JPH0447177A - Electric propulsion machinery - Google Patents

Electric propulsion machinery

Info

Publication number
JPH0447177A
JPH0447177A JP15582790A JP15582790A JPH0447177A JP H0447177 A JPH0447177 A JP H0447177A JP 15582790 A JP15582790 A JP 15582790A JP 15582790 A JP15582790 A JP 15582790A JP H0447177 A JPH0447177 A JP H0447177A
Authority
JP
Japan
Prior art keywords
magnetic field
gas
propellant
electrodes
electric propulsion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15582790A
Other languages
Japanese (ja)
Inventor
Kazuo Uematsu
和夫 上松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP15582790A priority Critical patent/JPH0447177A/en
Publication of JPH0447177A publication Critical patent/JPH0447177A/en
Pending legal-status Critical Current

Links

Landscapes

  • Plasma Technology (AREA)

Abstract

PURPOSE:To form the external magnetic field of large metallic flux density so as to obtain large propulsive force by cooling a superconductive coil disposed outside electrodes with liquefied gas serving as gas propellant so as to be kept in the superconductive state, using vaporized gas as propellant, and applying low-current high-voltage between the electrodes. CONSTITUTION:At the time of operating an MPD thruster 10, one of electric propulsion machinery, liquid helium and the like in a liquefied gas tank 20 are sent out, and a superconductive coil 15 is cooled by a cooling pipe 16 so as to be kept in the superconductive state. Power supply is connected to the superconductive coil 15 so as to form the powerful magnetic field. Low-current high-voltage are further applied steadily between the anode 11 and the cathode 12 forming electrodes by DC power source 14. During arc discharge between the anode 11 and cathode 12 in this state, evaporated gas propellant 17 is injected to form plasma. The plasma is then accelerated by the strong magnetic field formed by the superconductive coil 15 and Lorentz's force by the current to be jetted backward so as to obtain thrust force (= magnetic field X current).

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は宇宙用推進機などとして知られているプラズ
マエンジンなどの電気推進機の改良に関し、ガス推進剤
となる液化ガスを利用した超電導コイルを設けることで
高比推力化や装置の効率化を図るようにしたものである
[Detailed Description of the Invention] [Field of Industrial Application] This invention relates to the improvement of electric propulsion machines such as plasma engines known as space propulsion machines, and relates to a superconducting coil that uses liquefied gas as a gas propellant. By providing this, it is possible to increase the specific impulse and improve the efficiency of the device.

〔従来の技術〕[Conventional technology]

電気推進機の−っであるプラズマエンジンは、宇宙用の
MPDスラスタ、直流アークジェットスラスク、核融合
研究用のプラズマガン、プラズマ化学反応用熱源として
の直流アークジェット、マスドライバとしてのレールガ
ン、耐熱材料試験用高エンタルピプラズマ風洞などに使
用されている。
The plasma engine, which is the basis of an electric propulsion machine, is an MPD thruster for space use, a DC arc jet thruster, a plasma gun for nuclear fusion research, a DC arc jet as a heat source for plasma chemical reactions, a rail gun as a mass driver, and a heat-resistant It is used in high enthalpy plasma wind tunnels for material testing.

このような電気推進機としてのプラズマエンジンは、例
えば第2図に示すように、末広ノズル状の陽極1の中心
部に棒状の陰極2を配置して電極を構成し、画電極1.
2間に直流電源3からパルス的に直流電圧を印加してア
ークを発生させ、外部から供給したガス推進剤4をプラ
ズマ状態にし、このプラズマを膨張、加速して後方に噴
射して推力を得ることができるようになっており、その
推力は電流密度と磁束密度の積として与えられる。
In such a plasma engine as an electric propulsion machine, for example, as shown in FIG. 2, a rod-shaped cathode 2 is arranged at the center of a wide-divergent nozzle-shaped anode 1 to constitute an electrode, and a picture electrode 1.
A DC voltage is applied in pulses from a DC power supply 3 between the two to generate an arc, and the gas propellant 4 supplied from the outside is turned into a plasma state. This plasma is expanded, accelerated, and injected backward to obtain thrust. The thrust is given as the product of current density and magnetic flux density.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

このようなプラズマエンジンでは、推力を増大しようと
すると、電流密度を高くするか、外部磁場を形成するな
どで磁束密度を高めるかのいずれかの方法を採らねばな
らないが、電流密度を高めるため大電流を印加すること
には、限界があるとともに、電極の寿命が短くなるなど
の問題がある。
In order to increase thrust in such a plasma engine, it is necessary to either increase the current density or increase the magnetic flux density by forming an external magnetic field, but in order to increase the current density, it is necessary to increase the magnetic flux density. There are limitations to applying current, and there are problems such as shortening the life of the electrode.

