JPH0448167A - Refrigerating cycle device - Google Patents

Refrigerating cycle device

Info

Publication number
JPH0448167A
JPH0448167A JP15851790A JP15851790A JPH0448167A JP H0448167 A JPH0448167 A JP H0448167A JP 15851790 A JP15851790 A JP 15851790A JP 15851790 A JP15851790 A JP 15851790A JP H0448167 A JPH0448167 A JP H0448167A
Authority
JP
Japan
Prior art keywords
temperature
compressor
gas
air
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15851790A
Other languages
Japanese (ja)
Inventor
Masayoshi Enomoto
榎本 雅好
Yoshitaka Tomatsu
義貴 戸松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP15851790A priority Critical patent/JPH0448167A/en
Publication of JPH0448167A publication Critical patent/JPH0448167A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To permit the arbitrary setting of an outlet temperature and the amount of outlet air by a method wherein the circulating amount from the discharging side of an expanding machine into the suction side of a compressor as well as the number of rotation of the compressor and the expanding machine are controlled based on the suction temperature of the compressor. CONSTITUTION:When a target outlet temperature and the target amount of outlet air are set, a suction temperature is measured by a temperature sensor 10. The opening degree theta of a damper is operated from a difference between the suction temperature and an outlet temperature through a formula while the number of rotation of a compressor 4 and an expanding machine 3 are operated by another formula. A damper driving motor 11 and a reduction gear 2 are driven to control the opening degree of the damper at theta and the number of rotation at N. According to this method, set outlet temperature and set amount of outlet air can be obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、気体圧縮式冷凍サイクル装置に関し、詳細に
は、吹出温度および吹出風量を制御する装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a gas compression type refrigeration cycle device, and more particularly to a device for controlling the blowout temperature and blowout air volume.

(従来の技術) 空気圧縮式冷凍サイクルは、外気を、直接、圧縮、放熱
、膨張させることにより冷気を得る簡便なサイクルで、
航空機等に利用されている。
(Prior art) The air compression refrigeration cycle is a simple cycle that obtains cold air by directly compressing, releasing heat, and expanding outside air.
Used in aircraft, etc.

従来の空気圧縮式冷凍サイクルを利用した装置としては
、例えば特開昭57−58598号公報、特開昭56−
116600号公報、特開昭62−120296号公報
および実開昭57−130176号公報等に開示されて
いるものがあり、また従来の低温冷凍サイクル装置とし
ては、特開昭59−185949号公報、特開昭60−
14065号公報等に開示されているものがある。
Examples of devices using conventional air compression refrigeration cycles include Japanese Patent Application Laid-Open No. 57-58598 and Japanese Patent Application Laid-open No. 56-1989.
116600, JP 62-120296, JP 57-130176, etc., and conventional low-temperature refrigeration cycle devices include JP 59-185949, JP 59-185949; Japanese Patent Application Publication 1986-
There are some disclosed in Japanese Patent No. 14065 and the like.

(発明が解決しようとする課題) これらの公報に開示される冷凍サイクル装置について順
に述べると、まず、 ■ 特開昭57−58598号公報に開示されるものは
、客室に吹出される吹出温度が低下すると、圧縮機に流
入する空気を自動的に客室循環空気(内気)に切替える
ため、外気導入(換気)と吹出温度の低温化とを両立さ
せることができなし1゜■ 特開昭56−116600
号公報に開示されるものは、圧縮機で圧縮された高圧の
空気が膨張機をバイパスするため、膨張機での回収動力
が少な(なるので、成績係数が悪化する。
(Problems to be Solved by the Invention) The refrigeration cycle devices disclosed in these publications will be described in order. First, the refrigeration cycle devices disclosed in Japanese Patent Application Laid-open No. 57-58598 are designed to When the temperature decreases, the air flowing into the compressor is automatically switched to cabin circulation air (inside air), making it impossible to simultaneously introduce outside air (ventilation) and lower the blowout temperature. 116600
In the technology disclosed in the above publication, the high-pressure air compressed by the compressor bypasses the expander, so the power recovered by the expander is small, resulting in a poor coefficient of performance.

