JPH0449253A - Production of 2,6-dimethylnaphthalene - Google Patents

Production of 2,6-dimethylnaphthalene

Info

Publication number
JPH0449253A
JPH0449253A JP15776490A JP15776490A JPH0449253A JP H0449253 A JPH0449253 A JP H0449253A JP 15776490 A JP15776490 A JP 15776490A JP 15776490 A JP15776490 A JP 15776490A JP H0449253 A JPH0449253 A JP H0449253A
Authority
JP
Japan
Prior art keywords
dimethylnaphthalene
dmn
concentration
isomer
isomers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15776490A
Other languages
Japanese (ja)
Other versions
JP2809821B2 (en
Inventor
Masayuki Otake
大竹 正之
Tetsuo Masuyama
増山 鉄男
Akio Nakanishi
中西 章夫
Yoshio Asahi
佳男 朝日
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP2157764A priority Critical patent/JP2809821B2/en
Publication of JPH0449253A publication Critical patent/JPH0449253A/en
Application granted granted Critical
Publication of JP2809821B2 publication Critical patent/JP2809821B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C15/00Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
    • C07C15/20Polycyclic condensed hydrocarbons
    • C07C15/24Polycyclic condensed hydrocarbons containing two rings

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To obtain the subject substance by separating the 2,6-isomer from a stock oil mainly containing a dimethylnaphthalene (DMN) isomer mixture, subjecting the residual stock oil to isomerizing reaction, increasing the 2,6-isomer concentration, removing components other than the DMN from the reaction product and circulating most thereof to the first step. CONSTITUTION:2,6-Dimethylnaphthalene (2,6-DMN) is separated from a stock oil mainly containing a DMN isomer mixture according to a continuous separation method, etc., using column chromatography to isomerize the resultant stock oil at the reduced 2,6-DMN concentration in the presence of a solid acid catalyst (e.g. H-ZSM-5 type zeolite) at 20-500 deg.C. Thereby, the 2,6-DMN concentration is increased to a composition near the thermodynamic equilibrium concentration. Low- and high-boiling substances are removed from the isomerizing reaction product and the 1,2-DMN is removed as much as possible. The obtained product is then circulated to the first step. The high-purity 2,6-DMN of >=99% purity can be efficiently produced by the aforementioned method.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は2,6−ジメチルナフタレンの製造法に関する
ものである。詳しくは、ジメチルナフタレン異性体混合
物を主要成分として含有する原料油から2,6−ジメチ
ルナフタレンを製造する方法に間するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a method for producing 2,6-dimethylnaphthalene. Specifically, the present invention relates to a method for producing 2,6-dimethylnaphthalene from a raw material oil containing a dimethylnaphthalene isomer mixture as a main component.

(従来の技術) 2.6−ジアルキルナフタレン、例えば2,6−ジメチ
ルナフタレンは耐熱性及びガスバリヤ−性の高いポリエ
チレンナフタレートの製造原料として使用され、ジアル
キルナフタレン異性体混合物を主要成分として含有する
原料油から分離することにより製造されている。
(Prior Art) 2.6-Dialkylnaphthalene, such as 2,6-dimethylnaphthalene, is used as a raw material for producing polyethylene naphthalate, which has high heat resistance and gas barrier properties, and is a raw material containing a dialkylnaphthalene isomer mixture as a main component. It is produced by separating it from oil.

従来、ジアルキルナフタレン異性体混合物を主要成分と
して含有する原料油から2,6−ジアルキルナフタレン
を取得する方法としては、ゼオライト系吸着剤を使用す
る方法が数多く知られている。
Conventionally, as a method for obtaining 2,6-dialkylnaphthalene from a feedstock oil containing a mixture of dialkylnaphthalene isomers as a main component, many methods using zeolite-based adsorbents are known.

例えば、米国特許3,133,126、同3,134,
782、同3.772,399、同3,840,610
、同3,895,080、同4,014゜949、特公
昭49−27578、特公昭51−24505、特公昭
52−945及びオランダ特許7307794等が挙げ
られる。
For example, U.S. Patent No. 3,133,126, U.S. Patent No. 3,134,
782, 3.772,399, 3,840,610
, No. 3,895,080, No. 4,014°949, Japanese Patent Publication No. 49-27578, Japanese Patent Publication No. 51-24505, Japanese Patent Publication No. 52-945, and Dutch Patent No. 7307794.

(発明が解決しようとする課題) しかしながら、これらの先行技術には、純度99%以上
のような高純度の2,6−ジアルキルナフタレンを高収
率で得る具体的な方法は開示されていない、更にジアル
キルナフタレン異性体混合物を含む原料油中の不純物や
、原料油から2,6−ジアルキルナフタレンを分離後の
ジアルキルナフタレン混合物ラフィネートを異性化した
場合に生成する副生物の挙動等については全く解明され
ておらず、高純度の2,6−ジアルキルナフタレンを収
率よく製造するためには多くの解決すべき問題があった
(Problems to be Solved by the Invention) However, these prior arts do not disclose a specific method for obtaining high-purity 2,6-dialkylnaphthalene with a high yield, such as a purity of 99% or more. Furthermore, impurities in the feedstock containing a mixture of dialkylnaphthalene isomers and the behavior of by-products generated when the dialkylnaphthalene mixture raffinate is isomerized after 2,6-dialkylnaphthalene has been separated from the feedstock have not been completely elucidated. However, there were many problems to be solved in order to produce high-purity 2,6-dialkylnaphthalene in good yield.

本出願人はさきに、特定の吸着剤と脱離剤を用いるカラ
ムクロマトグラフィー分離と晶析分離を絹み合わせるこ
とによる2、6−ジアルキルナフタレンの分離方法を提
案したく特開平1−168628号)。
The present applicant first proposed a method for separating 2,6-dialkylnaphthalene by combining column chromatography separation and crystallization separation using a specific adsorbent and desorbing agent, and published JP-A-1-168628. ).

この方法では、カラムクロマトグラフィー分離を擬似移
動床方式により連続的に行なうことが可能であり工業的
実施上極めて有利であるが、原料油中のジアルキルナフ
タレン以外の不純物の挙動が不明である。
This method allows continuous column chromatography separation using a simulated moving bed system and is extremely advantageous in industrial practice, but the behavior of impurities other than dialkylnaphthalene in the feedstock oil is unclear.