また、磁束密度を高めてプラズマエンジンの推力を増大
する一つの方法として外部磁場を形成する方法があり、
従来は電極1.2の外側に常電導コイルを設けるように
していたが、この場合にも大容量の電源装置が必要とな
り形成できる磁場に限界があるという問題があり、特に
宇宙用として使用する場合には、重量などの点で問題か
多い。
In addition, one way to increase the thrust of a plasma engine by increasing the magnetic flux density is to create an external magnetic field.
Conventionally, a normally conducting coil was installed outside the electrode 1.2, but this also required a large-capacity power supply and there was a problem that there was a limit to the magnetic field that could be created, making it particularly difficult to use for space applications. In some cases, there are many problems such as weight.

そこで、常電導コイルを超電導コイルに変えることで、
−層大きな外部磁場を形成することが考えられるが、超
電導状態を保持するためには、クライオスタットを用意
し常時極低温に冷却しなければならず、コイル自体の電
源装置を外部に設置することができてもクライオスタッ
トのため大きな冷凍機を備えた冷却装置が必要となり、
宇宙などで使用する場合大きな問題となる。
Therefore, by changing the normal conducting coil to a superconducting coil,
- It is possible to create a larger external magnetic field, but in order to maintain the superconducting state, a cryostat must be prepared and constantly cooled to an extremely low temperature, and the power supply for the coil itself must be installed externally. Even if it were possible, it would require a cooling system with a large refrigerator because it is a cryostat.
This poses a major problem when used in space.

この発明はかかる従来技術の問題点に鑑みてなされたも
ので、超電導コイルを用いて磁束密度を高めると同時に
、両電極間に低電流高電圧を常時印加できるようにして
高比推力化を図ることができるとともに、装置の小型軽
量化などの効率化を図ることができる電気推進機を提供
しようとするものである。
This invention was made in view of the problems of the prior art, and uses a superconducting coil to increase magnetic flux density, and at the same time, aims to achieve high specific impulse by constantly applying low current and high voltage between both electrodes. The purpose of this invention is to provide an electric propulsion machine that can improve efficiency by making the device smaller and lighter.

〔課題を解決するための手段〕[Means to solve the problem]

上記問題点を解決するためこの発明の電気推進機は、陰
極と陽極とでなる電極間でアークを発生させ、内部に導
いたガス推進剤をプラズマ状態として膨脂加速し、推進
力を得る電気推進機において、前記電極の外側に外部磁
場を形成する超電導コイルを配置し、この超電導コイル
をガス推進剤を兼ねる液化ガスで冷却可能に構成し、前
記電極間に定常的に低電流高電圧を印加し得る直流電源
を接続したことを特徴とするものである。
In order to solve the above problems, the electric propulsion machine of the present invention generates an arc between electrodes consisting of a cathode and an anode, expands and accelerates the gas propellant guided inside into a plasma state, and generates an electric propulsion force. In the propulsion device, a superconducting coil that forms an external magnetic field is disposed outside the electrode, this superconducting coil is configured to be coolable with liquefied gas that also serves as a gas propellant, and a low current and high voltage are constantly applied between the electrodes. It is characterized by being connected to a DC power source that can be applied.

また、この発明の電気推進機は、前記ガス推進剤を兼ね
る液化ガスとして液体水素を用いることを特徴とするも
のである。
Further, the electric propulsion device of the present invention is characterized in that liquid hydrogen is used as the liquefied gas that also serves as the gas propellant.

〔作 用〕[For production]

この電気推進機によれば、電極の外側に超電導コイルを
配置し、この超電導コイルをガス推進剤を兼ねる液化ガ
スの顕熱及び潜熱で冷却して超電導状態を保持し、蒸発
したガスを推進剤とするとともに、電極間には、直流電
源から定常的に低、電流高電圧を印加するようにしてお
り、磁束密度の大きい磁場を形成して大きな推進力を得
ることができるようにしている。
According to this electric propulsion machine, a superconducting coil is arranged outside the electrode, and the superconducting coil is cooled by the sensible heat and latent heat of the liquefied gas that also serves as the gas propellant to maintain the superconducting state, and the evaporated gas is used as the propellant. At the same time, a low current and high voltage is constantly applied between the electrodes from a DC power supply, creating a magnetic field with a high magnetic flux density and making it possible to obtain a large propulsion force.

