、コールド・シールドの開口部と
赤外線受光素子アレイの全受光素子面との関係を
説明する模式図である。 図面において、1は赤外線受光素子アレイ、2
は受光素子、2aは中央部の受光素子、2bは両
端部の受光素子、3はコールド・シールド、4は
視野決定用開口部、21は遮光仕切板、22は所
定間隔部、31は各受光面を示す。
Figure 1 shows a conventional cooling type photoelectric conversion device.
FIG. 2 is a schematic perspective view illustrating the structure of the opening of the cold shield; FIG. The figure is a schematic diagram illustrating the relationship between the opening of the cold shield and the entire light-receiving element surface of the infrared light-receiving element array in FIG. 2 according to the present invention. In the drawings, 1 is an infrared receiving element array; 2 is an infrared receiving element array;
2 is a light receiving element, 2a is a central light receiving element, 2b is a light receiving element at both ends, 3 is a cold shield, 4 is an aperture for determining the field of view, 21 is a light shielding partition plate, 22 is a predetermined interval part, 31 is each light receiving element Show the face.

Claims (1)

【特許請求の範囲】[Claims] 1 赤外線受光素子アレイ1の前面に、入射光の
範囲を規定する視野決定用の開口部4を備えたコ
ールドシールド3を有して成り、該コールドシー
ルド3は、その開口部4に前記受光素子アレイ1
の受光面に対して垂直で、かつ該受光素子アレイ
1の配列方向に交差するように一定間隔をもつて
並列した複数の遮光仕切板21を該受光面より離
間した高さH位置に配置して成り、該遮光仕切板
21の間隔Dと幅Lおよび前記受光素子アレイ1
の受光面からの設置高さHによつて、各受光素子
2の見る有効視野角を隣接する複数の遮光仕切板
21の間隙を通して設定するようにしたことを特
徴とする冷却型光電変換装置。
1. A cold shield 3 is provided in front of the infrared light receiving element array 1 and has an aperture 4 for determining the field of view that defines the range of incident light. array 1
A plurality of light-shielding partition plates 21 are arranged in parallel at regular intervals perpendicular to the light-receiving surface and intersecting the arrangement direction of the light-receiving element array 1 at a height H apart from the light-receiving surface. The spacing D and width L of the light shielding partition plate 21 and the light receiving element array 1
A cooled photoelectric conversion device characterized in that the effective viewing angle of each light-receiving element 2 is set through the gaps between a plurality of adjacent light-shielding partition plates 21 by the installation height H from the light-receiving surface.
JP58061753A 1983-04-07 1983-04-07 Cooling type photoelectric conversion device Granted JPS59186363A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP58061753A JPS59186363A (en) 1983-04-07 1983-04-07 Cooling type photoelectric conversion device
US06/596,706 US4609820A (en) 1983-04-07 1984-04-04 Optical shield for image sensing device
DE8484302329T DE3483371D1 (en) 1983-04-07 1984-04-05 SHIELDING FOR OPTICAL PROBE.
EP84302329A EP0125016B1 (en) 1983-04-07 1984-04-05 Optical shields for optical sensing devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58061753A JPS59186363A (en) 1983-04-07 1983-04-07 Cooling type photoelectric conversion device

Publications (2)

Publication Number Publication Date
JPS59186363A JPS59186363A (en) 1984-10-23
JPH0449262B2 true JPH0449262B2 (en) 1992-08-11

Family

ID=13180234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58061753A Granted JPS59186363A (en) 1983-04-07 1983-04-07 Cooling type photoelectric conversion device

Country Status (1)

Country Link
JP (1) JPS59186363A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5242071B2 (en) * 1972-02-02 1977-10-21
JPS56161772A (en) * 1980-05-15 1981-12-12 Canon Inc Original reader

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5242071U (en) * 1976-06-09 1977-03-25

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5242071B2 (en) * 1972-02-02 1977-10-21
JPS56161772A (en) * 1980-05-15 1981-12-12 Canon Inc Original reader

Also Published As

Publication number Publication date
JPS59186363A (en) 1984-10-23

Similar Documents

Publication Publication Date Title
US4429224A (en) Optical arrangement for an infrared intrusion detector
US4375034A (en) Passive infrared intrusion detection system
US4734585A (en) Passive infra-red sensor
EP0650039B1 (en) A pyroelectric type infrared sensor
US4709152A (en) Infrared intrusion detector
US4280050A (en) Infrared viewer and spectral radiometer
US5075553A (en) IR sensor for a scanned staggered element linear array having improved cold shielding
US4431918A (en) Etchable glass cold shield for background limited detectors
US4596930A (en) Arrangement for multispectal imaging of objects, preferably targets
US6037594A (en) Motion detector with non-diverging insensitive zones
US5258621A (en) Cold shield for a scanned linear IR detector array
US4535240A (en) Intruder detection
JPH0449262B2 (en)
US4944588A (en) System for detecting laser radiation
US4645930A (en) Motion detector
EP0219954A1 (en) An infra-red detector system
JPS6412150B2 (en)
JPH0449786B2 (en)
JPH08122144A (en) Infrared detector
GB2124363A (en) Intruder detector
JPS58167928A (en) Cold shield structure for infrared ray detector
JP3106796B2 (en) Pyroelectric infrared sensor
JP2501596Y2 (en) Hot wire detector
JPH08122143A (en) Infrared detector
KR102046086B1 (en) Inclined micro bolometer array