また、ジアルキルナフタレン異性体混合物を含む原料油
から2,6−ジアルキルナフタレンを分離してその濃度
が低下したジアルキルナフタレン混合物ラフィネートは
、経済的観点から、これを異性化して2.6−ジアルキ
ルナフタレン濃度を熱力学的平衡濃度に近い組成まで高
めて分離工程に戻すのが好ましい、しかし異性化に際し
ては、ジアルキルナフタレン自体、あるいは不純物とし
て混在する他の炭化水素類の少なくとも一部が、脱アル
キル化、不均化、水素化、三量化、分解、閉環反応、閉
環反応等の複雑な副反応を併発して、軽沸成分や高沸成
分が副生ずるのが通例であるが、これらの不純物の影響
や挙動に関する知見も不明であり、工業的プロセスの採
用上なお解決すべき多くの問題がある。
In addition, from an economical point of view, it is possible to obtain a dialkylnaphthalene mixture raffinate in which 2,6-dialkylnaphthalene is separated from a feed oil containing a mixture of dialkylnaphthalene isomers and its concentration is reduced. It is preferable to increase the concentration of the dialkylnaphthalene to a composition close to its thermodynamic equilibrium concentration and return it to the separation process.However, during isomerization, at least a portion of the dialkylnaphthalene itself or other hydrocarbons mixed as impurities undergoes dealkylation, Complex side reactions such as disproportionation, hydrogenation, trimerization, decomposition, ring-closing reactions, and ring-closing reactions usually occur together, resulting in light-boiling and high-boiling components as by-products, but the effects of these impurities Knowledge regarding its behavior is unknown, and there are still many problems that need to be resolved in the adoption of industrial processes.

本発明の目的は、従来法による上述の問題点を解決し、
ジアルキルナフタレン、中でもジメチルナフタレン異性
体混合物を主要成分として含有する原料油から、工業的
に有利に2,6−ジメチルナフタレンを製造する方法を
確立することにある。
The purpose of the present invention is to solve the above-mentioned problems caused by the conventional method,
The object of the present invention is to establish an industrially advantageous method for producing 2,6-dimethylnaphthalene from a feed oil containing dialkylnaphthalene, especially a mixture of dimethylnaphthalene isomers, as a main component.

(課題を解決するための手段) 本発明者等は、上記の目的を達成するため検討した結果
、ジメチル異性体には、夫々の異性化反応における反応
性に大きな相違があることを知った。
(Means for Solving the Problems) As a result of studies to achieve the above object, the present inventors found that dimethyl isomers have large differences in reactivity in their respective isomerization reactions.

即ち、例えば後記書考例1に具体的に示すように、異性
化反応の反応性が大きいのは、2,6一体、2.7一体
、2,3一体等であり、中程度なのは、1.5−体、1
.8一体、1,3一体等であり、1,2体は上記他の異
性体に比し異性化反応の反応性が極端に小さいことが分
フた。
That is, for example, as specifically shown in Example 1 of the postscript, the reactivity of the isomerization reaction is high in 2,6-unit, 2.7-unit, 2,3-unit, etc., and the one with medium reactivity is 1. .5-body, 1
.. It was found that 1,2 isomers have extremely low reactivity in isomerization reactions compared to the other isomers mentioned above.

これがために、異性化反応と分離処理とを組合わせて、
ジメチルナフタレン異性体混合物から2゜6−ジメチル
ナフタレンを製造する場合、混合物中の1,2−ジメチ
ルナフタレンの含有割合は比較的少ないにも拘らず、次
第に1,2−ジメチルナフタレンが系内に蓄積して目的
とする2、6−ジメチルナフタレンの濃度を低下させ、
運転に支障をきたすことが判明した。
For this purpose, isomerization reaction and separation treatment are combined,
When producing 2゜6-dimethylnaphthalene from a mixture of dimethylnaphthalene isomers, 1,2-dimethylnaphthalene gradually accumulates in the system, even though the content of 1,2-dimethylnaphthalene in the mixture is relatively small. to reduce the target concentration of 2,6-dimethylnaphthalene,
It was determined that driving was impaired.

本発明は、上記の知見に基づいて更に検討を重ねた結果
、ジメチルナフタレン異性体混合物を主要成分として含
有する原料油から2,6−ジメチルナフタレンを分離し
、分離後の原料油成分を異性化しで2,6−ジメチルナ
フタレン濃度を高め、これを上記2,6−ジメチルナフ
タレンの分離工程に循環するプロセスを採用する場合に
、異性化反応により副生ずるジメチルナフタレン以外の
低沸点成分及び高沸点成分と共に、異性体混合物中の1
.2−ジメチルナフタレンを予め除去した後に、2,6
−ジメチルナフタレンの分離工程に循環することにより
、極めて高純度の2,6−ジアルキルナフタレンを効率
よく製造し得ることを見出し本発明に到達した。
As a result of further studies based on the above findings, the present invention has been developed by separating 2,6-dimethylnaphthalene from a feedstock oil containing a dimethylnaphthalene isomer mixture as a main component, and isomerizing the separated feedstock component. When adopting a process in which the concentration of 2,6-dimethylnaphthalene is increased and this is recycled to the above-mentioned 2,6-dimethylnaphthalene separation step, low-boiling point components and high-boiling point components other than dimethylnaphthalene that are by-produced by the isomerization reaction. together with 1 in the isomer mixture
.. After pre-removal of 2-dimethylnaphthalene, 2,6
The present invention has been achieved by discovering that extremely high purity 2,6-dialkylnaphthalene can be efficiently produced by recycling it to the separation step of -dimethylnaphthalene.

即ち、本発明の要旨は、 (イ)ジメチルナフタレン異性体混合物を主要成分とし
て含有する原料油から2.6−ジメチルナフタレンを分
離する第1工程、 (ロ)第1工程による分離後の2,6−ジメチルナフタ
レン濃度の低下したジメチルナフタレン異性体混合物を
含有する原料油を、異性化反応に付して2,6−シメチ
ルルナフタレン濃度を熱力学的平衡濃度に近い組成まで
高めた異性化反応生成物を得る第2工程、 (ハ)第2工程による異性化反応生成物からジメチルナ
フタレン以外の成分を除去し、更に1.2−ジメチルナ
フタレンの少なくとも一部を除去した後、第1工程に循
環する第3工程 からなることを特徴とするジメチルナフタレン異性体混
合物を主要成分として含有する原料油から2.6−ジメ
チルナフタレンを製造する方法に存する。
That is, the gist of the present invention is as follows: (a) a first step of separating 2,6-dimethylnaphthalene from a feed oil containing a mixture of dimethylnaphthalene isomers as a main component; (b) a step of separating 2,6-dimethylnaphthalene in the first step; An isomerization reaction in which feedstock oil containing a mixture of dimethylnaphthalene isomers with a reduced concentration of 6-dimethylnaphthalene is subjected to an isomerization reaction to increase the concentration of 2,6-dimethyllunaphthalene to a composition close to the thermodynamic equilibrium concentration. A second step of obtaining a product, (c) removing components other than dimethylnaphthalene from the isomerization reaction product of the second step, and further removing at least a portion of 1,2-dimethylnaphthalene, and then proceeding to the first step. The present invention relates to a method for producing 2,6-dimethylnaphthalene from a feedstock oil containing a dimethylnaphthalene isomer mixture as a main component, characterized by comprising a circulating third step.