したがって、冷凍機を備えたクライオスタットや大容量
の電源装置を必要とせず、装置のコンパクト化を図るこ
とかでき、さらに、磁界の印加によって低電流高電圧作
動で高い推進力を得ることができるとともに、電極など
の寿命を延ばすことができる。
Therefore, there is no need for a cryostat equipped with a refrigerator or a large-capacity power supply, and the device can be made more compact.Furthermore, by applying a magnetic field, it is possible to obtain high propulsive force with low current and high voltage operation. , can extend the life of electrodes, etc.

また、ガス推進剤として液体水素を用いることて、電気
推進機の一層の効率化を図ることができる。
Further, by using liquid hydrogen as the gas propellant, it is possible to further improve the efficiency of the electric propulsion machine.

〔実施例〕〔Example〕

以下、この発明の一実施例を図面に基づき詳細に説明す
る。
Hereinafter, one embodiment of the present invention will be described in detail based on the drawings.

第1図はこの発明の電気推進機をMPDスラスタに適用
した一実施例の概略構成にかかる縦断面図である。
FIG. 1 is a vertical cross-sectional view of a schematic configuration of an embodiment in which the electric propulsion device of the present invention is applied to an MPD thruster.

この電気推進機の−っであるMPDスラスタ10では、
円筒部11aと円すい部11bとて構成された末広ノズ
ル状の陽極11の中心部に棒状の陰極12が絶縁筒13
を介して同心上に配置されて電極が構成されている。
In the MPD thruster 10, which is the main part of this electric propulsion machine,
A rod-shaped cathode 12 is attached to an insulating cylinder 13 at the center of a wide-divergent nozzle-shaped anode 11 composed of a cylindrical part 11a and a conical part 11b.
The electrodes are arranged concentrically through the electrodes.

そして、この電極を構成する陽極11と陰極12とに直
流電源14が接続されており、従来のパルス的に大電流
を印加するのと異なり、定常的に電流を印加できるよう
になっている。
A DC power source 14 is connected to the anode 11 and cathode 12 that constitute the electrodes, and unlike the conventional application of a large current in pulses, current can be applied steadily.

このような陽極11と陰極12とて構成される電極の外
側、すなわち末広ノズル状の陽極1コの円筒部11aの
外側に、強力な外部磁場を形成するため超電導コイル1
5が配置されており、この超電導コイル15を取り囲む
ように冷却管16が配置され、内部を流れる冷却媒体に
よって超電導コイル15を超電導状態に冷却保持できる
ようになっている。
A superconducting coil 1 is used to form a strong external magnetic field outside the electrode constituted by such an anode 11 and a cathode 12, that is, outside the cylindrical portion 11a of the wide-spread nozzle-shaped anode.
5 is arranged, and a cooling pipe 16 is arranged so as to surround this superconducting coil 15, so that the superconducting coil 15 can be cooled and maintained in a superconducting state by a cooling medium flowing inside.

また、MPDスラスタ10にガス推進剤17を供給する
ため絶縁筒13には、陽極11の円筒部11aと陰極1
2との間の環状部に円周方向等間隔にガス推進剤注入口
18が複数個形成されている。そして、このガス推進剤
注入口18にガス推進剤供給管19が接続しである。
Furthermore, in order to supply the gas propellant 17 to the MPD thruster 10, the insulating tube 13 includes a cylindrical portion 11a of the anode 11 and a cathode 1.
A plurality of gas propellant inlets 18 are formed at equal intervals in the circumferential direction in the annular portion between the two. A gas propellant supply pipe 19 is connected to this gas propellant inlet 18 .

このようなMPDスラスタ10では、ガス推進剤17と
して液化ガスが使用され、液化ガスタンク20が設けら
れて貯蔵されるようになっており、液体状態のガス推進
剤17を最終的にガス推進剤注入口18から噴射する場
合には、蒸発させてガスにする必要がある。
In such an MPD thruster 10, liquefied gas is used as the gas propellant 17, and a liquefied gas tank 20 is provided to store the gas, and the gas propellant 17 in the liquid state is finally injected into the gas propellant. When injecting from the inlet 18, it is necessary to evaporate it into a gas.

