JPH0449217B2 - - Google Patents

Info

Publication number
JPH0449217B2
JPH0449217B2 JP56095670A JP9567081A JPH0449217B2 JP H0449217 B2 JPH0449217 B2 JP H0449217B2 JP 56095670 A JP56095670 A JP 56095670A JP 9567081 A JP9567081 A JP 9567081A JP H0449217 B2 JPH0449217 B2 JP H0449217B2
Authority
JP
Japan
Prior art keywords
thickness
output
glass substrate
light
fluorescent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56095670A
Other languages
Japanese (ja)
Other versions
JPS57210544A (en
Inventor
Motohisa Tsuda
Tatsuo Hashizume
Jutaro Kimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP9567081A priority Critical patent/JPS57210544A/en
Publication of JPS57210544A publication Critical patent/JPS57210544A/en
Publication of JPH0449217B2 publication Critical patent/JPH0449217B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J31/00Cathode ray tubes; Electron beam tubes
    • H01J31/08Cathode ray tubes; Electron beam tubes having a screen on or from which an image or pattern is formed, picked up, converted, or stored
    • H01J31/50Image-conversion or image-amplification tubes, i.e. having optical, X-ray, or analogous input, and optical output

Landscapes

  • Cathode-Ray Tubes And Fluorescent Screens For Display (AREA)
  • Image-Pickup Tubes, Image-Amplification Tubes, And Storage Tubes (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明はイメージ管用出力螢光面構体におけ
る基板ガラス内の散乱光を減じ画像コントラスト
の向上をはかるものである。 従来のイメジ管の出力螢光面構体は第1図に示
すように1mm前後の厚みをもつたガラス基板1の
上にZncds(Ag)、ZnS(CuまたはAg)などの螢光
層2が通常円形に形成され、この螢光層2によつ
て変換された可視光像をガラス基板1を透してた
とえばタンデムレンズ系にて観察されるよう構成
されている。したがつて電子線などで励起され螢
光層2のたとえばP点で放射状に発光した光のう
ち基板ガラス1の出力面3にて臨界角θc以内の入
射角の光は信号として出力されるが、θc以上の光
4は上記出力面3にて全反射し、4′として再び
螢光面2を照射する。螢光面2はこの照射された
光の何割かを拡散し、残りを4″として再び全反
射する。これの繰返しでバツクグランドとしてあ
る分布を形成する。この全反射光4′は螢光層2
で変換された可視光像のコントラストを低下さ
せ、イメジ管の出力画質を悪化させる。これを防
止する手段として従来はガラス基板1に若干の光
吸収のあるダークスクリーンを用いたり、または
ガラス基板の厚さを増したりしていたが前者のみ
のばあいは出力光も減少し出力像の輝度低下を招
く欠点があり、後者の場合には、出力像をTVカ
メラなどの光学機器に導びくために出力螢光面の
後段に対向して配設されるタンデムレンズ系の対
物レンズのバツクフオーカス(対物レンズの端面
から焦点面までの距離)による制限があり、所望
の効果が出ないなどの問題があり実用的でない。
この発明は上記の現況に鑑みてなされたもので従
来の螢光面構体の可視光像のコントラストの低下
を解消するものである。これは螢光面構体のガラ
ス基板における信号成分となる光束LSとバツクグ
ランドとなる全反射光束LBとの比率SBR(Signal
Background Ratio)を螢光面半径、ガラス基板
厚さ、ならびにその光の透過率の3要素の相互関
係を理論的に解明し、つぎの結論に達したもので
ある。 (1)信号成分LSはガラス厚tに無関係で、そのと
きの光の透過率Tと屈折率nで決まる。(2)バツク
グランド成分LBは螢光面半径Rとガラス厚tと
の比の函数となる。 この結論からLS/LB=SBRが一種のコントラ
スト比として画像評価の基準として用い、SBR
≧0.85の領域において輝度減衰を考慮して光の透
過率Tがつぎに決定する厚さtにおいて60%〜80
%になる材質を選び、かつ上記(2)のLBを減らす
条件を綜合して、ガラス厚tと螢光面半径Rとの
最良のつぎの関係式を得たのである。 0.1R≦t<F ただし、ここにおいて0.1R=0.05Dとする。上
記Rは螢光面半径であるが、これを螢光層の有効
視野寸法Dに置きかえ、螢光層が円形では直径、
矩形または正方形のときは対角線の長さをDとし
た。またFは出力像を光学機器に導びくために螢
光面構体の後段に配設されるタンデムレンズ系の
対物レンズのバツクフオーカスである。 以下図面によつてこの発明を説明する。第2図
は基礎実験として螢光面2の中心の1点Pが点光
源で励起したとき、ガラス基板1の出力面3にあ
らわれる照度分布を示す図である。Pからの発光
光束がLambertian分布で放出されるとP点附近
がもつとも明るくP点から遠ざかる距離rが大に
なるにつれて照度が下がり、つぎに第1図で示し
た全反射光4′が螢光面2に入射する2rCを半径と
するLB′の光輪が発生し、図のように照度分布と
なる。第3図は上記全反射光4′による光輪LB
が螢光面の周辺にゆくに従つて減衰する状況を示
す図で横軸rは中心Pからの距離、タテ軸LB
バツクグラントとなる光束を示す。ただしこの図
には信号成分LSは図示していない。このような螢
光面2の半径をR、ガラス1の厚さをt、そのガ
ラス厚tでの光の透過率をTとし、P点での発光
光束を(1m)とすれば、上記臨界角以内の角
度の光束すなわち信号成分LSは理論上つぎの(1)式
となる。 ただし、r:発光点Pからの距離、μ:ガラス
の光吸収係数である。また第2図での2rC
This invention aims to improve image contrast by reducing scattered light within a substrate glass in an output fluorescent surface structure for an image tube. As shown in Figure 1, the output phosphor surface structure of a conventional image tube usually has a phosphor layer 2 made of Zncds (Ag), ZnS (Cu or Ag), etc. on a glass substrate 1 with a thickness of around 1 mm. It is formed into a circular shape, and is configured so that a visible light image converted by this fluorescent layer 2 is observed through a glass substrate 1 using, for example, a tandem lens system. Therefore, among the light excited by an electron beam or the like and emitted radially at, for example, point P of the fluorescent layer 2, the light having an incident angle within the critical angle θ c at the output surface 3 of the substrate glass 1 is output as a signal. However, the light 4 having a temperature of θ c or more is totally reflected at the output surface 3 and irradiates the fluorescent surface 2 again as 4'. The fluorescent surface 2 diffuses some percentage of this irradiated light, and totally reflects the rest as 4'' again. By repeating this process, a certain distribution is formed as a background. This totally reflected light 4' is reflected by the fluorescent layer. 2