以下に本発明の詳細な説明する。The present invention will be explained in detail below.

本発明におけるジメチルナフタレン異性体混合物とは、
2,6−ジメチルナフタレン、2,7−ジメチルナフタ
レン、2,3−ジメチルナフタレン、1.3−ジメチル
ナフタレン、1,8−ジメチルナフタレン、l、7−ジ
メチルナフタレン、1.6−ジメチルナフタレン、1.
5−ジメチルナフタレン、1.4−ジメチルナフタレン
及び1.2−ジメチルナフタレン等の異性体混合物を意
味する。
The dimethylnaphthalene isomer mixture in the present invention is
2,6-dimethylnaphthalene, 2,7-dimethylnaphthalene, 2,3-dimethylnaphthalene, 1,3-dimethylnaphthalene, 1,8-dimethylnaphthalene, 1, 7-dimethylnaphthalene, 1,6-dimethylnaphthalene, 1 ..
It means a mixture of isomers such as 5-dimethylnaphthalene, 1,4-dimethylnaphthalene and 1,2-dimethylnaphthalene.

本発明の処理の対象とする、ジメチルナフタレン異性体
混合物を主要成分として含有する原料油は、一般には、
(1)ガスオイル、石炭タール又は石油系重質油からの
留分もしくは抽出物、(2)上記留分もしくは灯軽油の
分解生成物や改質物、(3)ナフタレン又はメチルナフ
タレンのアルキル化もしくはトランスアルキル化生成物
、(4)アルキル置換ベンゼン類の脱水素環化生成物等
の沸点260〜320℃程度の芳香族炭化水素の混合物
であり、主として上記ジメチルナフタレン異性体混合物
からなり、その他モノアルキルナフタレンを含み、更に
微量の含窒素、含酸素、含硫黄化合物等の不純物を含有
するが、これら不純物は、予め可及的に除去してから本
発明に使用するのが望ましい。
The feedstock oil containing a dimethylnaphthalene isomer mixture as a main component, which is the target of the treatment of the present invention, is generally
(1) Distillates or extracts from gas oil, coal tar or petroleum heavy oil, (2) Decomposition products or modified products of the above fractions or kerosene, (3) Alkylation of naphthalene or methylnaphthalene, or It is a mixture of aromatic hydrocarbons with a boiling point of about 260 to 320°C, such as transalkylation products and (4) dehydrogenation products of alkyl-substituted benzenes, and mainly consists of the above dimethylnaphthalene isomer mixture, with other monomers. Although it contains alkylnaphthalene and further contains trace amounts of impurities such as nitrogen-containing, oxygen-containing, and sulfur-containing compounds, it is desirable to remove these impurities as much as possible in advance before using it in the present invention.

本発明の方法は以下に示す(イ)、(ロ)及び(ハ)の
工程からなる。
The method of the present invention consists of steps (a), (b), and (c) shown below.

(イ)第1工程: 第1工程では、ジメチルナフタレン異性体混合物を主要
成分として含有する原料油から2.6−ジメチルナフタ
レンを分離する。原料油から2,6−ジメチルナフタレ
ンを分離するには、公知の種々の方法が採用される0例
えば吸着剤を用いる回分法、カラムクロマトグラフィー
による連続分離法、晶析法、加圧晶析法あるいはホスト
ゲスト型付加体形成法等が挙げられる。これらのうちで
も、カラムクロマトグラフィーによる連続分離法が特に
好ましく、例えば特開平1−168628号に記載され
ている擬似移動床方式による連続分離法あるいはこれと
晶析法とを組み合わせた方法が推奨される。
(a) First step: In the first step, 2,6-dimethylnaphthalene is separated from the feedstock oil containing a dimethylnaphthalene isomer mixture as a main component. Various known methods are employed to separate 2,6-dimethylnaphthalene from feedstock oil. For example, a batch method using an adsorbent, a continuous separation method using column chromatography, a crystallization method, and a pressure crystallization method. Alternatively, a host-guest adduct formation method may be used. Among these, a continuous separation method using column chromatography is particularly preferred; for example, a continuous separation method using a simulated moving bed system described in JP-A-1-168628 or a method combining this with a crystallization method is recommended. Ru.

具体的には、吸着剤としてカチオンサイトにアルカリ金
属、亜鉛等を含有するX型ゼオライト及びY型ゼオライ
ト、特に好ましくはカチオンサイトにリチウムを含むY
型ゼオライトを使用し、脱離剤としてパラキシレン及び
/又はオルトキシレンを使用して、ジメチルナフタレン
異性体混合物を主要成分として含有する原料油を、有利
には擬似移動床方式によるクロマトグラフィーにより連
続的に分離する方法である。分離条件としては、60〜
200℃の温度及び大気圧〜20気圧の圧力から選択す
るのが好ましい。このようにして分離された2、6−ジ
メチルナフタレンの製品流を、更に晶析分離すれば一層
高純度の2,6−ジメチルナフタレンを得ることができ
る。
Specifically, X-type zeolites and Y-type zeolites containing alkali metals, zinc, etc. at cation sites are used as adsorbents, and Y-type zeolites containing lithium at cation sites are particularly preferred.
zeolite and using para-xylene and/or ortho-xylene as desorbing agent, the feedstock containing a mixture of dimethylnaphthalene isomers as the main component is continuously chromatographed, preferably in a simulated moving bed mode. This is a method of separating The separation conditions are 60~
Preferably, a temperature of 200° C. and a pressure of between atmospheric pressure and 20 atmospheres are selected. If the product stream of 2,6-dimethylnaphthalene thus separated is further subjected to crystallization separation, 2,6-dimethylnaphthalene of even higher purity can be obtained.

(ロ)第2工程: この工程では、第1工程による2、6−ジメチルナフタ
レン分離後の、2,6−ジメチルナフタレン濃度の低下
したジメチルナフタレン異性体混合物を含有する原料油
を、異性化反応に付して2,6−ジメチルナフタレン濃
度を熱力学的平衡濃度に近い組成まで高めた異性化反応
生成物を得る。
(b) Second step: In this step, the raw oil containing the dimethylnaphthalene isomer mixture with a reduced concentration of 2,6-dimethylnaphthalene after 2,6-dimethylnaphthalene separation in the first step is subjected to an isomerization reaction. An isomerization reaction product in which the concentration of 2,6-dimethylnaphthalene is increased to a composition close to the thermodynamic equilibrium concentration is obtained.