■ 特開昭62−120296号に開示されるものは、
前記■と同様に圧縮機で圧縮された高圧の空気が膨張機
をバイパスするため膨張機での回収動力が少なくなるの
で成績係数が悪化するほか、膨張機出口側の空気温度が
高すぎる場合の吹出温度を低下する手段は開示されない
■ What is disclosed in JP-A-62-120296 is
As with the above item (■), the high-pressure air compressed by the compressor bypasses the expander, which reduces the power recovered by the expander, which worsens the coefficient of performance. No means for lowering the blowout temperature is disclosed.

■ 実開昭57−130176号公報に開示されるもの
は、圧縮機から熱交換器を経て膨張機を結ぶ連通路に該
熱交換器をバイパスする通路を設けたもので、このバイ
パス通路を通る空気が冷却されるものでない。
■ What is disclosed in Japanese Utility Model Application Publication No. 57-130176 is a system in which a passage that bypasses the heat exchanger is provided in a communicating passage connecting a compressor, a heat exchanger, and an expander, and a passage that bypasses the heat exchanger is provided. Air is not cooled.

■ 特開昭59−185949号公報に開示されるもの
は、低温冷凍サイクルを利用したもので、サイクル初期
時に負荷をバイパスして冷気を流し、冷凍時間を短縮す
るものである。
(1) The device disclosed in Japanese Patent Application Laid-Open No. 59-185949 utilizes a low-temperature refrigeration cycle, and bypasses the load at the beginning of the cycle to flow cold air to shorten the refrigeration time.

■ 特開昭60−14065号公報に開示されるものは
、前記■と同様に低温冷凍サイクルを利用したもので、
負荷をバイパスさせて冷媒を再び圧縮機に戻すものであ
り、バイパス弁の制御については開示されていない。
■ The one disclosed in JP-A-60-14065 utilizes a low-temperature refrigeration cycle, similar to the above-mentioned item (■).
This method bypasses the load and returns the refrigerant to the compressor, and does not disclose control of the bypass valve.

本発明は、このような従来技術から区別されるもので、
本発明の目的とするところは、膨張機出口の冷気の一部
を圧縮機の吸込み側に還流し、還流する冷気を流量調節
することで、吹出温度と吹出風量を調節するようにした
気体圧縮式冷凍サイクル装置を提供することにある。
The present invention is distinguished from such prior art by
The object of the present invention is to recirculate a part of the cold air at the outlet of the expander to the suction side of the compressor, and to adjust the flow rate of the recirculated cold air, thereby controlling the blowout temperature and blowout air volume. The purpose of the present invention is to provide a type refrigeration cycle device.

(課題を解決するための手段) そのために、本発明の冷凍サイクル装置は、例えば第1
図に示すように、気体を圧縮する圧縮機と、圧縮機から
吐出された気体から熱を奪う熱交換器と、前記熱交換器
で熱を奪われた気体を膨張させて低温の気体にする膨張
機と、前記膨張機出口の気体を前記圧縮機入口に還流す
る還流通路と、前記還流通路に設けられる還流量調節手
段と、前記圧縮機に流入する気体の吸入温度を検知する
温度センサと、目標吹出温度および目標吹出風量を設定
する目標値設定手段と、設定された目標吹出温度および
目標吹出風量になるように前記温度センサの検知信号に
もとづいて前記圧縮機の回転数および前記還流量調節手
段の開度を制御する制御手段とを備えたことを特徴とす
る。
(Means for solving the problem) For this purpose, the refrigeration cycle device of the present invention has, for example, a first
As shown in the figure, there is a compressor that compresses gas, a heat exchanger that removes heat from the gas discharged from the compressor, and the gas that has been removed from heat by the heat exchanger is expanded to become a low-temperature gas. an expander, a reflux passage for refluxing the gas at the outlet of the expander to the inlet of the compressor, a reflux amount adjusting means provided in the reflux passage, and a temperature sensor for detecting the suction temperature of the gas flowing into the compressor. , a target value setting means for setting a target blowout temperature and a target blowout air volume; and a rotation speed of the compressor and the recirculation amount based on the detection signal of the temperature sensor so that the set target blowout temperature and target blowout air volume are achieved. The present invention is characterized by comprising a control means for controlling the opening degree of the adjustment means.