一方、磁場形成のための超電導コイル15は冷却管16
によって超電導状態となるように極低温状態などに保持
する必要がある。
On the other hand, the superconducting coil 15 for forming the magnetic field is connected to the cooling pipe 16.
It is necessary to maintain it at an extremely low temperature so that it becomes superconducting.

そこで、液化ガスタンク20のガス推進剤17を冷却媒
体と兼用することができるようになっており、液化ガス
タンク20に冷却管16の入口側の端部が接続され、超
電導コイル15冷却後の蒸発したガス推進剤17をガス
推進剤注入口18に送ることができるように冷却管16
の出口側の端部にガス推進剤供給管19か接続しである
Therefore, the gas propellant 17 in the liquefied gas tank 20 can also be used as a cooling medium. Cooling pipe 16 so that gas propellant 17 can be delivered to gas propellant inlet 18
A gas propellant supply pipe 19 is connected to the outlet end of the propellant.

すなわち、液化ガスタンク20内のガス推進剤17は、
超電導コイル15を顕熱及び潜熱て冷却すること、およ
びプラズマ形成のためのアーク放電で高温状態となる陽
極11及び陰極12を冷却することによって加熱され、
蒸発してガスとなってガス推進剤注入口18に供給され
るのである。
That is, the gas propellant 17 in the liquefied gas tank 20 is
Heated by cooling the superconducting coil 15 with sensible heat and latent heat, and cooling the anode 11 and cathode 12, which are heated to a high temperature by arc discharge for plasma formation,
It evaporates into a gas and is supplied to the gas propellant inlet 18.

このようなガス推進剤17と冷却媒体とを兼ねる液化ガ
スとしては、例えば液体ヘリウムを使用するが、この液
体ヘリウムによって超電導コイル15を4に程度に冷却
して超電導状態を保持することができる。
For example, liquid helium is used as the liquefied gas that serves as both the gas propellant 17 and the cooling medium, and this liquid helium can cool the superconducting coil 15 to about 4°C and maintain the superconducting state.

また、ガス推進剤17として液体水素を用いることもで
き、常電導コイルを用いたMPDスラスタの実験によれ
ば、推進性能の向上を図ることができることが確認され
ており、この場合には、超電導コイル15を液体水素温
度、約10に程度で超電導状態となる材料で形成するよ
うにすれば、MPDスラスタ10の性能を一層向上する
ことができる。
In addition, liquid hydrogen can also be used as the gas propellant 17, and experiments with MPD thrusters using normal-conducting coils have confirmed that it is possible to improve the propulsion performance. The performance of the MPD thruster 10 can be further improved by forming the coil 15 with a material that becomes superconducting at a liquid hydrogen temperature of about 10°C.

さらに、ガス推進剤17としては、これら液体ヘリウム
や液体水素に限らず、他の液化ガスを用いるようにして
も良く、使用する液化ガスの温度に応じて超電導状態に
できる超電導コイル17を用いるようにすれば良い。
Further, the gas propellant 17 is not limited to liquid helium or liquid hydrogen, but other liquefied gases may be used, and a superconducting coil 17 that can be brought into a superconducting state depending on the temperature of the liquefied gas used may be used. You should do it.

このように構成されたMPDスラスタ10の運転は、次
のようにして行われる。
The operation of the MPD thruster 10 configured as described above is performed as follows.

液化ガスタンク20の液体ヘリウムなどを、図示しない
ポンプなどで送り出し、冷却管16によって超電導コイ
ル15を冷却し超電導状態にてきるように保持する。
Liquid helium or the like from the liquefied gas tank 20 is sent out by a pump (not shown), and the superconducting coil 15 is cooled by the cooling pipe 16 and maintained so as to be in a superconducting state.

また、超電導コイル15には、図示しない電源を接続し
、強力な磁場を形成するようにする。
Further, a power source (not shown) is connected to the superconducting coil 15 to form a strong magnetic field.

さらに、電極を構成する陽極]1と陰極12との間に直
流電源14によって低電流高電圧を定常的に印加する。
Furthermore, a low current and high voltage is constantly applied between the anode] 1 and the cathode 12 constituting the electrodes by a DC power supply 14.

この状態て、陽極1]と陰極12との間のアーク放電中
に蒸発したガス推進剤]7を噴射すると、プラズマか形
成され、超電導コイル15による強力な磁場及び電流に
よるローレンツ力によって加速され、後方に噴射されて
推力(−磁場×電流)が得られる。
In this state, when the gas propellant 7 vaporized during the arc discharge between the anode 1 and the cathode 12 is injected, plasma is formed, which is accelerated by the Lorentz force caused by the strong magnetic field and current generated by the superconducting coil 15. It is injected backwards to obtain thrust (-magnetic field x current).

このようなMPDスラスタ10ては、電極の外側に超電
導コイル15を設け、この超電導コイル15を超電導状
態に冷却保持のため、ガス推進剤17としての液化ガス
の持つ冷熱を利用するようにしており、クライオスタッ
トや冷凍機なとを用いること無く強力な外部磁場を形成
することかでき、装置の小型軽量化や効率化を図ること
ができる。
In such an MPD thruster 10, a superconducting coil 15 is provided on the outside of the electrode, and the cold energy of the liquefied gas as the gas propellant 17 is used to cool and maintain the superconducting coil 15 in a superconducting state. It is possible to form a strong external magnetic field without using a cryostat or refrigerator, and it is possible to make the device smaller, lighter, and more efficient.

また、強力な外部磁場を形成することによって印加する
電流を低くしてMPDスラスタ10を動作させることが
できるので、電極の寿命などを長くし、信頼性を向上で
きる。
Furthermore, by forming a strong external magnetic field, the MPD thruster 10 can be operated with a lower applied current, thereby extending the life of the electrodes and improving reliability.

さらに、ガス推進剤として液体水素を使用して水素ガス
をプラズマ状態にするようにすれば一層電気推進機の高
比推力、高効率化を図ることができる。
Furthermore, if liquid hydrogen is used as the gas propellant and the hydrogen gas is turned into a plasma state, the electric propulsion machine can have even higher specific impulse and higher efficiency.

なお、この発明は上記実施例に限定するものでなく、こ
の発明の要旨を変更しない範囲で各構成要素に変更を加
えるようにしても良い。
Note that the present invention is not limited to the above-mentioned embodiments, and each component may be modified without changing the gist of the present invention.

〔発明の効果〕〔Effect of the invention〕

以上、一実施例とともに具体的に説明したようにこの発
明の電気推進機によれば、電極の外側に超電導コイルを
配置し、この超電導コイルをガス推進剤を兼ねる液化ガ
スの顕熱及び潜熱で冷却して超電導状態を保持し、蒸発
したガスを推進剤とするとともに、電極間には、直流電
源から定常的に低電流高電圧を印加するようにしたので
、磁束密度の大きい外部磁場を形成して大きな推進力を
得ることができる。
As specifically explained above with one embodiment, according to the electric propulsion device of the present invention, a superconducting coil is arranged outside the electrode, and this superconducting coil is heated by the sensible heat and latent heat of the liquefied gas which also serves as a gas propellant. It is cooled to maintain a superconducting state, and the evaporated gas is used as a propellant, and a low current and high voltage is constantly applied between the electrodes from a DC power supply, creating an external magnetic field with a high magnetic flux density. You can gain great momentum by doing this.

したがって、冷凍機を備えたクライオスタットや大容量
の電源装置を必要とせず、装置のコンパクト化を図るこ
とができ、さらに、磁界の印加によって低電流高電圧作
動で高い推進力を得ることができ、電極などの寿命を伸
ばすことができる。
Therefore, it is possible to make the device more compact without requiring a cryostat equipped with a refrigerator or a large-capacity power supply, and furthermore, by applying a magnetic field, high propulsion force can be obtained with low current and high voltage operation. It can extend the life of electrodes, etc.

また、ガス推進剤として液体水素を用いることで、電気
推進機の一層の効率化を図ることができる。
Further, by using liquid hydrogen as the gas propellant, it is possible to further improve the efficiency of the electric propulsion machine.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の電気推進機をMPDスラスタに適用
した一実施例の概略構成にかかる縦断面図である。 第2図は従来のプラズマエンジンの縦断面図である。 コ−0・・・MPDスラスタ(電気推進機)、11・・
・陽極、12・・・陰極、13・・・絶縁筒、14・・
・直流電源、15・・・超電導コイル、16・・・冷却
管、17・・・ガス推進剤、18・・・ガス推進剤注入
口、19・・・ガス推進剤供給管、20・・・液化ガス
タンク。
FIG. 1 is a vertical cross-sectional view of a schematic configuration of an embodiment in which the electric propulsion device of the present invention is applied to an MPD thruster. FIG. 2 is a longitudinal sectional view of a conventional plasma engine. Co-0...MPD thruster (electric propulsion machine), 11...
・Anode, 12...Cathode, 13...Insulating tube, 14...
- DC power supply, 15... Superconducting coil, 16... Cooling pipe, 17... Gas propellant, 18... Gas propellant inlet, 19... Gas propellant supply pipe, 20... liquefied gas tank.

Claims (2)

【特許請求の範囲】[Claims] (1)陰極と陽極とでなる電極間でアークを発生させ、
内部に導いたガス推進剤をプラズマ状態として膨脹加速
し、推進力を得る電気推進機において、前記電極の外側
に外部磁場を形成する超電導コイルを配置し、この超電
導コイルをガス推進剤を兼ねる液化ガスで冷却可能に構
成し、前記電極間に定常的に低電流高電圧を印加し得る
直流電源を接続したことを特徴とする電気推進機。
(1) Generate an arc between the electrodes consisting of a cathode and an anode,
In an electric propulsion machine that obtains propulsion force by expanding and accelerating the gas propellant guided inside into a plasma state, a superconducting coil that forms an external magnetic field is placed outside the electrode, and this superconducting coil also serves as the gas propellant. An electric propulsion machine configured to be coolable with gas, and connected to a DC power source that can constantly apply a low current and high voltage between the electrodes.
(2)前記ガス推進剤を兼ねる液化ガスとして液体水素
を用いることを特徴とする請求項1記載の電気推進機。
(2) The electric propulsion machine according to claim 1, wherein liquid hydrogen is used as the liquefied gas that also serves as the gas propellant.
JP15582790A 1990-06-14 1990-06-14 Electric propulsion machinery Pending JPH0447177A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15582790A JPH0447177A (en) 1990-06-14 1990-06-14 Electric propulsion machinery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15582790A JPH0447177A (en) 1990-06-14 1990-06-14 Electric propulsion machinery

Publications (1)

Publication Number Publication Date
JPH0447177A true JPH0447177A (en) 1992-02-17

Family

ID=15614362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15582790A Pending JPH0447177A (en) 1990-06-14 1990-06-14 Electric propulsion machinery

Country Status (1)

Country Link
JP (1) JPH0447177A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5357747A (en) * 1993-06-25 1994-10-25 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Pulsed mode cathode
GB2606768A (en) * 2021-05-20 2022-11-23 Neutronstar Systems Ug Thermal management system for spacecraft thruster

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5357747A (en) * 1993-06-25 1994-10-25 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Pulsed mode cathode
GB2606768A (en) * 2021-05-20 2022-11-23 Neutronstar Systems Ug Thermal management system for spacecraft thruster

Similar Documents

Publication Publication Date Title
US3309873A (en) Plasma accelerator using hall currents
US6121569A (en) Plasma jet source using an inertial electrostatic confinement discharge plasma
US4882465A (en) Arcjet thruster with improved arc attachment for enhancement of efficiency
US4068147A (en) Method and apparatus for heating and compressing plasma
US4851722A (en) Magnetohydrodynamic system and method
US5170623A (en) Hybrid chemical/electromagnetic propulsion system
US4926632A (en) Performance arcjet thruster
US3324316A (en) Controlled fusion devices
US3209189A (en) Plasma generator
US4691130A (en) Process for the generation plasma and an MHD generator
US3388291A (en) Annular magnetic hall current accelerator
JPH0447177A (en) Electric propulsion machinery
CN112509714A (en) Axial compression fusion device and method based on field inversion shape plasma
JP2500374B2 (en) Continuous multi-stage acceleration coaxial gun
JP3529827B2 (en) Power generator
JPH0817116B2 (en) Plasma electromagnetic accelerator
Kagaya et al. Development of a quasi-steady MPD arcjet thruster for near-earth missions
US20230413414A1 (en) Magnetoplasmadynamic Thruster with Reverse Polarity and Tailored Mass Flux
Myrabo et al. Hypersonic MHD propulsion system integration for the mercury lightcraft
RU173324U1 (en) MEMBRANE ION ENGINE
JPS61502362A (en) Plasma generation method and MHD generator
Glocker et al. Performance characteristics of a medium power hydrogen arcjet
Slough et al. Magnetically accelerated plasmoid (MAP) thruster-initial results and future plans
Le et al. Development of a 1 kW class thermal arcjet thruster TALOS
SEIKEL et al. Completely magnetically contained electrothermal thrusters