異性化反応は、−船釣には固体酸触媒の存在下に気相又
は液相で実施される。反応は20〜500℃の温度及び
大気圧〜50気圧程度の圧力下において、好ましくは水
素気圏中で、ジメチルナフタレン異性体混合物を含有す
る原料油を気相で導入して異性化反応を実施するのが望
ましい。
The isomerization reaction is carried out in the gas or liquid phase in the presence of a solid acid catalyst. The reaction is carried out at a temperature of 20 to 500°C and a pressure of about atmospheric pressure to 50 atm, preferably in a hydrogen atmosphere, by introducing the raw material oil containing the dimethylnaphthalene isomer mixture in the gas phase to carry out the isomerization reaction. is desirable.

特に好適な異性化反応触媒としては、例えば水素型にイ
オン交換したペンタシル型ゼオライト、特にH−ZSM
−5型ゼオライト、水素もしくは各種の金属カチオンで
イオン交換されたY型ゼオライト、モルデナイト型ゼオ
ライト等のアルミノシリケートをベースとする触媒が挙
げられる。
Particularly suitable isomerization reaction catalysts include, for example, pentasil type zeolite ion-exchanged to hydrogen type, especially H-ZSM.
-5 type zeolite, Y type zeolite ion-exchanged with hydrogen or various metal cations, mordenite type zeolite, and other aluminosilicate-based catalysts.

これらのゼオライト系触媒は、要すればニッケル、レニ
ウム、パラジウム、白金等の水素化能を有する金属成分
を担持するか又はこれら金属でイオン交換してもよい、
工業的実施上は、これらの触媒をシリカ、アルミナ、ベ
ーマイト、アルミナゾル、ベントナイト、粘土鉱物類(
カオリナイト、セビオライト、ハロイサイト、モンモリ
ロナイト等の天然粘土鉱物や、とラード架橋粘土のよう
な合成粘土)と共に成型して使用するのが一般的である
These zeolite catalysts may support metal components having hydrogenation ability such as nickel, rhenium, palladium, platinum, etc., or may be ion-exchanged with these metals, if necessary.
In industrial practice, these catalysts are combined with silica, alumina, boehmite, alumina sol, bentonite, clay minerals (
It is generally used by molding with natural clay minerals such as kaolinite, seviolite, halloysite, and montmorillonite, and synthetic clays such as lard crosslinked clay.

このような触媒を使用し、上述の条件下で異性化反応を
実施することにより、2,6−ジメチルナフタレン濃度
が熱力学的平衡濃度に近い組成まで高められた反応生成
物を得ることができる。なお以上の外、塩化アルミニウ
ム等のルイス酸触媒を使用し、液相で異性化することも
できる。
By carrying out the isomerization reaction under the conditions described above using such a catalyst, it is possible to obtain a reaction product in which the concentration of 2,6-dimethylnaphthalene is increased to a composition close to the thermodynamic equilibrium concentration. . In addition to the above, isomerization can also be carried out in a liquid phase using a Lewis acid catalyst such as aluminum chloride.

(ハ)第3工程: 本工程においては、異性化反応生成物から、反応により
副生じたジメチルナフタレンよりも低沸点の成分(低沸
物)並びにジメチルナフタレンよりも高沸点の成分(高
沸物)を可及的に除去すると共に、更にジメチルナフタ
レン異性体混合物中の1゜2−ジメチルナフタレンをで
きるだけ除去した後に、前記2,6−ジメチルナフタレ
ンを分離する第1工程に循環するものであり、この点が
本発明の大きな特徴である。
(c) Third step: In this step, components with a lower boiling point than dimethylnaphthalene (low boilers) and components with a higher boiling point than dimethylnaphthalene (high boilers) are extracted from the isomerization reaction product. ) is removed as much as possible, and 1°2-dimethylnaphthalene in the dimethylnaphthalene isomer mixture is further removed as much as possible, and then recycled to the first step of separating the 2,6-dimethylnaphthalene, This point is a major feature of the present invention.

異性化反応生成物からの上記低沸物及び高沸物の分離、
並びに1.2−ジメチルナフタレンの分lIは、それ自
体周知の種々の分離操作を適用することができる。
Separation of the above-mentioned low-boiling substances and high-boiling substances from the isomerization reaction product,
In addition, various separation operations known per se can be applied to the 1,2-dimethylnaphthalene fraction.

具体的には例えば、第2工程で得られた異性化反応生成
物を蒸留塔に供給して低沸物を塔頂から系外に留去し、
塔底液を同一の蒸留塔において蒸留するか又は第二の蒸
留塔に導入して蒸留し、塔頂からジメチルナフタレン異
性体混合物を留出させて第1工程に循環すると共に、1
.2−ジメチルナフタレンを塔中間部又は塔底から留去
し、高沸物は塔底から系外に抜き出す方法が採用される
。この壜台、1〜200膳−Hg程度の減圧下で操作さ
れる充填蒸留塔、多段蒸留塔等を用いて連続式又は回分
式で精密蒸留するが適当である。好ましくは、釜温度が
150〜280℃程度の範囲になるように塔内圧力を設
定して、高沸物を塔底から抜き出し、■。
Specifically, for example, the isomerization reaction product obtained in the second step is supplied to a distillation column and low-boiling substances are distilled out of the system from the top of the column,
The bottom liquid is distilled in the same distillation column or introduced into a second distillation column and distilled, and the dimethylnaphthalene isomer mixture is distilled out from the top of the column and recycled to the first step.
.. A method is adopted in which 2-dimethylnaphthalene is distilled off from the middle part of the column or from the bottom of the column, and high-boiling substances are extracted from the bottom of the column. Precision distillation is suitably carried out in a continuous or batch manner using this bottle stand, a packed distillation column, a multi-stage distillation column, etc. operated under a reduced pressure of about 1 to 200 m-Hg. Preferably, the pressure inside the column is set so that the pot temperature is in the range of about 150 to 280°C, and high boiling substances are extracted from the bottom of the column.

2−ジメチルナフタレンを塔中間部から側流として気相
で抜き出すように連続操作される。
It is operated continuously in such a way that 2-dimethylnaphthalene is withdrawn from the middle of the column as a side stream in the gas phase.

本発明の方法は、上述の(イ)、(ロ)及び(ハ)の工
程を縁り返して実施することにより実施され、これによ
り、系内に1.2−ジメチルナフタレンの蓄積を生じる
ことなく、極めて高純度の2,6−ジアルキルナフタレ
ンを効率よく得ることができる。
The method of the present invention is carried out by repeating the steps (a), (b), and (c) described above, thereby preventing accumulation of 1,2-dimethylnaphthalene in the system. 2,6-dialkylnaphthalene of extremely high purity can be obtained efficiently.

(実施例) 以下本発明を実施例について更に詳細に説明するが、本
発明はその要旨を超えない限りこれ等の実施例に限定さ
れるものではない。
(Examples) The present invention will be described in more detail with reference to Examples below, but the present invention is not limited to these Examples unless the gist thereof is exceeded.