(作用) 目標吹出温度および目標吹出風量が設定されると、吸入
温度センサの吸気温度信号にもとづいて圧縮機の回転数
および還流量調節手段の開度が制御手段により制御され
る。すると、前記目標吹出温度および目標吹出風量にな
るような吹出空気が室内に供給される。
(Function) When the target blowout temperature and the target blowout air volume are set, the rotation speed of the compressor and the opening degree of the recirculation amount adjusting means are controlled by the control means based on the intake air temperature signal from the intake temperature sensor. Then, the blown air that has the target blown air temperature and the target blown air volume is supplied into the room.

(実施例) 以下、本発明の実施例を図面にもとづいて説明する。(Example) Embodiments of the present invention will be described below based on the drawings.

第1図は、本発明の気体圧縮式冷凍サイクル装置の実施
例を示す。
FIG. 1 shows an embodiment of the gas compression type refrigeration cycle apparatus of the present invention.

第1図において、圧縮機4と膨張機3は、連結軸13に
より同軸に固定されており、これらに原動機1から変速
装置2を介して駆動力が伝達される。圧縮機4の吸入口
6の上流部には吸入空気の吸入温度Tinを検知する温
度センサ10が設けられている。圧縮機4の吐出側と膨
張機3の入口側の間の通路には放熱器として作用する熱
交換器5が設けられている。膨張機3の出口部3aとそ
の下流部にある吹出ロアとの間から還流通路15が分岐
し、この還流通路15は圧縮機4の入口部4aとその上
流側の入口6との間の通路に接続されている。
In FIG. 1, a compressor 4 and an expander 3 are coaxially fixed by a connecting shaft 13, and driving force is transmitted to them from a prime mover 1 via a transmission 2. A temperature sensor 10 is provided upstream of the intake port 6 of the compressor 4 to detect the intake temperature Tin of intake air. A heat exchanger 5 serving as a radiator is provided in a passage between the discharge side of the compressor 4 and the inlet side of the expander 3. A reflux passage 15 branches between the outlet part 3a of the expander 3 and the blow-off lower downstream thereof, and this reflux passage 15 is a passage between the inlet part 4a of the compressor 4 and the inlet 6 on the upstream side thereof. It is connected to the.

還流通路15の途中には、通路開口面積を制御する還流
量調節手段としてのダンパ9が設けられ、このダンパ9
はアクチュエータとしてのダンパ駆動モータ11により
ダンパ開度θが制御される。
A damper 9 is provided in the middle of the reflux passage 15 as a reflux amount adjusting means for controlling the opening area of the passage.
The damper opening degree θ is controlled by a damper drive motor 11 as an actuator.

制御装置12は、温度センサ10の吸入温度信号、圧縮
機4および膨張機3の回転数信号、目標吹出温度および
目標吹出風量を設定する目標値設定手段からの信号等が
入力され、これらの入力信号に基づいて演算処理し、ダ
ンパ駆動モータ11をダンパ開度θになるよう駆動し、
変速装置2を圧縮機4および膨張機3の回転数Nになる
ように駆動する。
The control device 12 receives inputs such as the suction temperature signal of the temperature sensor 10, the rotational speed signals of the compressor 4 and the expander 3, and signals from the target value setting means for setting the target blowout temperature and target blowout air volume. Arithmetic processing is performed based on the signal, and the damper drive motor 11 is driven to the damper opening degree θ,
The transmission 2 is driven so that the rotational speed of the compressor 4 and the expander 3 is N.