This reduces the contrast of the converted visible light image and deteriorates the output image quality of the image tube. Conventionally, measures to prevent this have included using a dark screen that absorbs some light on the glass substrate 1, or increasing the thickness of the glass substrate, but in the case of only the former, the output light also decreases and the output image In the latter case, the objective lens of the tandem lens system, which is placed opposite to the rear stage of the output fluorescent surface to guide the output image to an optical device such as a TV camera, has the disadvantage of causing a decrease in brightness. It is not practical because it is limited by the back focus (distance from the end surface of the objective lens to the focal plane) and has problems such as not being able to produce the desired effect.
This invention has been made in view of the above-mentioned current situation, and is intended to eliminate the decrease in contrast of visible light images of conventional fluorescent surface structures. This is the ratio SBR (Signal
The following conclusions were reached by theoretically elucidating the interrelationship among the three elements of the background ratio: the radius of the fluorescent surface, the thickness of the glass substrate, and its light transmittance. (1) The signal component L S is independent of the glass thickness t and is determined by the light transmittance T and refractive index n at that time. (2) The background component L B is a function of the ratio of the fluorescent surface radius R and the glass thickness t. From this conclusion, L S /L B = SBR is used as a kind of contrast ratio as a standard for image evaluation, and SBR
In the region of ≧0.85, the light transmittance T is 60% to 80% at the thickness t determined next, taking into account brightness attenuation.
%, and by combining the conditions for reducing L B in (2) above, the following optimal relational expression between the glass thickness t and the radius R of the fluorescent surface was obtained. 0.1R≦t<F However, here, 0.1R=0.05D. The above R is the radius of the fluorescent surface, but it can be replaced with the effective field of view dimension D of the fluorescent layer, and if the fluorescent layer is circular, the diameter is
When the shape is rectangular or square, the length of the diagonal is D. Further, F is the back focus of an objective lens of a tandem lens system disposed at the rear of the fluorescent surface structure to guide the output image to an optical device. The present invention will be explained below with reference to the drawings. FIG. 2 is a diagram showing, as a basic experiment, the illuminance distribution appearing on the output surface 3 of the glass substrate 1 when one point P at the center of the fluorescent surface 2 is excited by a point light source. When the luminous flux from P is emitted with a Lambertian distribution, it is brighter near the P point, and as the distance r away from the P point increases, the illuminance decreases, and then the total reflected light 4' shown in Fig. 1 becomes fluorescent light. A halo with a radius of 2r C incident on surface 2 is generated, and the illuminance distribution is as shown in the figure . Figure 3 shows the halo L B ′ caused by the totally reflected light 4′.
In this figure, the horizontal axis r indicates the distance from the center P, and the vertical axis L B indicates the luminous flux that becomes the background. However, the signal component L S is not shown in this figure. If the radius of such a fluorescent surface 2 is R, the thickness of the glass 1 is t, the light transmittance at the glass thickness t is T, and the luminous flux at point P is (1 m), then the critical The light flux within the angle, that is, the signal component L S is theoretically expressed by the following equation (1). However, r is the distance from the light emitting point P, and μ is the light absorption coefficient of the glass. Also, 2r C in Figure 2 is

【式】で求まり、この式でのnは ガラス1の真空に対する屈折率である。つぎにバ
ツクグラントとなる光束LBはつぎの(2)式で求ま
る。 ここで信号とバツクグランドの光束比SBRは
一種のコントラスト比に相当し、像の良否を評価
することができる。すなわち、 SBR=LS/LB…(3) で無論SBRが大きい方が良い。このSBRおよび
LSを調べることで実用可能なガラス厚t、ならび
にそのときの透過率Tを求めることができる。正
しくは螢光面2の中心の1点Pだけを光らせた時
のSBRだけでなく、螢光面2の任意の点で光ら
せた時のSBRの平均値で評価すべきであるが、
大差がないので簡単のため中心を光らせたばあい
で解明を進める。(1)(2)式においてμt=−nTと
おいて積分を解くと計算式(4)(5)が得られる。 特にμ=0(T=1)のばあい(4)(5)式はつぎの
(6)(7)となる。 LS=1/n2(lm) …(6) LB=1−1/n2−1/1+(R/2t)2(lm)…(
7) 上記(4)(5)式からつぎのことがわかる。 (1)信号成分LSはガラス厚tに無関係で、そのt
のときの透過率Tと屈折率nで決定される。…し
たがつてたとえば1mmで70%透過率の基板と2.6
mmで同じく70%透過率の基板の信号として利用さ
れる光束LSは全く同じである。 (2)バツクグランド成分LBは螢光面半径Rとガ
ラス厚tとの比(R/t)の函数になる。…もち
ろん透過率Tや屈折率nにも影響される。ただ単
にガラス厚tを厚くすればLBが減るのではなく、
上記(R/t)を小さくするようにしないと効果
はない。したがつて透過率T一定のガラス基板に
螢光面半径Rを大きく成層するばあいはそれに比
例して厚みtを増さなければLB成分は増し、
SBRは悪くなる。また必要以上に螢光面サイズ
を大きくすることは良くない。上記(5)式から、
SBRも(R/t)の函数になることがわかる。 つぎに、螢光面半径R=11.25mm、ガラス基板
として一般に用いられている真空に対する屈折率
n=1.514の光学ガラスBK7についてガラス厚t、
透過率Tを変えたときのLSならびにSBRを(4)〜
(7)によつて計算した。第1表はその一部を示すも
のである。
It is determined by the formula: n in this formula is the refractive index of the glass 1 with respect to vacuum. Next, the luminous flux L B which becomes the back ground is determined by the following equation (2). Here, the signal-to-background luminous flux ratio SBR corresponds to a kind of contrast ratio, and can evaluate the quality of the image. In other words, SBR=L S /L B (3), and of course the larger the SBR, the better. This SBR and
By examining L S , it is possible to determine the practical glass thickness t and the transmittance T at that time. Correctly, evaluation should be made not only by the SBR when only one point P in the center of the fluorescent surface 2 is illuminated, but also by the average value of the SBR when any point on the fluorescent surface 2 is illuminated.
There is not much difference, so for the sake of simplicity, we will proceed with the elucidation by illuminating the center. In equations (1) and (2), by setting μt=-nT and solving the integral, equations (4) and (5) are obtained. In particular, when μ=0 (T=1), equations (4) and (5) are as follows.
(6)(7). L S =1/n 2 (lm) ...(6) L B =1-1/n 2 -1/1+(R/2t) 2 (lm)...(
7) From equations (4) and (5) above, we can see the following. (1) The signal component L S is independent of the glass thickness t, and its t
It is determined by the transmittance T and the refractive index n when . ...Thus, for example, a substrate with a transmittance of 70% at 1 mm and a transmittance of 2.6
The luminous flux L S used as a signal for a substrate with a transmittance of 70% in mm is exactly the same. (2) The background component L B is a function of the ratio (R/t) between the radius R of the fluorescent surface and the glass thickness t. ...Of course, it is also influenced by the transmittance T and the refractive index n. Simply increasing the glass thickness t does not reduce L B ;
There is no effect unless the above (R/t) is made small. Therefore, when layering a glass substrate with a constant transmittance T and a large fluorescent surface radius R, the L B component will increase unless the thickness t is increased proportionally.
SBR gets worse. Also, it is not good to make the fluorescent surface larger than necessary. From the above equation (5),
It can be seen that SBR is also a function of (R/t). Next, for optical glass BK7 with a fluorescent surface radius R = 11.25 mm and a refractive index against vacuum n = 1.514, which is commonly used as a glass substrate, the glass thickness t,
L S and SBR when changing the transmittance T are (4) ~
Calculated according to (7). Table 1 shows some of them.

【表】 … … … …
… …
5.0 6.347 6.200 6.057
5.192 3.565
【table】 … … … …
… …
5.0 6.347 6.200 6.057
5.192 3.565

Claims (1)

【特許請求の範囲】 1 ガラス基板上に蛍光層を形成してなるイメー
ジ管用出力蛍光面構体において、前記ガラス基板
の厚さtがそれの出力面よりの全反射光が前記蛍
光層に入射する厚さであつて、且つ、次式の関係
に設定されており、その設定された厚さにおける
光の透過率を60%〜80%に設定したことを特徴と
するイメージ管用出力蛍光面構体。 0.05D≦t<F ここで、Dはガラス基板上に成層された蛍光層
の視野寸法 Fは出力像を光学機器に導くために螢光面構体
の後段に配設されるタンデムレンズ系の対物レン
ズのバツクフオーカス。
[Claims] 1. In an image tube output phosphor screen structure in which a phosphor layer is formed on a glass substrate, the thickness t of the glass substrate is such that total reflected light from the output surface of the glass substrate is incident on the phosphor layer. 1. An output phosphor screen structure for an image tube, the structure having a thickness set according to the following formula, and having a light transmittance of 60% to 80% at the set thickness. 0.05D≦t<F Here, D is the field of view of the fluorescent layer layered on the glass substrate, and F is the objective of the tandem lens system disposed after the fluorescent surface structure to guide the output image to the optical device. Back focus of the lens.
JP9567081A 1981-06-19 1981-06-19 Fluorescence screen structural body Granted JPS57210544A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9567081A JPS57210544A (en) 1981-06-19 1981-06-19 Fluorescence screen structural body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9567081A JPS57210544A (en) 1981-06-19 1981-06-19 Fluorescence screen structural body

Publications (2)

Publication Number Publication Date
JPS57210544A JPS57210544A (en) 1982-12-24
JPH0449217B2 true JPH0449217B2 (en) 1992-08-10

Family

ID=14143928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9567081A Granted JPS57210544A (en) 1981-06-19 1981-06-19 Fluorescence screen structural body

Country Status (1)

Country Link
JP (1) JPS57210544A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5933161U (en) * 1982-08-25 1984-03-01 富士通テン株式会社 Automatic disk loading device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5933161U (en) * 1982-08-25 1984-03-01 富士通テン株式会社 Automatic disk loading device

Also Published As

Publication number Publication date
JPS57210544A (en) 1982-12-24

Similar Documents

Publication Publication Date Title
JP4837325B2 (en) Microscope illumination device
EP0187412A2 (en) Monochromatic cathode ray tube
JP2002174860A (en) Rear projection type display device and transmission type screen used therein
JP2011090280A (en) Projection display device
CN112099296B (en) Two-color laser light source and laser projector
JPH0449217B2 (en)
JP3508908B2 (en) Transmission screen and lenticular lens sheet
US3546460A (en) Nonreciprocal radiation filter device having fluorescent material for wavelength conversion
JP6478928B2 (en) Lens apparatus and imaging apparatus having the same
JP2903485B2 (en) Projection device
JP2006349834A (en) Diffusion plate for transmission type screen, transmission type screen and rear projection type display device
WO2020125302A1 (en) Light source improving device
JP2011134509A (en) Lighting fixture
JP4958663B2 (en) Illumination adapter, illumination device, and imaging device inspection illumination device
JPS5933161Y2 (en) &#34;Kei&#34; light surface
EP0896244A1 (en) Rear projection type image display device
JP3130747B2 (en) Lighting equipment
WO2023047828A1 (en) Optical system for shape measuring device
CN1928705A (en) Projector having a scatter blocking member
JP2017167309A (en) Optical element, light source device, and image projection device
JPS6150551B2 (en)
JP3905648B2 (en) Rear projection display
KR100361500B1 (en) Rear screen video projection system
JPH0822784A (en) Projecting cathode-ray tube and projection display device using the projecting cathode-ray tube
TW563339B (en) Scanner with a light element having gathering light function