参考例1 [ジメチルナフタレン異性体の異性化反応性1表1に示
す7種類のジメチルナフタレン異性体につき、夫々単独
の異性化反応性を調べた。
Reference Example 1 [Isomerization reactivity of dimethylnaphthalene isomers 1] Seven types of dimethylnaphthalene isomers shown in Table 1 were examined for their individual isomerization reactivity.

異性化触媒として特公昭46−10084号公報の実施
例1に記載の方法により製造したZSM−5型ゼオライ
ト(SiO2/ Al2O3= 32.5)を焼成し、
次いでN)14啼型へイオン交換し、更に焼成してH+
型に変換して得られたH−ZSM−5型ゼオライトを打
錠成型したものを使用した。
As an isomerization catalyst, ZSM-5 type zeolite (SiO2/Al2O3 = 32.5) produced by the method described in Example 1 of Japanese Patent Publication No. 46-10084 was calcined,
Next, ion exchange is performed to N)14 type, and further calcined to form H+
The H-ZSM-5 type zeolite obtained by converting it into a mold was used.

内径2011Ilの硬質ガラス製反応器に、上記の触媒
(粒径10〜20メツシユ>3−1 g(5,2ml)
を充填し、触媒層の上にはガラスピーズ層を充填し、こ
れに表1のジメチルナフタレン異性体(DMN)を単独
で供給し、水素ガス中に気化同伴させ、温度350℃、
H2/DMN(%ル比)=28、L)IsV = 0 
、18 テm通して異性化反応を行なった。
The above catalyst (particle size 10-20 mesh > 3-1 g (5.2 ml) was placed in a hard glass reactor with an inner diameter of 2011 Il.
A layer of glass beads was filled on top of the catalyst layer, and the dimethylnaphthalene isomer (DMN) shown in Table 1 was supplied alone to this, vaporized and entrained in hydrogen gas, at a temperature of 350°C.
H2/DMN (% ratio) = 28, L) IsV = 0
The isomerization reaction was carried out over 18 days.

夫々のDMNの反応性(変換率)は表1の通りであフた
The reactivity (conversion rate) of each DMN was as shown in Table 1.

表  1 上表の結果から、1.2−ジメチルナフタレンは、他の
異性体に比較して、異性化反応性が著しく低く、2.6
−ジメチルナフタレンの分離プロセス内に蓄積し易いこ
とが理解される。
Table 1 From the results in the above table, 1.2-dimethylnaphthalene has significantly lower isomerization reactivity than other isomers, and 2.6
- It is understood that dimethylnaphthalene tends to accumulate within the separation process.

実施例1 [カラムクロマトグラフィーによる分離]擬似移動床を
用いた吸着分離方法は特公昭42−15681に開示さ
れて以来、当該技術者にとってよく知られた技術となっ
ている。本実施例でもこの方法を用いた。これはジメチ
ルナフタレン異性体混合物を含有する油成分を原料とし
、脱離剤を用いて非吸着成分である2、6−ジメチルナ
フタレン溶液と、吸着成分である他のジメチルナフタレ
ン異性体混合物溶液とに、クロマトグラフィーにより連
続的に分離する方法であって、内部に吸着剤が充填さ、
れ、かつ前端と後端とが流体通路により結合された充填
床に、原料供給部から非吸着質抜出部までの吸着帯域、
同抜出部から吸着剤供給部までの精製帯域、同供給部か
ら吸着質抜出部までの脱着帯域及び同抜出部から原料供
給部までの濃縮帯域の四つの帯域を、上流より上記順序
で形成させつつ流体を循環させ、上記供給部及び抜出部
の位置を間欠的に下流方向に移動させることよりなる分
離法である。
Example 1 [Separation by Column Chromatography] The adsorption separation method using a simulated moving bed was disclosed in Japanese Patent Publication No. 42-15681 and has since become a well-known technique to those skilled in the art. This method was also used in this example. This method uses an oil component containing a mixture of dimethylnaphthalene isomers as a raw material, and uses a desorbing agent to separate a 2,6-dimethylnaphthalene solution, which is a non-adsorbed component, and a solution of another dimethylnaphthalene isomer mixture, which is an adsorbed component. , a method of continuous separation by chromatography, in which the inside is filled with an adsorbent,
The packed bed, whose front end and rear end are connected by a fluid passage, includes an adsorption zone from a raw material supply section to a non-adsorbate extraction section;
The four zones, the purification zone from the extraction section to the adsorbent supply section, the desorption zone from the supply section to the adsorbate extraction section, and the concentration zone from the extraction section to the raw material supply section, are constructed in the above order from upstream. This is a separation method that involves circulating the fluid while forming the fluid, and intermittently moving the positions of the supply section and the extraction section in the downstream direction.

リチウムでイオン交換したY型ゼオライト(粒度分布2
50〜420μm)を充填した内径28 mm、充填高
さ416 mmのステンレス製カラム8本を用い、10
0℃でジメチルナフタレン異性体混合物を含む原料油か
ら2.6−ジメチルナフタレンを分離した。脱離剤とし
てはバラキシレンを使用した。
Y-type zeolite ion-exchanged with lithium (particle size distribution 2
Using eight stainless steel columns with an inner diameter of 28 mm and a packing height of 416 mm, packed with
2,6-Dimethylnaphthalene was separated from a feedstock containing a mixture of dimethylnaphthalene isomers at 0°C. Baraxylene was used as a desorption agent.

原料供給口より原料をIll■1/h「で送入した。The raw material was fed at a rate of 1/h from the raw material supply port.

原料の組成は、2,6−ジメチルナフタレンが13.4
%、1.2−ジメチルナフタレンが3.51%であり、
その他にジメチルナフタレン各異性体(2,7−シメチ
ルナフタレン13.5%、2,3−ジメチルナフタレン
4.5%、1.7−シメチルナフタレン14.7%、そ
の他1.6−シメチルナフタレンなどの異性体)と、少
量のメチルナフタレン類、エチルナフタレン類、ビフェ
ニル類等が含まれていた。
The composition of the raw material is 2,6-dimethylnaphthalene: 13.4
%, 1.2-dimethylnaphthalene is 3.51%,
In addition, dimethylnaphthalene isomers (2,7-dimethylnaphthalene 13.5%, 2,3-dimethylnaphthalene 4.5%, 1.7-dimethylnaphthalene 14.7%, other 1.6-dimethyl It contained isomers such as naphthalene) and small amounts of methylnaphthalenes, ethylnaphthalenes, and biphenyls.