吸入口6から吸入された空気は、圧縮機4により圧縮さ
れて高温高圧となり熱交換器5で放熱し、この高圧の空
気は膨張機3で仕事を与えて冷気となり吹出ロアから吹
出される。このとき冷気の一部は還流通路15を通り、
ダンパ9のダンパ開度θに応じた流量が圧縮機4の入口
部4aに戻される。この冷気の還流量は、ダンパ9のダ
ンパ開度θおよび圧縮機4の回転数Nにより制御される
The air taken in from the suction port 6 is compressed by the compressor 4 to become high temperature and high pressure, and the heat is radiated by the heat exchanger 5, and this high pressure air is given work by the expander 3 and becomes cool air and is blown out from the blowing lower. At this time, part of the cold air passes through the recirculation passage 15,
A flow rate corresponding to the damper opening degree θ of the damper 9 is returned to the inlet portion 4a of the compressor 4. The amount of cold air recirculated is controlled by the damper opening degree θ of the damper 9 and the rotation speed N of the compressor 4.

ダンパ開度θは、第2図および第3図に示すように吸入
温度Tinと吹出温度T outの差ならびに風jlV
aout/流量Vaによって変化する。また第4図に示
すように、圧縮機4および膨張機3の回転数Nに応じて
流量Vaが決まる。
As shown in FIGS. 2 and 3, the damper opening degree θ is determined by the difference between the suction temperature Tin and the outlet temperature T out and the wind jlV.
It changes depending on aout/flow rate Va. Further, as shown in FIG. 4, the flow rate Va is determined depending on the rotational speed N of the compressor 4 and expander 3.

第5図に吹出風量が一定で吹出温度を制御する作動の一
例をフローチャートに示す。
FIG. 5 is a flowchart showing an example of an operation in which the blowout temperature is controlled while the blowout air volume is constant.

談ず運転者が目標温度を設定しくステップ20)、吹出
温度が測定されると(ステップ21)、吹出温度が目標
温度よりも高いか否かを判断する(ステップ22)。吹
出温度が目標温度よりも高い場合、ダンパ開度θを増大
しくステップ23)、冷気の還流量を増やし還流された
冷気をさらに冷凍サイクルを循環させて低温とする。そ
して圧縮機4の回転数Nを増大する。これは、冷気の還
流量が増大するとその分吹出ロアからの風量が低下する
のでそれを補うためである。すると還流量が増大しくス
テップ25)、吹出ロアがらの吹出温度が下降する(ス
テップ26)。吹出温度が目標温度よりも低い場合、逆
にダンパ開度θを減少しくステップ27)、圧縮機4の
回転数Nを減少する(ステップ28)。すると冷気の還
流量が減少しくステップ29)、吹出温度が上昇する(
ステップ30)。これにより吹出温度が目標温度に近づ
いていく。
When the driver sets the target temperature without talking (step 20) and the outlet temperature is measured (step 21), it is determined whether the outlet temperature is higher than the target temperature (step 22). If the blowing temperature is higher than the target temperature, the damper opening degree θ is increased (step 23), the amount of recirculated cold air is increased, and the recirculated cold air is further circulated through the refrigeration cycle to be lowered to a lower temperature. Then, the rotation speed N of the compressor 4 is increased. This is to compensate for the fact that when the amount of cold air returned increases, the amount of air from the blowout lower decreases accordingly. Then, the reflux amount increases (step 25), and the blowing temperature of the blowing lower chamber decreases (step 26). If the blowout temperature is lower than the target temperature, conversely, the damper opening degree θ is decreased (step 27), and the rotation speed N of the compressor 4 is decreased (step 28). Then, the amount of cold air recirculated decreases (step 29), and the blowing temperature increases (step 29).
Step 30). As a result, the blowing temperature approaches the target temperature.

次に本実施例における冷凍サイクルの制御装置における
演算処理および出力処理において第6図に示すフローチ
ャートにもとづいて説明する。
Next, the arithmetic processing and output processing in the refrigeration cycle control device in this embodiment will be explained based on the flowchart shown in FIG.

運転者により目標吹出温度および目標吹出風量が設定さ
れると(ステップ40)、次いで温度センサ10により
吸入温度が測定される(ステップ41)。ここで吸入温
度Tinと吹出温度T outとの差により次式■によ
りダンパ開度θを算出するとともに(ステップ42)、
圧縮機4および膨張機3の回転数Nを次式■および■に
従って算出する(ステップ43)。
When the target blowout temperature and target blowout air volume are set by the driver (step 40), the suction temperature is then measured by the temperature sensor 10 (step 41). Here, the damper opening degree θ is calculated using the following formula (2) based on the difference between the suction temperature Tin and the outlet temperature T out (step 42),
The rotational speed N of the compressor 4 and expander 3 is calculated according to the following equations (1) and (2) (step 43).

θ= f  (Tin−Tout )    □ ■N
=h(Va)         □ ■Va = V 
 out/ g  (θ)        ■ここに、
記号f、h、gは関数を表示する。
θ= f (Tin-Tout) □ ■N
=h(Va) □ ■Va = V
out/g (θ) ■Here,
The symbols f, h, g represent functions.

そして、ダンパ駆動モータ11および変速装置2を駆動
し、ダンパ開度を前記θに制御しくステップ44)、回
転数を前記Nに制御する(ステップ45)。これにより
、設定された吹出温度と吹出風量が得られる。
Then, the damper drive motor 11 and the transmission device 2 are driven to control the damper opening degree to the above-mentioned θ (step 44), and the rotational speed to the above-mentioned N (step 45). Thereby, the set blowing temperature and blowing air volume can be obtained.

前記実施例では、空気サイクルについて説明したが、空
気以外の気体にも使用でき、また空気の還流量調節手段
としてダンパを用いたが、電磁制御弁、機械駆動制御弁
等の手段を用いることができることはもちろんである。
In the above embodiment, the air cycle was explained, but it can also be used for gases other than air, and although a damper was used as a means for adjusting the amount of air recirculation, it is also possible to use means such as an electromagnetic control valve or a mechanically driven control valve. Of course it is possible.

(発明の効果) 以上説明したように本発明の冷凍サイクル装置によれば
、膨張機吐出側から圧縮機吸入側への還流通路に還流量
調節手段を設けて還流量を可変としかつ圧縮機および膨
張機の回転数を制御するようにしたので、吹出温度およ
び吹出風量を任意に設定することができるという効果が
ある。
(Effects of the Invention) As explained above, according to the refrigeration cycle device of the present invention, the reflux amount adjusting means is provided in the reflux passage from the expander discharge side to the compressor suction side, and the reflux amount can be varied. Since the rotation speed of the expander is controlled, there is an effect that the blowing temperature and the blowing air volume can be arbitrarily set.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例の構成を表す概略構成図、第2
図は吸入温度と吹出温度の差とダンパ開度との関係を表
す特性図、第3図は風量/流量の比とダンパ開度との関
係を示す特性図、第4図は圧縮機回転数と流量の関係を
表す特性図、第5図は冷凍サイクル装置の作動の一例を
示すフローチャート図、第6図は本発明の実施例による
作動システムを表すフローチャート図である。 2・・・変速装置(制御手段)、 3・・・膨張機、 4・・・圧縮機、 5・・・熱交換器、 9・・・ダンパ(還流量調節手段)、 10・・・吸入温度センサ、 11・・・ダンパ駆動モータ(制御手段)12・・・制
御装置(制御手段)、 15・・・還流通路。
FIG. 1 is a schematic configuration diagram showing the configuration of an embodiment of the present invention, and FIG.
The figure is a characteristic diagram showing the relationship between the difference between suction temperature and outlet temperature and the damper opening degree, Figure 3 is a characteristic diagram showing the relationship between the air volume/flow rate ratio and the damper opening degree, and Figure 4 is a characteristic diagram showing the relationship between the air volume/flow rate ratio and the damper opening degree, and Figure 4 is the compressor rotation speed. FIG. 5 is a flowchart showing an example of the operation of a refrigeration cycle device, and FIG. 6 is a flowchart showing an operating system according to an embodiment of the present invention. 2... Transmission device (control means), 3... Expander, 4... Compressor, 5... Heat exchanger, 9... Damper (reflux amount adjustment means), 10... Suction Temperature sensor, 11... Damper drive motor (control means), 12... Control device (control means), 15... Reflux passage.

Claims (1)

【特許請求の範囲】[Claims] (1) 気体を圧縮する圧縮機と、 圧縮機から吐出された気体から熱を奪う熱交換器と、 前記熱交換器で熱を奪われた気体を膨張させて低温の気
体にする膨張機と、 前記膨張機出口の気体を前記圧縮機入口に還流する還流
通路と、 前記還流通路に設けられる還流量調節手段と、前記圧縮
機に流入する気体の吸入温度を検知する温度センサと、 目標吹出温度および目標吹出風量を設定する目標値設定
手段と、 設定された目標吹出温度および目標吹出風量になるよう
に前記温度センサの検知信号にもとづいて前記圧縮機の
回転数および前記還流量調節手段の開度を制御する制御
手段と を備えたことを特徴とする冷凍サイクル装置。
(1) A compressor that compresses gas, a heat exchanger that removes heat from the gas discharged from the compressor, and an expander that expands the gas from which heat was removed by the heat exchanger and turns it into a low-temperature gas. , a reflux passage for refluxing the gas at the expander outlet to the compressor inlet; reflux amount adjusting means provided in the reflux passage; a temperature sensor for detecting the suction temperature of the gas flowing into the compressor; and a target blowout. target value setting means for setting temperature and target blowout air volume; and control of the rotation speed of the compressor and the recirculation amount adjusting means based on the detection signal of the temperature sensor so that the set target blowout temperature and target blowout air volume are achieved. A refrigeration cycle device comprising a control means for controlling an opening degree.
JP15851790A 1990-06-15 1990-06-15 Refrigerating cycle device Pending JPH0448167A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15851790A JPH0448167A (en) 1990-06-15 1990-06-15 Refrigerating cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15851790A JPH0448167A (en) 1990-06-15 1990-06-15 Refrigerating cycle device

Publications (1)

Publication Number Publication Date
JPH0448167A true JPH0448167A (en) 1992-02-18

Family

ID=15673475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15851790A Pending JPH0448167A (en) 1990-06-15 1990-06-15 Refrigerating cycle device

Country Status (1)

Country Link
JP (1) JPH0448167A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000077461A1 (en) * 1999-06-11 2000-12-21 Longwell Japan Co., Ltd. Cooling device
JP2013144540A (en) * 2012-01-11 2013-07-25 Hamilton Sundstrand Corp Environmental control system and speed sensor module in the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000077461A1 (en) * 1999-06-11 2000-12-21 Longwell Japan Co., Ltd. Cooling device
JP2013144540A (en) * 2012-01-11 2013-07-25 Hamilton Sundstrand Corp Environmental control system and speed sensor module in the same

Similar Documents

Publication Publication Date Title
US5396779A (en) Environmental control system
JP3347103B2 (en) How to run a compressor in steady state
JPH0474210B2 (en)
CN110715475B (en) Operation control method, compressed air heat exchange system and storage medium
CN111650113A (en) Energy-saving system for whole vehicle environmental test cabin and control method
JPH10205898A (en) Freezing device
US6112534A (en) Refrigeration and heating cycle system and method
JPH10197028A (en) Air conditioner
JPH0448167A (en) Refrigerating cycle device
CN216769695U (en) Air conditioning system
KR20100128955A (en) Air conditioner and control process of the same
JP4169521B2 (en) Air conditioner
JPH0252955A (en) Cooling device and control method thereof
JPH0732868A (en) Air conditioner for bus
JP2002096628A (en) Air conditioner for vehicle
JPS5862391A (en) Method for controlling operation of variable displacement compressor in refrigerating unit
JPH06265199A (en) Fan controller of air conditioner
JP2003090632A (en) Method for controlling air conditioner
JPS6387560A (en) Operation controller for air conditioner
JPH09119379A (en) Air compressor
JPH0460349A (en) Air conditioner with multiple indoor unit
JPS61272547A (en) Air conditioner
JPS62279228A (en) Intake air cooler for internal combustion engine
JPH04158145A (en) Air conditioner
JPH04190055A (en) Multi-chamber type air conditioner