JPH0447807B2 - - Google Patents

Info

Publication number
JPH0447807B2
JPH0447807B2 JP62271669A JP27166987A JPH0447807B2 JP H0447807 B2 JPH0447807 B2 JP H0447807B2 JP 62271669 A JP62271669 A JP 62271669A JP 27166987 A JP27166987 A JP 27166987A JP H0447807 B2 JPH0447807 B2 JP H0447807B2
Authority
JP
Japan
Prior art keywords
projection lens
light
lens system
photomask
wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62271669A
Other languages
Japanese (ja)
Other versions
JPS63132427A (en
Inventor
Hiroshi Sato
Shuichi Yabu
Masao Kosugi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP62271669A priority Critical patent/JPS63132427A/en
Publication of JPS63132427A publication Critical patent/JPS63132427A/en
Publication of JPH0447807B2 publication Critical patent/JPH0447807B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は半導体素子の製造に使用される投影露
光方法及び投影露光装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a projection exposure method and a projection exposure apparatus used for manufacturing semiconductor devices.

[従来技術] 近年、IC、LSIなどの半導体素子の高集積化の
進歩は目覚ましく、これらの素子の回路パターン
の線幅は1ミクロンメートル以下になろうとして
いる。
[Prior Art] In recent years, there has been remarkable progress in increasing the degree of integration of semiconductor devices such as ICs and LSIs, and the line width of the circuit patterns of these devices is becoming less than 1 micrometer.

これらの素子は、従来の特開昭51−126071号公
報に示されているような密着露光装置又は近接露
光装置では、製造が困難である。
It is difficult to manufacture these elements using the conventional contact exposure apparatus or proximity exposure apparatus as disclosed in Japanese Patent Application Laid-Open No. 51-126071.

一方、1ミクロンメートル程度の回路パターン
の焼き付けが可能な装置として縮小投影露光装置
が開発されている。
On the other hand, a reduction projection exposure apparatus has been developed as an apparatus capable of printing a circuit pattern of about 1 micrometer.

この投影露光装置は、投影レンズ系のFナンバ
ーが大きく、その焦点深度が浅いので、例えば米
国特許第4084903号に示されているように、フオ
トマスクの回路パターン像が形成される像平面に
ウエハの表面を正確に一致させる合焦機構が取り
付けられている。この機構は、この米国特許が示
す空気圧センサーや光学式センサーにより、像平
面からのウエハ表面のずれを検出し、投影レンズ
系の光軸方向へウエハを上下動させ、このずれを
補正するものである。
In this projection exposure apparatus, the projection lens system has a large F number and a shallow depth of focus, so that, as shown in US Pat. A focusing mechanism is installed to precisely match the surfaces. This mechanism detects the deviation of the wafer surface from the image plane using the air pressure sensor and optical sensor described in this US patent, and corrects this deviation by moving the wafer up and down in the direction of the optical axis of the projection lens system. be.

しかしながら、従来の合焦機構は、像平面が動
かないと仮定し、ウエハの位置を調整している
為、像平面が何らかの理由でシフトすると、ウエ
ハ上の表面を像平面に位置付けることができない
事態が生じる。
However, conventional focusing mechanisms assume that the image plane does not move and adjust the position of the wafer, so if the image plane shifts for some reason, the surface on the wafer cannot be positioned at the image plane. occurs.

投影露光装置では、回路パターン像の投影の度
に、照明系からの光が投影レンズ系に入射するの
で、投影レンズ系が入射光の一部を吸収し、その
温度が変化する。レンズの光吸収に伴う温度変化
は、OPTIK33.第4号,第437頁〜第439頁
(1971)に記載されているように、レンズの屈折
率の変化をもたらす。
In a projection exposure apparatus, each time a circuit pattern image is projected, light from the illumination system enters the projection lens system, so the projection lens system absorbs a portion of the incident light and its temperature changes. A temperature change accompanying light absorption by a lens causes a change in the refractive index of the lens, as described in OPTIK 33. No. 4, pages 437 to 439 (1971).

この論文では、薄肉レンズに断面強度分布が不
均一なビームが入射した時にレンズ内部に屈折率
の分布が生じ、レンズに収差が発生することを示
しているに過ぎないが、実際の投影レンズ系では
温度変化により像平面がシフトし、我々は、特に
1ミクロンメートル以下といつた微小な回路パタ
ーン像の投影を行う装置では、この像平面のシフ
トが無視できないことに気付いた。
This paper only shows that when a beam with a non-uniform cross-sectional intensity distribution is incident on a thin lens, a refractive index distribution occurs inside the lens and aberrations occur in the lens. The image plane shifts due to temperature changes, and we realized that this shift in the image plane cannot be ignored, especially in devices that project minute circuit pattern images of 1 micrometer or less.

特に、半導体製造用の投影露光装置では、繰り
返して露光を行う為、照明系からの光が間欠的に
投影レンズ系に入射することになり、フオトマス
クを光照射している時には投影レンズ系の温度が
上り光照射を中断している時には投影レンズ系の
温度が下がるので、作業中、投影レンズ系の像平
面が上下にシフトする。従つて、この装置におけ
る像平面のシフトの問題は深刻である。
In particular, projection exposure equipment for semiconductor manufacturing repeatedly performs exposure, so light from the illumination system enters the projection lens system intermittently, and when the photomask is irradiated with light, the temperature of the projection lens system increases. When the temperature rises and light irradiation is interrupted, the temperature of the projection lens system decreases, so the image plane of the projection lens system shifts vertically during work. Therefore, the problem of image plane shift in this device is serious.

[発明の概要] 本発明の目的は、投影レンズ系の像平面即ちピ
ント位置にウエハの表面を正確に一致させること
ができる、半導体製造用投影露光方法と投影露光
装置とを提供することにある。
[Summary of the Invention] An object of the present invention is to provide a projection exposure method and a projection exposure apparatus for semiconductor manufacturing, which can accurately align the surface of a wafer with the image plane, that is, the focus position of a projection lens system. .

この目的を達成する為に、本発明では、フオト
マスクを介して投影レンズ系に入射する単位時間
当たりの光の量と、照明系によるフオトマスクに
対する光照射時間及び光照射間隔時間とを使用し
て、投影レンズ系への光入射に伴う投影レンズ系
のピント位置の変化量を演算し、この演算結果を
考慮して投影レンズ系のピント位置とウエハの表
面を一致させる。
In order to achieve this objective, the present invention uses the amount of light per unit time that enters the projection lens system via the photomask, the light irradiation time and the light irradiation interval time on the photomask by the illumination system, The amount of change in the focus position of the projection lens system due to the incidence of light into the projection lens system is calculated, and the focus position of the projection lens system is made to coincide with the surface of the wafer in consideration of this calculation result.

投影レンズ系への光入射に伴いともない投影レ
ンズ系の温度が上昇して生じるピント位置の変化
量は、マスクを介して投影レンズ系に入射する光
の量(単位時間当たりの光の量と光照射時間の
積)に依存するから、この光量を検出することに
より投影レンズ系への光入射に伴うピント位置の
変化量をある程度の精度で求めることができる。
The amount of change in the focus position caused by the temperature of the projection lens system rising as the light enters the projection lens system is determined by the amount of light that enters the projection lens system through the mask (the amount of light per unit time and the amount of light per unit time). By detecting this amount of light, the amount of change in the focus position due to the incidence of light on the projection lens system can be determined with a certain degree of accuracy.

しかし、先の露光の終了後と次回の露光を開始
するまで投影レンズ系に光が入射しない時間帯が
存在し、この時間帯では投影レンズ系が放熱を起
こし温度の低下が生じる。従つて、ピント位置の
変化量を演算するのに単に投影レンズ系に入射す
る光の量を考慮するだけでは、この温度低下によ
るピント位置変動のためにピント位置の変動量の
検出精度は制限されてしまう。
However, there is a time period after the end of the previous exposure and until the start of the next exposure in which no light enters the projection lens system, and during this time period the projection lens system radiates heat and its temperature drops. Therefore, simply considering the amount of light incident on the projection lens system to calculate the amount of change in the focus position will limit the accuracy of detecting the amount of change in the focus position due to the change in focus position caused by this temperature drop. I end up.

そこで本発明では、投影レンズへの光入射に伴
うピント位置の変化量の演算に光照射間隔時間を
も使用し、ピント位置の変化量を、投影レンズ系
の温度の上昇と低下とを考慮して、より正確に求
めている。従つて、ウエハの合焦動作が正確に行
なえ、ウエハに鮮明な回路パターンを投影し転写
できる。
Therefore, in the present invention, the light irradiation interval time is also used to calculate the amount of change in the focus position due to the incidence of light on the projection lens, and the amount of change in the focus position is calculated by taking into account the rise and fall of the temperature of the projection lens system. I'm looking for more accuracy. Therefore, the wafer can be accurately focused, and a clear circuit pattern can be projected and transferred onto the wafer.

[実施例] 以下、本発明を図に示した実施例に基づいて説
明する。
[Example] The present invention will be described below based on an example shown in the drawings.

第1図において、1は本体ベース、2はXYス
テージである。XYステージ2は本体ベース1に
搭載され、周知のメカニズムによつて所望の平面
内運動をする。3は感光層を有するウエハで、不
図示のチヤツクによりXYステージ2上に固定さ
れる。4は投影レンズ鏡筒で、縮小型投影レンズ
5を収容する。6はフオトマスクで、半導体回路
製造用パターンを具える。7はフオトマスクステ
ージで、鏡筒4の上部に固定される一方、フオト
マスク6を固定する機能を持つ。
In FIG. 1, 1 is the main body base, and 2 is the XY stage. The XY stage 2 is mounted on the main body base 1 and makes a desired in-plane movement by a well-known mechanism. A wafer 3 has a photosensitive layer, and is fixed on the XY stage 2 by a chuck (not shown). A projection lens barrel 4 accommodates a reduction type projection lens 5. 6 is a photomask, which includes a pattern for manufacturing a semiconductor circuit. Reference numeral 7 denotes a photomask stage, which is fixed to the upper part of the lens barrel 4 and has the function of fixing the photomask 6.

次に、8は支柱で、本体ベース1に固設される
が、その上部にピント調製機構9の固定側を具え
る。ピント調製機構9は例えばラツクとピニオン
あるいはヘリコイド等で構成するものとし、移動
側は鏡筒4と結合されていて、機構9を作動させ
ると鏡筒4は投影航路に沿つて移動する。10は
照明ユニツトで、支柱8の上部に、更に別の支柱
を介して固設する。照明ユニツト10は光源1
1、シヤツタ12、コンデンサーレンズ13、光
路折曲げ鏡14を収容する。シヤツタ12は、駆
動信号によつて作動する回転型ソレノイドの作用
で移動し、照明光路を遮断もしくは開放するもの
とし、照明光路が開放された時、照明光源11を
発した光束はコンデンサーレンズ13で収斂し、
鏡14で反射した後、フオトマスク6に照射され
る。
Next, reference numeral 8 denotes a column, which is fixedly installed on the main body base 1, and the fixed side of the focus adjustment mechanism 9 is provided on the upper part of the column. The focus adjustment mechanism 9 is composed of, for example, a rack and pinion or a helicoid, and the movable side is connected to the lens barrel 4. When the mechanism 9 is operated, the lens barrel 4 moves along the projection path. Reference numeral 10 denotes a lighting unit, which is fixed to the upper part of the pillar 8 via another pillar. The lighting unit 10 is a light source 1
1. Contains a shutter 12, a condenser lens 13, and an optical path bending mirror 14. The shutter 12 moves under the action of a rotary solenoid activated by a drive signal to block or open the illumination optical path. When the illumination optical path is opened, the light beam emitted from the illumination light source 11 passes through the condenser lens 13. converge,
After being reflected by the mirror 14, the photomask 6 is irradiated with the light.

一方、17はエアーノズルで、鏡筒4の下側に
保持され、投影光路の周縁に配するか、もしくは
光路中へ進入退去が自在とする。エアーノズル1
7は不図示のエアーマイクロメータ本体につなが
り、ウエハ3の上面と投影レンズ5の最終面との
間隔を精密に測定するのに役立つ。なお、間隔の
測定については別の方法も使用できる。
On the other hand, 17 is an air nozzle, which is held at the bottom of the lens barrel 4 and can be arranged at the periphery of the projection optical path, or can freely move into and out of the optical path. Air nozzle 1
7 is connected to an air micrometer main body (not shown), which serves to precisely measure the distance between the upper surface of the wafer 3 and the final surface of the projection lens 5. Note that other methods can also be used to measure the spacing.

また、18はフオトデイテクタで、XYステー
ジ2上に固定されるものとし、XYステージ2を
作動させることで照明領域へ進入させることがで
きる。フオトデイテクタ18はフオトマスク6を
透過したパターン投影光を測光して該投影光の強
度を検出する。そして、これによりフオトマスク
の透過率を測定することができる。又、すでに透
過率のわかつているフオトマスクあるいは別の測
定機で透過率がわかつているものについては、コ
ントローラ20に設けられた透過率設定スイツチ
21で条件設定しても良く、このスイツチ21は
フオトデイテクタ18を併設する方が望ましい。
22はケーブルで、コントローラ20からの信号
を装置本体へ伝達する機能を持つ。
Further, a photodetector 18 is fixed on the XY stage 2, and can be caused to enter the illumination area by operating the XY stage 2. The photodetector 18 measures the pattern projection light transmitted through the photomask 6 and detects the intensity of the projection light. In this way, the transmittance of the photomask can be measured. Furthermore, for a photomask whose transmittance is already known or a mask whose transmittance is known from another measuring device, the conditions may be set using a transmittance setting switch 21 provided in the controller 20, and this switch 21 can be set by the photodetector. It would be better to have 18 attached.
A cable 22 has a function of transmitting signals from the controller 20 to the main body of the apparatus.

以上の構造の装置で、焼付工程を繰り返せば投
影レンズ5がピントの移動を引起すことは上述し
た通りであるが、投影レンズ5の焼付光照射によ
る経時的なピントの変化量△は、実験的に△
=K・τ・E・to/tで表わし得る。ここでKは
投影レンズ5の固有のピント変化係数、τはフオ
トマスク6の透過率、Eは照明ユニツト10から
の単位時間当りの照射光量、toはシヤツタ12の
開放時間合計、tは露光間隔時間合計である。な
お、投影レンズ5のピント変化係数Kは一つの投
影レンズについて実験で測定すれば、同じ投影レ
ンズを組み込んだ装置では同じKを使用できる。
As mentioned above, if the printing process is repeated in the apparatus with the above structure, the focus of the projection lens 5 will shift. To △
It can be expressed as =K·τ·E·to/t. Here, K is the unique focus change coefficient of the projection lens 5, τ is the transmittance of the photomask 6, E is the amount of light irradiated from the illumination unit 10 per unit time, to is the total open time of the shutter 12, and t is the exposure interval time. It is the total. Note that if the focus change coefficient K of the projection lens 5 is experimentally measured for one projection lens, the same K can be used in devices incorporating the same projection lens.

第2図の20′はマイクロプロセツサで、コン
トローラ20の中枢を構成し、上述の△に関す
る条件式とピント変化係数Kを記憶装置Mに予め
記憶させておく。なお、記憶方法は電気的手段以
外にカム等の機械的手段も利用できる。次いで、
その工程で使うフオトマスク6をマスクステージ
7にセツトしてXYステージ2を移動し、フオト
デイテクタ18を投影露光内に位置決めしてシヤ
ツタ12を開放し、フオトマスク6を透過した焼
付光をフオトデイテクタ18で測光し、透過光量
τ・Eに相当する信号を検出回路18′からマイ
クロプロセツサ20′へ入力する。その後、シヤ
ツタ12を閉鎖し、XYステージ2を移動してウ
エハ3を焼付位置にセツトし、再びシヤツタ12
を開放してマスク6のパターンをウエハ3に焼付
ける。その際、第一回目の焼付時のピント変化量
△は『0』であるから、エアーノズル17から
エアー噴射で測定される投影レンズ5とウエハ3
との距離は設計値に一致し、設計値になる様にピ
ント調整機構9を作動させてピント位置を設定す
る。
A microprocessor 20' in FIG. 2 constitutes the core of the controller 20, and the conditional expression regarding Δ and the focus change coefficient K described above are stored in the storage device M in advance. Note that, in addition to electrical means, mechanical means such as a cam can also be used as a storage method. Then,
The photomask 6 used in this process is set on the mask stage 7, the XY stage 2 is moved, the photodetector 18 is positioned within the projection exposure, the shutter 12 is opened, and the printing light transmitted through the photomask 6 is measured by the photodetector 18. , a signal corresponding to the amount of transmitted light τ·E is input from the detection circuit 18' to the microprocessor 20'. After that, the shutter 12 is closed, the XY stage 2 is moved to set the wafer 3 at the printing position, and the shutter 12 is closed again.
is opened and the pattern of the mask 6 is printed onto the wafer 3. At this time, since the amount of focus change △ during the first printing is "0", the projection lens 5 and the wafer 3 measured by air injection from the air nozzle 17
The distance from the lens to the lens corresponds to the design value, and the focus adjustment mechanism 9 is operated to set the focus position so that the distance corresponds to the design value.

ウエハ3の焼付が終了すると、XYステージ2
は移動し、このウエハは別のウエハと交換され、
再びXYステージ2は移動して次の新しいウエハ
3を焼付位置にセツトする。他方、シヤツタ駆動
制御回路12′はシヤツタ12の開放時間(光照
射時間)と露光間隔時間(光照射間隔時間)をマ
イクロプロセツサ20′に入力する。マイクロプ
ロセツサ20′はシヤツタ開放と露光間隔が生じ
る度にそれぞれを別に積算し、記憶装置Mへ露光
履歴to/tとして記憶する。次のウエハ3の露光
に先立つてマイクロプロセツサ20′はK・τ・
E・to/tに基づいた演算により△の値を演算
する。この△の値はピント調整制御回路9′へ
入力されて、ピント調整機構9は作動し、鏡筒4
を微小移動してエアーマイクロメータ(不図示)
の検出する変化量が算出したピント変化量に等し
くなるまで、調整動作を継続する。従つて、ウエ
ハ3は、常時投影レンズ5の最良結像位置に自動
的に位置決めされることになる。なお、本例では
機構の簡略化のために鏡筒4を動かしたが、ウエ
ハ3あるいはフオトマスク6を光軸方向へ移動す
る構造を採用しても良い。
When the baking of wafer 3 is completed, the XY stage 2
is moved and this wafer is replaced with another wafer,
The XY stage 2 moves again to set the next new wafer 3 at the printing position. On the other hand, the shutter drive control circuit 12' inputs the opening time (light irradiation time) of the shutter 12 and the exposure interval time (light irradiation interval time) to the microprocessor 20'. The microprocessor 20' separately integrates the shutter opening and the exposure interval each time it occurs, and stores it in the storage device M as an exposure history to/t. Prior to exposing the next wafer 3, the microprocessor 20'
The value of Δ is calculated by calculation based on E·to/t. This value of △ is input to the focus adjustment control circuit 9', the focus adjustment mechanism 9 operates, and the lens barrel 4
Move the air micrometer (not shown)
The adjustment operation continues until the amount of change detected by the focus change amount becomes equal to the calculated amount of change in focus. Therefore, the wafer 3 is automatically positioned at the best imaging position of the projection lens 5 at all times. In this example, the lens barrel 4 is moved to simplify the mechanism, but a structure in which the wafer 3 or the photomask 6 is moved in the optical axis direction may be adopted.

[発明の効果] 以上、本発明では、投影レンズへの光入射に伴
うピント位置の変化量を、投影レンズ系の温度の
上昇と低下とを考慮して求めているので、正確に
ピント位置を検出できる。従つて、作業中、常時
正確な合焦動作が行なえ、ウエハに鮮明な回路パ
ターンを投影し転写できる。
[Effects of the Invention] As described above, in the present invention, since the amount of change in the focus position due to the incidence of light on the projection lens is determined by taking into account the rise and fall of the temperature of the projection lens system, it is possible to accurately determine the focus position. Can be detected. Therefore, accurate focusing can be performed at all times during work, and a clear circuit pattern can be projected and transferred onto the wafer.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係わる投影露光装置の一実施
例を示す図、第2図は第1図の装置の信号処理系
を示す図である。 2……XYステージ、3……ウエハ、5……投
影レンズ、6……フオトマスク、9……ピント調
整機構、10……照明ユニツト、17……エアー
ノズル、18……フオトデイテクタ、20……コ
ントローラ、20′……マイクロプロセツサ。
FIG. 1 is a diagram showing an embodiment of a projection exposure apparatus according to the present invention, and FIG. 2 is a diagram showing a signal processing system of the apparatus shown in FIG. 2... XY stage, 3... Wafer, 5... Projection lens, 6... Photo mask, 9... Focus adjustment mechanism, 10... Lighting unit, 17... Air nozzle, 18... Photo detector, 20... Controller , 20'...microprocessor.

Claims (1)

【特許請求の範囲】 1 フオトマスクに光を照射し、投影レンズ系に
より該フオトマスクの回路パターンの像をウエハ
上に投影する半導体製造用投影露光方法におい
て、前記フオトマスクを介して前記投影レンズ系
に入射する単位時間当りの光の量と前記フオトマ
スクに対する光照射時間及び光照射間隔時間とを
用いて前記投影レンズ系のピント位置の変化量を
演算し、該演算に基づいて前記投影レンズ系のピ
ント位置と前記ウエハの表面を一致させることを
特徴とする半導体製造用投影露光方法。 2 フオトマスクに光を照射する照明系と、前記
フオトマスクの回路パターンの像をウエハ上に投
影する投影レンズ系と、前記フオトマスクを介し
て前記投影レンズ系に入射する単位時間当りの光
の量を検出する光量検出手段と、前記照明系によ
る光照射時間及び光照射間隔時間とを検出する照
射履歴検出手段と、前記光量と前記各時間とを用
いて前記投影レンズ系のピント位置の変化量を演
算する手段と、該演算に基づいて前記投影レンズ
系のピント位置と前記ウエハの表面を一致させる
手段とを有するすることを特徴とする半導体製造
用投影露光装置。
[Scope of Claims] 1. In a projection exposure method for semiconductor manufacturing in which a photomask is irradiated with light and an image of a circuit pattern of the photomask is projected onto a wafer by a projection lens system, the light is incident on the projection lens system through the photomask. The amount of change in the focus position of the projection lens system is calculated using the amount of light per unit time, the light irradiation time for the photomask, and the light irradiation interval time, and the focus position of the projection lens system is calculated based on the calculation. A projection exposure method for semiconductor manufacturing, characterized in that the surface of the wafer is made to coincide with the surface of the wafer. 2. An illumination system that irradiates light onto a photomask, a projection lens system that projects an image of the circuit pattern of the photomask onto a wafer, and detects the amount of light per unit time that enters the projection lens system via the photomask. irradiation history detection means for detecting a light irradiation time and a light irradiation interval time by the illumination system, and calculating an amount of change in a focus position of the projection lens system using the light amount and each time. 1. A projection exposure apparatus for semiconductor manufacturing, comprising means for aligning the focus position of the projection lens system with the surface of the wafer based on the calculation.
JP62271669A 1987-10-29 1987-10-29 Aligner Granted JPS63132427A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62271669A JPS63132427A (en) 1987-10-29 1987-10-29 Aligner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62271669A JPS63132427A (en) 1987-10-29 1987-10-29 Aligner

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP57062874A Division JPS58179834A (en) 1982-04-14 1982-04-14 Copying device and focus correcting method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2206622A Division JPH03123015A (en) 1990-08-03 1990-08-03 Projecting and exposing device and method thereof

Publications (2)

Publication Number Publication Date
JPS63132427A JPS63132427A (en) 1988-06-04
JPH0447807B2 true JPH0447807B2 (en) 1992-08-05

Family

ID=17503231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62271669A Granted JPS63132427A (en) 1987-10-29 1987-10-29 Aligner

Country Status (1)

Country Link
JP (1) JPS63132427A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2790469B2 (en) * 1988-11-24 1998-08-27 ウシオ電機株式会社 Film exposure equipment
JPH05312643A (en) * 1992-05-13 1993-11-22 Orc Mfg Co Ltd Quantity of light meter

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51126071A (en) * 1975-04-25 1976-11-02 Hitachi Ltd Mask pattern printing method and the equipment
JPS57117238A (en) * 1981-01-14 1982-07-21 Nippon Kogaku Kk <Nikon> Exposing and baking device for manufacturing integrated circuit with illuminometer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51126071A (en) * 1975-04-25 1976-11-02 Hitachi Ltd Mask pattern printing method and the equipment
JPS57117238A (en) * 1981-01-14 1982-07-21 Nippon Kogaku Kk <Nikon> Exposing and baking device for manufacturing integrated circuit with illuminometer

Also Published As

Publication number Publication date
JPS63132427A (en) 1988-06-04

Similar Documents

Publication Publication Date Title
US4506977A (en) Transfer apparatus provided with an auto-focusing mechanism
US5140366A (en) Exposure apparatus with a function for controlling alignment by use of latent images
JPH0821531B2 (en) Projection optical device
JPS62183522A (en) Projection and exposure apparatus
JP2006148106A (en) Auto-focusing system, auto-focusing method, and exposure device using them
JPH0684757A (en) Projection aligner
JPH06204113A (en) Projection aligner and manufacture of semiconductor device using same
JPH0258766B2 (en)
US20220334490A1 (en) Substrate measuring device and a method of using the same
JPH0447807B2 (en)
JPH08162397A (en) Projection light exposure device and manufacture of semiconductor device by use thereof
JPH04116414A (en) Automatic focusing apparatus
JPH04342111A (en) Method and apparatus for projection exposure
JP2662236B2 (en) Projection exposure method and apparatus
JP4715199B2 (en) Film thickness measuring apparatus and film thickness measuring method
JPH0512849B2 (en)
JPH104055A (en) Automatic focusing device and manufacture of device using it
JP4121746B2 (en) Projection exposure equipment
JP3282231B2 (en) Projection exposure apparatus and method
JP3289333B2 (en) Projection exposure apparatus and method
JPH0697038A (en) Projection aligner
JPH09199407A (en) Manufacture of projection aligner and semiconductor device
JPH04290217A (en) Lighography
JPH06204120A (en) Detecting equipment of focal point position and detecting method of focal point position
JP2006339348A (en) Aligner