脱離剤供給口よりバラキシレンを366■1/h「で送
入し、非吸着物質流(製品流)を84m1/hr、ラフ
ィネート流を393■I/hrに制御して運転を行なっ
た。
Operation was carried out by feeding bala-xylene at a rate of 366 ml/h from the desorbing agent supply port, controlling the non-adsorbed material flow (product flow) to 84 ml/hr, and the raffinate flow to 393 ml/hr.

運転開始後、19時間で系内の濃度分布が定常状態にな
ったので製品流を分析したところ、バラキシレンが78
.8%、2.6−ジメチルナフタレンが14.8%、2
,7−ジメチルナフタレンが0.2%、2,3−ジメチ
ルナフタレンが0.1%であって、1.2−ジメチルナ
フタレンは検出されなかった。ラフィネート流中のバラ
キシレン濃度82.6%、2,6−シメチルナフタレン
濃度0.26%、1.2−ジメチルナフタレン濃度0.
71%であり、更に他の成分が検出された。このことか
ら1.2−ジメチルナフタレンは、全量がラフィネート
流中に出てくることが明らかである。これがため、ラフ
ィネート流を異性化反応に循環使用して、異性体成分を
2,6−ジメチルナフタレン製造に活用しようとすると
、系内に1.2−ジメチルナフタレンの蓄積を招くこと
となる。
19 hours after the start of operation, the concentration distribution in the system reached a steady state, so we analyzed the product flow and found that 78% of baraxylene was present.
.. 8%, 2.6-dimethylnaphthalene 14.8%, 2
, 7-dimethylnaphthalene was 0.2%, 2,3-dimethylnaphthalene was 0.1%, and 1,2-dimethylnaphthalene was not detected. Barraxylene concentration in the raffinate stream: 82.6%, 2,6-dimethylnaphthalene concentration: 0.26%, 1,2-dimethylnaphthalene concentration: 0.
71%, and other components were also detected. From this, it is clear that the entire amount of 1,2-dimethylnaphthalene comes out into the raffinate stream. Therefore, if the raffinate stream is recycled to the isomerization reaction and the isomer component is utilized for the production of 2,6-dimethylnaphthalene, 1,2-dimethylnaphthalene will accumulate in the system.

バラキシレンを除いたベースに換算すると2,6−ジメ
チルナフタレンの純度は70.0%であった。バラキシ
レンは蒸留により容易に除去できるので、2.6−ジメ
チルナフタレンの純度は13.4%から70.0%へ増
大し、その回収率は73%と計算される。
The purity of 2,6-dimethylnaphthalene was 70.0% when converted to the base excluding baraxylene. Since baraxylene can be easily removed by distillation, the purity of 2,6-dimethylnaphthalene increases from 13.4% to 70.0%, and its recovery rate is calculated to be 73%.

実施例2 [異 性 化] 実施例1において2,6−ジメチルナフタレンを分離後
のラフィネート成分を、全理論段数50段の蒸留塔を使
用して還流比3、塔頂圧力120 gmHgで回分蒸留
して脱離剤(バラキシレン)を留去した。釜残液は、ジ
メチルナフタレン異性体混合物を主要成分として含有す
るが、2,6−ジメチルナフタレンの濃度は1.0%ま
で低下していた。
Example 2 [Isomerization] The raffinate component after separating 2,6-dimethylnaphthalene in Example 1 was subjected to batch distillation using a distillation column with a total number of theoretical plates of 50 at a reflux ratio of 3 and a column top pressure of 120 gmHg. The desorbing agent (baraxylene) was distilled off. The bottom liquid contained a dimethylnaphthalene isomer mixture as a main component, but the concentration of 2,6-dimethylnaphthalene had decreased to 1.0%.

上記の釜残液を用いて異性化反応を行なった。An isomerization reaction was carried out using the above pot residue.

異性化触媒としては、前記参考例1で用いたI−ZSM
−5型ゼオライトを打錠成型したものを使用した。
As the isomerization catalyst, I-ZSM used in Reference Example 1 was used.
-5 type zeolite was used.

内径25 +u+のステンレス製反応器に、上記の触媒
(粒径lO〜20メツシュ)20 mlを充填し、触媒
層の上にはセラミックボールを充填し、これにジメチル
ナフタレン異性体混合物(DMN)を供給し、水素ガス
中に気化同伴させ、温度380℃、圧力10 kg/C
−2、H2/DMN%ル比=25、LH5V= 0.6
テ流通して異性化反応を行なった0反応生成物を分析し
たところ、2,6−ジメチルナフタレン濃度は1365
%であり、全ジメチルナフタレンの回収率は97%であ
った。
A stainless steel reactor with an inner diameter of 25 + U+ was filled with 20 ml of the above catalyst (particle size 1O ~ 20 mesh), ceramic balls were packed on top of the catalyst layer, and a dimethylnaphthalene isomer mixture (DMN) was charged into this. Supply, vaporize and entrain in hydrogen gas, temperature 380°C, pressure 10 kg/C
-2, H2/DMN% ratio = 25, LH5V = 0.6
When the zero reaction product was analyzed through the isomerization reaction, the concentration of 2,6-dimethylnaphthalene was 1365.
%, and the total recovery rate of dimethylnaphthalene was 97%.

なお、反応生成物中には、ジメチルナフタレンの他に、
微量のベンゼン、トルエン、キシレン(0−1−一、p
−異性体混合物)、ナフタレン、メチルナフタレン、エ
チルナフタレン等のジメチルナフタレンよりも低清点の
化合物、並びにトリメチルナフタレン類、テトラメチル
ナフタレン類、ペンタメチルナフタレン類、種々の数の
メチル基を有するビナフチル体等のジメチルナフタレン
よりも高沸点の化合物が含有されていることが判明した
In addition to dimethylnaphthalene, the reaction product contains
Trace amounts of benzene, toluene, xylene (0-1-1, p
- isomer mixtures), compounds with a lower clearing point than dimethylnaphthalene such as naphthalene, methylnaphthalene, and ethylnaphthalene, as well as trimethylnaphthalenes, tetramethylnaphthalenes, pentamethylnaphthalenes, binaphthyl compounds having various numbers of methyl groups, etc. It was found that it contained a compound with a higher boiling point than dimethylnaphthalene.

実施例3 [異 性 化] 実施例1における第1工程と同様のカラムクロマトグラ
フィーにより2,6−シメチルナフタしン分離後のラフ
ィネート成分を回分蒸留に付して脱離剤(パラキシレン
)を留去し、得られたジメチルナフタレン異性体を含む
混合物(2,6・ジメチルナフタレン1.0%、1.2
−ジメチルナフタレン4.8%及び他のジメチルナフタ
レン異性体並びに少量のメチルナフタレン類、エチルナ
フタレン、ビフェニル類を含む)を用いて実施例2と同
一の触媒を使用して異性化反応を行なった。
Example 3 [Isomerization] The raffinate component after 2,6-dimethylnaphthane was separated by column chromatography similar to the first step in Example 1 was subjected to batch distillation to distill off the desorbing agent (paraxylene). A mixture containing dimethylnaphthalene isomers (2,6-dimethylnaphthalene 1.0%, 1.2
The isomerization reaction was carried out using the same catalyst as in Example 2 with 4.8% of dimethylnaphthalene and other dimethylnaphthalene isomers as well as small amounts of methylnaphthalenes, ethylnaphthalenes, and biphenyls.

内径201II+の硬質ガラス製反応器に、上記の触媒
(粒径10〜20メツシユ)3.1 g(5,2箇1)
を充填し、触媒層の上にはガラスピーズ層を充填し、こ
れに上記のジメチルナフタレン異性体混合物(DIN)
を供給し、水素ガス中に気化同伴させ、温度350℃、
H2/ DMN(% ル比)=28、L)lSV= 0
.18で流通して異性化反応を行なった。
Into a hard glass reactor with an inner diameter of 201II+, 3.1 g (5.2 pieces 1) of the above catalyst (particle size 10-20 mesh) was added.
A layer of glass beads was filled on top of the catalyst layer, and the above dimethylnaphthalene isomer mixture (DIN)
is supplied and vaporized and entrained in hydrogen gas, at a temperature of 350°C.
H2/DMN (% ratio) = 28, L) lSV = 0
.. 18 to carry out the isomerization reaction.

反応生成液を分析したところ、2,6−ジメチルナフタ
レン濃度は12.8%まで向上したが、1,2−ジメチ
ルナフタレン濃度も5.2%に増加した。なお、異性化
反応性の高いl、7−1l、5−12,3−及び1.3
−ジメチルナフタレン等の異性体の濃度は、何れも減少
し、熱力学的平衡組成に接近していることが理解され、
1.2−ジメチルナフタレンのみは、平衡組成(約6%
)内ではあるが明らかに系内に蓄積することが認められ
た。
When the reaction product liquid was analyzed, the concentration of 2,6-dimethylnaphthalene increased to 12.8%, but the concentration of 1,2-dimethylnaphthalene also increased to 5.2%. In addition, 1, 7-1l, 5-12, 3- and 1.3 with high isomerization reactivity
- It is understood that the concentrations of isomers such as dimethylnaphthalene are decreasing and approaching thermodynamic equilibrium compositions,
Only 1.2-dimethylnaphthalene has an equilibrium composition (approximately 6%
), but it was clearly observed that it accumulated within the system.

実施例4 [異 性 化] 実施例1における同様のカラムクロマトグラフィーによ
り2,6−シメチルナフタレン分離後のラフィネート成
分から、脱離剤(バラキシレン)を留去して得られたジ
メチルナフタレン異性体を含む混合物(2,6−シメチ
ルナフタレン3.1%、1.2−ジメチルナフタレン1
2.9%及び他のジメチルナフタレン異性体並びに少量
のメチルナフタレン類、エチルナフタレン、ビフェニル
類を含む)を用い、実施例3と同一の触媒を使用し同一
の条件で異性化反応を行なった。
Example 4 [Isomerization] Dimethylnaphthalene isomerization obtained by distilling off the desorbing agent (baraxylene) from the raffinate component after 2,6-dimethylnaphthalene was separated by column chromatography in the same manner as in Example 1. (3.1% of 2,6-dimethylnaphthalene, 1% of 1,2-dimethylnaphthalene)
The isomerization reaction was carried out using the same catalyst as in Example 3 and under the same conditions.

反応生成液を分析したところ、2,6−ジメチルナフタ
レン濃度は10.5%に向上したが、1.2−ジメチル
ナフタレン濃度は13.2%と平衡組成(約6%)に向
かわず更に上昇した。また、異性化反応性の高いl、7
−11,5−12,3−及び1.3−ジメチルナフタレ
ン等の異性体の濃度は、何れも少しずつ減少しているこ
とから、各々が熱力学的平衡組成に接近しているのに対
して、1.2−ジメチルナフタレンのみは、熱力学的平
衡とは無間係の挙動を示し、明らかに系内に蓄積するこ
とが認められた。
When the reaction product solution was analyzed, the concentration of 2,6-dimethylnaphthalene increased to 10.5%, but the concentration of 1,2-dimethylnaphthalene was 13.2%, which did not reach the equilibrium composition (approximately 6%) and increased further. did. In addition, l, 7, which has high isomerization reactivity
The concentrations of isomers such as -11,5-12,3- and 1,3-dimethylnaphthalene are decreasing little by little, so each is approaching its thermodynamic equilibrium composition. It was found that only 1,2-dimethylnaphthalene showed a behavior independent of thermodynamic equilibrium and clearly accumulated in the system.

実施例5 [低沸物、高沸物及び1.2−異性体の分離コ全理論段
数50段の充填式回分蒸留塔を用いて、実施例2で得た
異性化反応生成液を蒸留した。
Example 5 [Separation of low-boiling substances, high-boiling substances, and 1.2-isomer] The isomerization reaction product liquid obtained in Example 2 was distilled using a packed batch distillation column with a total number of theoretical plates of 50. .

塔頂圧力20 **Hg、還流比20とし、塔頂温度に
より、いくつかの留分に分けて試料を採取し、ガスクロ
マトグラフィーにより分析して各組成を調べたところ、
表2の通りであった。
The pressure at the top of the column was 20**Hg, the reflux ratio was 20, and samples were collected in several fractions depending on the temperature at the top of the column, and analyzed by gas chromatography to determine the composition of each fraction.
It was as shown in Table 2.

表  2 表2に示す塔頂温度146〜150℃の留分の結成は、
1.2−ジメチルナフタレン50%、2,3−ジメチル
ナフタレン28%、1.4−ジメチルナフタレン268
%、1.5−ジメチルナフタレン3.8%、2.6−シ
メチルナフタレン0,2%、その他の化合物合計量15
%以下であった。このように、1.2−ジメチルナフタ
レンは濃度50%に濃縮され、2,6−ジメチルナフタ
レンの濃度は約0.2%であり、両者の蒸留による分離
は充分可能であった。
Table 2 The formation of the fraction with a tower top temperature of 146-150°C shown in Table 2 is as follows:
1,2-dimethylnaphthalene 50%, 2,3-dimethylnaphthalene 28%, 1,4-dimethylnaphthalene 268%
%, 1.5-dimethylnaphthalene 3.8%, 2.6-dimethylnaphthalene 0.2%, total amount of other compounds 15
% or less. In this way, 1,2-dimethylnaphthalene was concentrated to a concentration of 50%, and the concentration of 2,6-dimethylnaphthalene was about 0.2%, making it possible to separate the two by distillation.

実施例6 [低沸物、高沸物及び1,2−異性体分離後の異性化物
の循環コ 実施例5で得られた表2における留分2及び留分3を、
実施例1で使用したカラムに供給し、実施例1と同一の
条件でクロマトグラフィーにより、連続的に2,6−ジ
メチルナフタレンの分離を行なった。クロマトグラフィ
ーのパターンは全〈実施例1と同一であり、製品流から
バラキシレンを除いた2、6−ジメチルナフタレンの純
度は76%であった。
Example 6 [Circulation of isomerized products after separation of low boilers, high boilers and 1,2-isomers] Fraction 2 and fraction 3 in Table 2 obtained in Example 5 were
It was supplied to the column used in Example 1, and 2,6-dimethylnaphthalene was continuously separated by chromatography under the same conditions as in Example 1. The chromatographic pattern was the same as in Example 1, and the purity of 2,6-dimethylnaphthalene was 76% with the exclusion of paraxylene from the product stream.

(発明の効果) 本発明によれば、前記(イ)、(ロ)及び(ハ)の工程
を朝会わせることによって、ジメチルナフタレン異性体
混合物を主要成分として含む原料油から、純度99%以
上のような高純度の2,6−ジメチルナフタレンを効率
よく製造することができ、本物質の工業的生産に寄与す
るところが大きい。
(Effects of the Invention) According to the present invention, by performing the steps (a), (b), and (c) in the morning, raw oil containing a dimethylnaphthalene isomer mixture as a main component can be obtained with a purity of 99% or more. It is possible to efficiently produce high-purity 2,6-dimethylnaphthalene such as 2,6-dimethylnaphthalene, which greatly contributes to the industrial production of this substance.

Claims (1)

【特許請求の範囲】[Claims] (1)(イ)ジメチルナフタレン異性体混合物を主要成
分として含有する原料油から2,6−ジメチルナフタレ
ンを分離する第1工程、 (ロ)第1工程による分離後の2,6−ジメチルナフタ
レン濃度の低下したジメチルナフタレン異性体混合物を
含有する原料油を、異性化反応に付して2,6−ジメチ
ルナフタレン濃度を熱力学的平衡濃度に近い組成まで高
めた異性化反応生成物を得る第2工程、 (ハ)第2工程による異性化反応生成物からジメチルナ
フタレン以外の成分を除去し、更に1,2−ジメチルナ
フタレンの少なくとも一部を除去した後、第1工程に循
環する第3工程 からなることを特徴とするジメチルナフタレン異性体混
合物を主要成分として含有する原料油から2,6−ジメ
チルナフタレンを製造する方法。
(1) (a) A first step of separating 2,6-dimethylnaphthalene from a feedstock oil containing a mixture of dimethylnaphthalene isomers as a main component; (b) Concentration of 2,6-dimethylnaphthalene after separation in the first step. A second step of obtaining an isomerization reaction product in which the 2,6-dimethylnaphthalene concentration has been increased to a composition close to the thermodynamic equilibrium concentration by subjecting the feedstock oil containing a dimethylnaphthalene isomer mixture with a reduced concentration to an isomerization reaction. Step (c) After removing components other than dimethylnaphthalene from the isomerization reaction product in the second step and further removing at least a part of 1,2-dimethylnaphthalene, from the third step circulating to the first step A method for producing 2,6-dimethylnaphthalene from a feedstock oil containing a dimethylnaphthalene isomer mixture as a main component.
JP2157764A 1990-06-18 1990-06-18 Method for producing 2,6-dimethylnaphthalene Expired - Fee Related JP2809821B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2157764A JP2809821B2 (en) 1990-06-18 1990-06-18 Method for producing 2,6-dimethylnaphthalene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2157764A JP2809821B2 (en) 1990-06-18 1990-06-18 Method for producing 2,6-dimethylnaphthalene

Publications (2)

Publication Number Publication Date
JPH0449253A true JPH0449253A (en) 1992-02-18
JP2809821B2 JP2809821B2 (en) 1998-10-15

Family

ID=15656805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2157764A Expired - Fee Related JP2809821B2 (en) 1990-06-18 1990-06-18 Method for producing 2,6-dimethylnaphthalene

Country Status (1)

Country Link
JP (1) JP2809821B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8182394B2 (en) 2007-09-28 2012-05-22 Komatsu Ltd. Speed change controller of working vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8182394B2 (en) 2007-09-28 2012-05-22 Komatsu Ltd. Speed change controller of working vehicle

Also Published As

Publication number Publication date
JP2809821B2 (en) 1998-10-15

Similar Documents

Publication Publication Date Title
US3700744A (en) Simultaneous recovery and production of pure xylenes from a c aromatic mixture
US4341914A (en) Transalkylation process with recycle of C10 hydrocarbons
US4039599A (en) Xylene isomerization process
US4642406A (en) High severity process for xylene production employing a transalkylation zone for xylene isomerization
US4028428A (en) Process for the separation of ethylbenzene
US4783568A (en) Xylene producing process having staged catalytic conversion of ethylbenzene
US6369287B1 (en) Process for co-production and separation of ethylbenzene and paraxylene
US4697039A (en) Xylene producing process having staged catalytic conversion of ethylbenzene
US3773846A (en) Process for the production of high purity meta-xylene
JP2011525919A (en) Method and apparatus for separating para-xylene from a mixture of C8 and C9 aromatic hydrocarbons
WO2016094752A2 (en) Processes for para-xylene adsorptive separation
US3729523A (en) Recovery of isomers from aromatic mixtures
US3133126A (en) Aromatic hydrocarbon separation
US4899017A (en) Process for the selective separation of para-xylene from C8 aromatic mixtures
EP2445858B1 (en) Process for improved meta-xylene yield from c8 aromatics
US6512154B1 (en) Production of a xylene isomer in three stages: separation, isomerization with a catalyst with an EUO zeolite base and transalkylation with recycling of C10-aromatic compounds
CA2315628A1 (en) Method for producing 2,6-dmn from mixed dimethylnaphthalenes by crystallization, adsorption and isomerization
US6528695B1 (en) Process for the production of an isomer of xylenes in three stages: separation, isomerization in the presence of a catalyst based on an EUO zeolite and transalkylation
JPS63196528A (en) Manufacture of xylene by use of both isomerizing/transalkylating zone
US3763259A (en) Process for producing paradiisopropylbenzene
JP2021528468A (en) A method for producing para-xylene using a quasi-moving bed step and a fractional distillation step for the second fraction in one two-section column.
US3849508A (en) Process for producing para-diethylbenzene
US3668264A (en) Production of alkylbenzenes
JP2809821B2 (en) Method for producing 2,6-dimethylnaphthalene
JP2819806B2 (en) Method for producing 2,6-dialkylnaphthalene

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees