JPH044713B2 - - Google Patents

Info

Publication number
JPH044713B2
JPH044713B2 JP55138173A JP13817380A JPH044713B2 JP H044713 B2 JPH044713 B2 JP H044713B2 JP 55138173 A JP55138173 A JP 55138173A JP 13817380 A JP13817380 A JP 13817380A JP H044713 B2 JPH044713 B2 JP H044713B2
Authority
JP
Japan
Prior art keywords
metal heat
temperature coefficient
positive temperature
coefficient thermistor
adhesive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP55138173A
Other languages
Japanese (ja)
Other versions
JPS5763790A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP55138173A priority Critical patent/JPS5763790A/en
Publication of JPS5763790A publication Critical patent/JPS5763790A/en
Publication of JPH044713B2 publication Critical patent/JPH044713B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、大きな発熱量が安定して得られる正
特性サーミスタ発熱体を安価に提供することを目
的とする。
DETAILED DESCRIPTION OF THE INVENTION An object of the present invention is to provide a positive temperature coefficient thermistor heating element that can stably generate a large amount of heat at a low cost.

第1図、第2図、第4図、第5図はそれぞれ従
来例の正特性サーミスタ発熱体の断面図で、第3
図はそれに用いられる正特性サーミスタの斜視図
である。第1図、第2図に示す例は金属放熱体と
正特性サーミスタとを圧着によつて固着した例で
第4図、第5図は導電性接着剤で固着した例であ
る。第1図において、1は正特性サーミスタ、
2,3はそれに付与された電極で、アルミの溶射
や、Niメツキ等で構成されている。4,5は金
属の放熱体で、表面積を増加させるため凸凹をつ
けた形状で、価格・熱伝導率の点から、アルミニ
ウムよりなつている。6はステンレスのスプリン
グ板、7は碍子の絶縁枠、8は金属板のスペーサ
である。第2図において、正特性サーミスタの形
状は、第1図のものと同一である。金属放熱板
9,10の両わきに穴をあけて、そこに耐熱性の
あるテフロン等の絶縁ブツシユ11,12を介し
て、ボルト13,14を通しナツト17,18で
締めつけてある。15,16はバネワツシヤであ
る。そして、それぞれの金属放熱体4,5,9,
10に電圧を印加すると、正特性サーミスタ1が
発熱し、その熱が金属放熱体4,5,9,10に
よつて放熱され、大きな発熱量を得ることができ
る。また、発熱源として、正特性サーミスタを用
いているため、自己温度制御作用があり、また、
過熱せず安全で有用なヒータである。正特性サー
ミスタを用いた場合、その発熱量を増大するに
は、正特性サーミスタ1と金属放熱体4,5,
9,10との熱抵抗を少なくすればする程よい
が、正特性サーミスタ1や金属放熱体4,5,
9,10にソリがあると、接触面積が少なくな
り、熱抵抗を少なくすることに関し最も弊害とな
つていた。そのため、第1図、第2図に示した例
では、正特性サーミスタの表面や金属放熱体を平
面研磨をして密着し、さらに、スプリング等で圧
着していた。
Figures 1, 2, 4, and 5 are cross-sectional views of conventional PTC thermistor heating elements, respectively.
The figure is a perspective view of a positive temperature coefficient thermistor used therein. The examples shown in FIGS. 1 and 2 are examples in which a metal heat sink and a positive temperature coefficient thermistor are bonded together by pressure bonding, and FIGS. 4 and 5 are examples in which they are bonded with a conductive adhesive. In Fig. 1, 1 is a positive characteristic thermistor;
2 and 3 are electrodes attached to it, which are made of thermal sprayed aluminum, Ni plating, etc. Reference numerals 4 and 5 denote metal heat sinks, which have an uneven shape to increase the surface area, and are made of aluminum from the viewpoint of cost and thermal conductivity. 6 is a stainless steel spring plate, 7 is an insulator frame, and 8 is a metal plate spacer. In FIG. 2, the shape of the positive temperature coefficient thermistor is the same as that in FIG. Holes are made on both sides of the metal heat sinks 9 and 10, and bolts 13 and 14 are passed through the holes through insulating bushes 11 and 12 made of heat-resistant Teflon, etc., and tightened with nuts 17 and 18. 15 and 16 are spring washers. And each metal heat sink 4, 5, 9,
When a voltage is applied to 10, PTC thermistor 1 generates heat, and the heat is radiated by metal heat radiators 4, 5, 9, and 10, making it possible to obtain a large amount of heat. In addition, since a positive temperature coefficient thermistor is used as the heat source, it has a self-temperature control effect, and
It is a safe and useful heater that does not overheat. When using a positive temperature coefficient thermistor, in order to increase the heat generation amount, the positive temperature coefficient thermistor 1 and metal heat sinks 4, 5,
The lower the thermal resistance between the positive temperature coefficient thermistor 1 and the metal heat sinks 4, 5, the better.
If there are warps in 9 and 10, the contact area will be reduced, which is most detrimental to reducing thermal resistance. Therefore, in the examples shown in FIGS. 1 and 2, the surface of the positive temperature coefficient thermistor and the metal heat radiator were flat-polished and brought into close contact with each other, and then crimped with a spring or the like.

このように、第1図、第2図に示した例では、
金属放熱体の効果を十分に発揮させて、大きな発
熱量を得るため、素子や金属放熱体の平面研磨が
必要であり、工数が大となり非常に高価なもので
あつた。また、スプリングで圧接しているため、
スプリングの熱によるへたり、あるいは第1図の
絶縁枠7の熱によるクリープ等によつて、圧接の
力が変化し、発熱量も不安定であつた。
In this way, in the examples shown in Figures 1 and 2,
In order to fully utilize the effect of the metal heat radiator and obtain a large amount of heat, it is necessary to polish the surface of the element and the metal heat radiator, which requires a large number of steps and is very expensive. In addition, since it is pressed with a spring,
The pressure welding force changed and the amount of heat generated was unstable due to heat-induced fatigue of the spring or heat-induced creep of the insulating frame 7 shown in FIG.

これらの欠点を克服するために、次に導電性接
着剤を用いた例を第4図、第5図に示す。
In order to overcome these drawbacks, an example using a conductive adhesive is shown in FIGS. 4 and 5.

第4図において、19は正特性サーミスタで、
その両面にアルミ溶射等で形成された電極20,
20′が付与されている。21,21′はエポキシ
接着剤に銀粉等を混合した導電性接着剤で、電極
と金属放熱体22,22′とを接着している。こ
のように、正特性サーミスタ19と金属放熱体2
2,22′とを導電性接着剤21,21′で接着し
ているため、金属放熱体22,22′と正特性サ
ーミスタ19の接合面は平滑でなくても、その凹
凸の間に導電性接着剤21,21′が充填され、
熱抵抗が小さくなる。従つて、金属放熱体22,
22′と正特性サーミスタ19を研磨したりしな
くても熱結合が十分になされ、金属放熱体22,
22′の効果が発揮され発熱量が大きくなる。ま
た、圧着により金属放熱体22,22′と正特性
サーミスタ19とを固着した時に必要であつたバ
ネワツシヤや、スプリング、枠体等が不必要とな
り、部品点数が少なく安価に正特性サーミスタ発
熱体を提供できる。
In Fig. 4, 19 is a positive characteristic thermistor;
Electrodes 20 formed on both sides by aluminum spraying, etc.
20' is given. Reference numerals 21 and 21' are conductive adhesives made of epoxy adhesive mixed with silver powder, etc., which bond the electrodes and the metal heat sinks 22 and 22'. In this way, the positive temperature coefficient thermistor 19 and the metal heat sink 2
2, 22' are bonded with conductive adhesive 21, 21', even if the bonding surfaces between the metal heat radiators 22, 22' and the positive temperature coefficient thermistor 19 are not smooth, there is conductivity between the irregularities. Filled with adhesive 21, 21',
Thermal resistance is reduced. Therefore, the metal heat sink 22,
22' and the PTC thermistor 19 are sufficiently thermally bonded without polishing, and the metal heat sink 22,
The effect of 22' is exerted and the amount of heat generated increases. In addition, spring washers, springs, frames, etc. that were necessary when the metal heat radiating elements 22, 22' and the PTC thermistor 19 were bonded together by crimping are no longer required, and the PTC thermistor heating element can be manufactured at low cost with a small number of parts. Can be provided.

さらに、熱結合は、スプリング等を用いていな
いため、変化は少なく常に一定の発熱量を保ち得
る。また、金属放熱体22,22′が電極を兼ね
ているため、新たに電極の取出しのための構成が
不必要であるが、この第4図の従来例では導電性
接着剤21,21′により金属放熱体22,2
2′と正特性サーミスタ19の電極20,20′と
を接着しているので、両者の確実な電気的接続が
得られる。
Furthermore, since the thermal coupling does not use springs or the like, there is little variation and a constant amount of heat can be maintained at all times. Furthermore, since the metal heat sinks 22, 22' also serve as electrodes, there is no need for a new configuration for taking out the electrodes, but in the conventional example shown in FIG. 4, the conductive adhesives 21, 21' Metal heat sink 22, 2
2' and the electrodes 20, 20' of the positive temperature coefficient thermistor 19 are bonded together, so a reliable electrical connection between the two can be obtained.

さらに別の従来例を第5図に示す。第5図a
は、この従来例に用いる正特性サーミスタの斜視
図であり、第5図bは正特性サーミスタ発熱体の
断正面図である。第5図において、23は正特性
サーミスタ、24,24′はその両面に形成され
たアルミ等の電極である。25,25′は導電性
接着剤で、電極面の中央部にあり、その周囲に絶
縁性接着剤26,26′を塗布してある。このよ
うな状態にそれぞれの接着剤を塗布した後、金属
放熱体27,27′を当接し接着する。
Yet another conventional example is shown in FIG. Figure 5a
is a perspective view of a positive temperature coefficient thermistor used in this conventional example, and FIG. 5b is a sectional front view of a positive temperature coefficient thermistor heating element. In FIG. 5, 23 is a positive temperature coefficient thermistor, and 24 and 24' are electrodes made of aluminum or the like formed on both sides thereof. Conductive adhesives 25 and 25' are located at the center of the electrode surface, and insulating adhesives 26 and 26' are applied around them. After each adhesive is applied in this state, the metal heat sinks 27 and 27' are brought into contact and bonded.

第5図に示す従来例では、銀等を多量に含んだ
高価な導電性接着剤は、接着面の一部にしか使用
されておらず、その使用量は少ない。従つて、第
4図の従来例に比べて、更に安価に正特性サーミ
スタ発熱体を提供できる。第4図に示す従来例で
は、全面に導電性接着剤21,21′を塗布して
あるため、金属放熱体22,22′を接着した時、
端から導電性接着剤21,21′がはみ出して反
対側の電極20,20′や金属放熱体22,2
2′と触れてシヨートする恐れがあつたが、第5
図に示す例ではほぼ中央のみに導電性接着剤2
5,25′を用いているため、端からはみ出るの
は絶縁性接着剤26,26′のみで、シヨートの
恐れがなく、安全な正特性サーミスタ発熱体を提
供することができる。しかしながら導電性接着剤
は、樹脂に銀粉を多量に混合しているため高価で
ありながら接着強度は極めて弱く、また耐熱性能
にも限界があり信頼性に乏しいものであつた。
In the conventional example shown in FIG. 5, an expensive conductive adhesive containing a large amount of silver or the like is used only on a part of the adhesive surface, and the amount used is small. Therefore, compared to the conventional example shown in FIG. 4, a positive temperature coefficient thermistor heating element can be provided at a lower cost. In the conventional example shown in FIG. 4, since the conductive adhesive 21, 21' is applied to the entire surface, when the metal heat sinks 22, 22' are bonded,
The conductive adhesive 21, 21' protrudes from the edge, and the electrodes 20, 20' and metal heat sinks 22, 2 on the opposite side are exposed.
There was a risk of a shot due to contact with 2', but the 5th
In the example shown in the figure, conductive adhesive 2 is applied almost only in the center.
5 and 25', only the insulating adhesives 26 and 26' protrude from the ends, and there is no fear of shoots, making it possible to provide a safe PTC thermistor heating element. However, since conductive adhesives contain a large amount of silver powder mixed into the resin, they are expensive, have extremely weak adhesive strength, and have limited heat resistance and lack reliability.

以上述べたように、正特性サーミスタに金属放
熱体を固着すれば、入力電力の大きな発熱体が得
られることがわかつていながら、それを実現する
ための洗練された方法がなかつた。すなわち、従
来例の機械的圧着する構造にすれば、両者の平面
研磨が必要であつたり、スプリングや枠体が必要
であつたりして、部品点数が増え高価になつてい
た。また、スプリングや枠体の高温による変形で
圧着力が低下し、信頼性も乏しかつた。また、導
電性接着剤を用いる方法でも、高価な銀を用いる
にもかかわらず、導電性接着剤には金属粉が多量
に入つているため、硬度は硬く、その結果として
金属放熱体の正特性サーミスタへの接着強度が弱
く、振動や衝撃にも弱く、また、導電性接着剤の
熱劣化もあり、信頼性が乏しかつた。また、正特
性サーミスタの電極面にシリコンオイルなどの金
属酸化物を混合した導熱剤を介して、金属放熱体
をネジなどで固着したものもあるが、これも固着
の手段としてはネジなどの外部部材によるもので
あつた。何故なら、絶縁性の導熱剤を介して両者
の電気的接触をとろうとすると、必ず両者に外部
から力を加えていなければならないものであつ
た。すなわち、セラミツクである正特性サーミス
タと金属放熱体との間には大きな熱膨張係数の差
があり、発熱体として使用した場合、その両者の
温度は上昇して両者の寸法が変化し、両者の界面
にズレが生じることになる。そこで、たとえ両者
がズレて動いたとしても、信頼性良く導通を確保
するため、正特性サーミスタと金属放熱体との間
に介在する絶縁性の導熱剤はシリコンオイルやシ
リコングリスなどのペースト状のものを用いてあ
えて接着はせず、両者のズレが容易に行えるよう
にして、両者の固着には別に部材を用いて外部か
ら押圧する構造としているものであつた。
As mentioned above, although it has been known that a heat radiating element with a large input power can be obtained by fixing a metal heat radiator to a positive temperature coefficient thermistor, there has been no sophisticated method for realizing this. That is, if the conventional structure was mechanically crimped, it would be necessary to polish both surfaces, and a spring and a frame would be required, resulting in an increase in the number of parts and an increase in cost. In addition, the compression force was reduced due to deformation of the spring and frame due to high temperatures, resulting in poor reliability. In addition, even with the method using conductive adhesive, although expensive silver is used, the conductive adhesive contains a large amount of metal powder, so its hardness is hard, resulting in positive characteristics of the metal heat sink. The adhesion strength to the thermistor was weak, it was susceptible to vibration and shock, and the conductive adhesive also suffered from thermal deterioration, resulting in poor reliability. In addition, there are also positive temperature coefficient thermistors in which a metal heat sink is fixed to the electrode surface using a screw or the like via a heat conductive agent mixed with a metal oxide such as silicone oil. It was due to parts. This is because in order to establish electrical contact between the two through an insulating heat conductive agent, it is necessary to apply an external force to the two. In other words, there is a large difference in coefficient of thermal expansion between a ceramic positive temperature coefficient thermistor and a metal heat sink, and when used as a heat sink, the temperature of both rises and the dimensions of both change. A shift will occur at the interface. Therefore, in order to ensure reliable conduction even if the two move out of alignment, the insulating heat conductive agent interposed between the positive temperature coefficient thermistor and the metal heat sink is a paste-like material such as silicone oil or silicone grease. Rather than using a material to adhere them together, the structure was such that the two could be easily shifted, and a separate member was used to secure them together by pressing from the outside.

本発明は以上のような欠点を克服しようとして
なされたもので、金属放熱体と正特性サーミスタ
との熱膨張係数の差による両者のズレを実使用状
態でなくすることに着目して、金属放熱体を小さ
くして安価にかつ信頼性のある方法でコンパクト
な正特性サーミスタに固着するもので、それによ
り、大入力で信頼性のある正特性サーミスタ発熱
体を安価に提供するものである。
The present invention has been made in an attempt to overcome the above-mentioned drawbacks, and focuses on eliminating the discrepancy between a metal heat sink and a positive temperature coefficient thermistor due to the difference in thermal expansion coefficients in actual use. The object of the present invention is to reduce the size of the heating element and fix it to a compact positive temperature coefficient thermistor in an inexpensive and reliable manner, thereby providing a reliable positive temperature coefficient thermistor heating element that can be used with large inputs at a low cost.

第6図に本発明の実施例を示す。第6図におい
て、28は正特性サーミスタ、29,29′は溶
射により設けられた電極、30,30′はシリコ
ンやエポキシ系等の正特性サーミスタ28のキユ
リー温度付近で硬化する絶縁性接着剤であり、正
特性サーミスタ28と金属放熱体31,31′と
の熱膨張の差による伸びの長さの違いを吸収する
弾性を有しており、金属放熱体31,31′を電
極面に押圧しながら接着してある。第6図bは、
金属放熱体31と正特性サーミスタ28との接触
面の一部分の拡大図を示している。ここで、電極
29の面は上述したように溶射によつて設けられ
ており、微視的に見ると小さな凹凸があり、押圧
することで絶縁性接着剤30は凹の部分に押し入
れられ、金属放熱体31と電極29の面は直接接
触し、電気的に接続されたままで接着することが
可能である。その様子を第6図c,dに示す。こ
こで、第6図cは電極29の面と金属放熱体31
との接触抵抗が、その間に絶縁性接着剤30を挿
入した時に押圧した圧力によつてどう変化するか
を示したものである。また、第6図dはその時の
実験の様子を示している。この時は、正特性サー
ミスタ28に、30μ〜50μの厚さのアルミ溶射の
電極29,29′を設け、絶縁性接着剤30,3
0′として粘度200ポイズのシリコン系接着剤を用
いたものである。正特性サーミスタ28の大きさ
は10mm×30mm×2.8mmで、金属放熱体31,3
1′はアルミニウム製である。このように、0.5Kg
w/cm2以上の力を加えれば、正特性サーミスタ2
8と金属放熱体31,31′との間に絶縁性接着
剤30,30′が介在していたとしても電極29,
29′と金属放熱体31,31′との電気的接続が
可能であることがわかる。
FIG. 6 shows an embodiment of the present invention. In Fig. 6, 28 is a positive temperature coefficient thermistor, 29 and 29' are electrodes provided by thermal spraying, and 30 and 30' are insulating adhesives such as silicone and epoxy that harden near the Curie temperature of the positive coefficient thermistor 28. It has elasticity that absorbs the difference in elongation length due to the difference in thermal expansion between the positive temperature coefficient thermistor 28 and the metal heat sinks 31, 31', and presses the metal heat sinks 31, 31' against the electrode surface. It is glued together. Figure 6b is
An enlarged view of a portion of the contact surface between the metal heat radiator 31 and the positive temperature coefficient thermistor 28 is shown. Here, the surface of the electrode 29 is provided by thermal spraying as described above, and when viewed microscopically, it has small irregularities, and when pressed, the insulating adhesive 30 is pushed into the concave part, and the metal The surfaces of the heat sink 31 and the electrode 29 are in direct contact and can be bonded together while remaining electrically connected. The situation is shown in Figures 6c and d. Here, FIG. 6c shows the surface of the electrode 29 and the metal heat sink 31.
This figure shows how the contact resistance with the insulating adhesive 30 changes depending on the pressure applied when the insulating adhesive 30 is inserted between them. Moreover, FIG. 6d shows the state of the experiment at that time. At this time, the positive temperature coefficient thermistor 28 is provided with electrodes 29, 29' made of sprayed aluminum with a thickness of 30μ to 50μ, and insulating adhesives 30, 3
A silicone adhesive with a viscosity of 200 poise was used as 0'. The size of the positive temperature coefficient thermistor 28 is 10 mm x 30 mm x 2.8 mm, and the metal heat sink 31, 3
1' is made of aluminum. In this way, 0.5Kg
If a force of more than w/cm 2 is applied, the positive temperature coefficient thermistor 2
Even if the insulating adhesive 30, 30' is interposed between the electrode 29, 8 and the metal heat sink 31, 31',
It can be seen that electrical connection between 29' and the metal heat sinks 31, 31' is possible.

このように、電極29,29′として金属溶射
により付与された電極を用いているため、銀ペー
ストやNiメツキ等による電極に比べて面が適度
に荒れており、凹凸を金属放熱体31,31′や
正特性サーミスタ28に特別に形成しなくても電
極29,29′面に凹凸が存在し、そのため本発
明に用いる電極として適している。また、その厚
さも銀ペーストやNiメツキ等による電極に比べ
て簡単に厚く形成でき、しかもポーラスな状態の
ため、金属放熱体31,31′を当てて押圧した
時、金属放熱体31,31′に接触している電極
29,29′の凸部がつぶされ、接触面積が大き
なものとなる。さらに、凸部の高さにばらつきが
あつたとしても、高いところはつぶされて、電極
29,29′自身がそのばらつきを吸収して接触
点の数も多くなるため、接触状態が安定したもの
となる。さらに、上述のような正特性サーミスタ
全体の面に分布した多数の点で、金属放熱体と正
特性サーミスタとが直接接触しているので、両者
の熱結合が良好になり、金属放熱体の効果が十分
に発揮でき、発熱量の大きな発熱体が提供でき
る。
In this way, since the electrodes 29 and 29' are applied by metal spraying, the surfaces are moderately rough compared to electrodes made of silver paste or Ni plating, and the unevenness can be removed from the metal heat sinks 31 and 31. Even if the surface of the electrodes 29 and 29' is not specially formed, the electrodes 29 and 29' have irregularities, and therefore are suitable as electrodes for use in the present invention. In addition, it can be easily formed thicker than electrodes made of silver paste or Ni plating, and since it is in a porous state, when the metal heat radiators 31, 31' are applied and pressed, the metal heat radiators 31, 31' The convex portions of the electrodes 29, 29' that are in contact with the electrodes 29, 29' are crushed, and the contact area becomes large. Furthermore, even if there is variation in the height of the convex parts, the high parts are crushed and the electrodes 29, 29' themselves absorb the variation and the number of contact points increases, so the contact state is stable. becomes. Furthermore, since the metal heat radiator and the PTC thermistor are in direct contact with each other at many points distributed over the entire surface of the PTC thermistor as described above, the thermal coupling between the two is good, and the effectiveness of the metal heat radiator is improved. It is possible to provide a heating element with a large amount of heat and a sufficient amount of heat.

また、金属放熱体と正特性サーミスタとの間に
介在するものが絶縁性接着剤であり、これは導電
性接着剤のように内部に多量の金属粉を含んでい
ないため、樹脂分が多く、接着強度は導電性接着
剤に比べ強くなり、さらにその硬度は金属粉を含
んでいないため、導電性接着剤のように硬くな
く、弾性を有しており、そして電極面に分布して
いる凹部にその絶縁性接着剤が充填され、金属放
熱体と正特性サーミスタとの間に均一に分布し、
その両側を強固に固着しているものである。その
ため、金属放熱体を外部から押圧する部材が不要
となり、コンパクトな発熱体を提供することがで
きる。この時、接着剤は正特性サーミスタのキユ
リー温度付近で硬化する接着剤を用いているた
め、キユリー温度すなわち発熱体として使用した
時の実働状態の温度で接着剤を硬化させることが
できる。ここで、正特性サーミスタはセラミツク
で金属の熱膨張係数に比較してそれが非常に小さ
く、これら両者には大きな差がある。そのため、
両者を温度差のある状態にすると長さの違いが生
じ、発熱体として両者を接合して用いる時は、こ
れらに対する配慮がポイントである。本発明で
は、金属放熱体と正特性サーミスタの固着に絶縁
性接着剤のみを用いている。これは、前述のよう
に導電性接着剤に比べ、その接着強度が強く、ま
た弾性も導電性接着剤に比べて強い。
In addition, an insulating adhesive is interposed between the metal heat sink and the PTC thermistor, and unlike conductive adhesives, this adhesive does not contain a large amount of metal powder inside, so it has a large resin content. The adhesive strength is stronger than conductive adhesives, and since it does not contain metal powder, it is not as hard as conductive adhesives, but has elasticity, and the recesses distributed on the electrode surface. is filled with the insulating adhesive and distributed uniformly between the metal heat sink and the positive temperature coefficient thermistor,
It is firmly attached on both sides. Therefore, there is no need for a member that presses the metal heat radiator from the outside, and a compact heat generator can be provided. At this time, since the adhesive used is an adhesive that hardens near the Curie temperature of the positive temperature coefficient thermistor, the adhesive can be cured at the Curie temperature, that is, the temperature of the actual operating state when used as a heating element. Here, the positive temperature coefficient thermistor is made of ceramic and has a coefficient of thermal expansion that is very small compared to that of metal, and there is a large difference between the two. Therefore,
When the two are placed in a state where there is a temperature difference, there will be a difference in length, so it is important to take these into consideration when joining and using the two as a heating element. In the present invention, only an insulating adhesive is used for fixing the metal heat sink and the positive temperature coefficient thermistor. As mentioned above, this adhesive has higher adhesive strength than a conductive adhesive, and also has higher elasticity than a conductive adhesive.

本発明では、このような絶縁性接着剤のみを用
い、さらに電極面に分布している凹部に、その絶
縁性接着剤を充填している状態なので、電極面の
凸部が金属放熱体と直接接触しているにもかかわ
らず、接着剤の厚みが凹部の存在で適度に保た
れ、金属放熱体と正特性サーミスタとの熱膨張係
数の差による固着面のズレを吸収することができ
る。
In the present invention, only such an insulating adhesive is used, and since the insulating adhesive is filled in the recesses distributed on the electrode surface, the convex portions on the electrode surface are directly connected to the metal heat sink. Even though they are in contact, the thickness of the adhesive is maintained at an appropriate level due to the presence of the recess, and it is possible to absorb the deviation of the bonded surfaces due to the difference in coefficient of thermal expansion between the metal heat sink and the PTC thermistor.

さらに、絶縁性接着剤に正特性サーミスタのキ
ユリー温度付近で硬化する接着剤を用いているた
め、金属放熱体と正特性サーミスタの固着、硬化
が発熱体の実使用時の温度、すなわち高温状態に
おいてできる。一般に、接着剤は低温より高温の
方がクリープ現象が生じやすく、かつ接着力は低
下する。本発明は、このように実使用時の温度、
すなわちキユリー温度付近で硬化する接着剤を用
いることにより、実使用時すなわち高温での金属
放熱体と正特性サーミスタの寸法のズレをなく
し、接着剤の劣化が早くなる高温時で、接着剤に
応力をかけないようにしたものである。また、非
使用時にはこれら両者の熱膨張係数の差によりズ
レが生じるが、その時は低温であるために接着剤
も接着力の劣化が少なく、かつ前述のように絶縁
性接着剤の弾性により、それを吸収できるもので
ある。このように本発明によれば、金属放熱体と
正特性サーミスタを確実に固着することができ、
実使用時のはがれなどがなくなり、それら両者を
外部から押さえる部材がなくても、信頼性が高
く、実用化に優れた発熱体を提供することができ
る。そして、このように外部から金属放熱体を押
圧する部材が不要なことから、コンパクトな発熱
体を提供できる。
Furthermore, because we use an insulating adhesive that hardens near the Curie temperature of the PTC thermistor, the metal heat sink and the PTC thermistor will stick and harden at the temperature at which the heating element is actually used, that is, in high-temperature conditions. can. Generally, the creep phenomenon occurs more easily in adhesives at high temperatures than at low temperatures, and the adhesive strength decreases. In this way, the present invention can reduce the temperature during actual use.
In other words, by using an adhesive that hardens near the Curie temperature, it is possible to eliminate dimensional deviations between the metal heat sink and the positive temperature coefficient thermistor during actual use, that is, at high temperatures, and to prevent stress on the adhesive at high temperatures, where the adhesive deteriorates quickly. This was done so that it would not be applied. In addition, when not in use, misalignment occurs due to the difference in thermal expansion coefficient between the two, but at that time, the adhesive strength is less likely to deteriorate due to the low temperature, and as mentioned above, due to the elasticity of the insulating adhesive, It is something that can be absorbed. As described above, according to the present invention, the metal heat sink and the positive temperature coefficient thermistor can be reliably fixed,
There is no peeling during actual use, and a heating element that is highly reliable and suitable for practical use can be provided even without a member that presses both of them from the outside. And since there is no need for a member to press the metal heat radiator from the outside, a compact heat generator can be provided.

なお実施例では、金属放熱体の形状は、くし歯
状のブロツクの放熱体のみを示したが、その他、
穴のあいたダイキヤストによる放熱体、平板を波
形に加工した放熱体、あるいは単に平板状の放熱
体等、種々の放熱体が考えられるが、本発明は、
何らこれを限定するものではない。同様に、正特
性サーミスタの形状も、角形、デイスク状、ドー
ナツ状等どんな形状でもよい。
In the examples, only the shape of the metal heat radiator is shown as a comb-shaped block heat radiator, but other shapes may be used.
Various heat radiators are possible, such as a die-cast heat radiator with holes, a heat radiator formed by processing a flat plate into a corrugated shape, or a simply flat plate-shaped heat radiator, but the present invention
This is not limited to this in any way. Similarly, the shape of the PTC thermistor may be any shape such as a square, a disk, or a donut.

以上のように本発明によれば、電極面と金属放
熱体とを特に平坦に研磨しなくても、絶縁性接着
剤を介在させることによつてそれらの熱結合が十
分となり、さらに正特性サーミスタ全体の面に分
布した多数の点で、金属放熱体と正特性サーミス
タとが直接接触しているため、両者の熱結合が良
くなるので、金属放熱体の効果が十分に発揮で
き、発熱量の大きな正特性サーミスタ発熱体を簡
単に提供できる。また、溶射により付与された電
極を用いているため、電極面に凹凸が簡単に形成
することができ、押圧して接着するだけで、高価
な導電性接着剤を使用せず、絶縁性接着剤のみ
で、金属放熱体が電極を兼ねることができ、簡単
な構成で、コンパクトな発熱体を安価に提供でき
る。また絶縁性接着剤は、少々、他の部分に付着
したり、はみ出したりしても電気的に絶縁性のた
めシヨート等の危険性はなく、取扱いが容易で組
立治具の簡易化や、工数の削減にも効果がある。
さらに、絶縁性接着剤は強度や耐熱が十分にあり
信頼性も高くなる。
As described above, according to the present invention, the thermal bonding between the electrode surface and the metal heat sink is sufficient by interposing the insulating adhesive, even without polishing the electrode surface and the metal heat sink to be particularly flat, and furthermore, the positive temperature coefficient thermistor Since the metal heat sink and the PTC thermistor are in direct contact with each other at many points distributed over the entire surface, the thermal coupling between the two is improved, allowing the metal heat sink to fully demonstrate its effectiveness and reducing the amount of heat generated. A large positive temperature coefficient thermistor heating element can be easily provided. In addition, since the electrodes are applied by thermal spraying, unevenness can be easily formed on the electrode surface, and by simply pressing and bonding, there is no need to use expensive conductive adhesives, and insulating adhesives can be used. The metal heat radiating element can also serve as an electrode, and a compact heating element can be provided at low cost with a simple configuration. Insulating adhesives are electrically insulating even if they stick to other parts or protrude slightly, so there is no danger of shoots, etc., and they are easy to handle, simplifying assembly jigs and reducing man-hours. It is also effective in reducing
Furthermore, the insulating adhesive has sufficient strength and heat resistance, and is highly reliable.

また、使用する接着剤として正特性サーミスタ
のキユリー温度付近で硬化するものを用いている
ので、金属放熱体と正特性サーミスタとの熱膨張
係数の差による固着面でのズレは実使用状態、す
なわち接着剤の劣化が大きい高温の時になくすこ
とができ、長期間使用しても両者は確実に固着で
き、信頼性が高く、実用化に優れた発熱体を提供
することができるものである。
In addition, since the adhesive used is one that hardens near the Curie temperature of the PTC thermistor, misalignment of the bonded surface due to the difference in thermal expansion coefficient between the metal heat sink and the PTC thermistor will occur under actual use, i.e. It is possible to provide a heating element that can be removed at high temperatures when the adhesive deteriorates significantly, that allows the two to be firmly fixed even after long-term use, that is highly reliable, and that is excellent for practical use.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図、第4図は従来例における正特
性サーミスタ発熱体の断正面図、第3図は同発熱
体の正特性サーミスタの斜視図、第5図a,bは
別の従来例の正特性サーミスタの斜視図および正
特性サーミスタ発熱体の断正面図、第6図a,
b,c,dは本発明の実施例の断正面図、一部分
の拡大断面図、特性図、特性測定図を示す図であ
る。 28……正特性サーミスタ、29,29′……
電極、30,30′……絶縁性接着剤、31,3
1′……金属放熱体。
Figures 1, 2, and 4 are sectional front views of a conventional positive temperature coefficient thermistor heating element, Figure 3 is a perspective view of a positive temperature coefficient thermistor of the same heating element, and Figures 5 a and b are another conventional example. A perspective view of an example positive temperature coefficient thermistor and a sectional front view of a positive coefficient thermistor heating element, FIG. 6a,
b, c, and d are diagrams showing a sectional front view, a partially enlarged sectional view, a characteristic diagram, and a characteristic measurement diagram of an embodiment of the present invention. 28...Positive characteristic thermistor, 29, 29'...
Electrode, 30, 30'... Insulating adhesive, 31, 3
1'...Metal heat sink.

Claims (1)

【特許請求の範囲】[Claims] 1 金属溶射による電極が付与された正特性サー
ミスタと、その電極面に金属放熱体が正特性サー
ミスタのキユリー温度付近で硬化する絶縁性接着
剤のみによつて固着されており、前記電極面の凸
部が前記金属放熱体と直接接触しており、この電
極面の凹部に絶縁性接着剤が充填されている正特
性サーミスタ発熱体。
1 A positive temperature coefficient thermistor is provided with electrodes by metal spraying, and a metal heat sink is fixed to the electrode surface using only an insulating adhesive that hardens near the Curie temperature of the positive temperature coefficient thermistor, and the convexity of the electrode surface is fixed to the positive temperature coefficient thermistor. A positive temperature coefficient thermistor heating element, wherein the part is in direct contact with the metal heat radiating element, and the concave part of the electrode surface is filled with an insulating adhesive.
JP55138173A 1980-10-01 1980-10-01 Positive temperature coefficient thermistor heater and method of producing same Granted JPS5763790A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55138173A JPS5763790A (en) 1980-10-01 1980-10-01 Positive temperature coefficient thermistor heater and method of producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55138173A JPS5763790A (en) 1980-10-01 1980-10-01 Positive temperature coefficient thermistor heater and method of producing same

Publications (2)

Publication Number Publication Date
JPS5763790A JPS5763790A (en) 1982-04-17
JPH044713B2 true JPH044713B2 (en) 1992-01-29

Family

ID=15215739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55138173A Granted JPS5763790A (en) 1980-10-01 1980-10-01 Positive temperature coefficient thermistor heater and method of producing same

Country Status (1)

Country Link
JP (1) JPS5763790A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5987788A (en) * 1982-11-12 1984-05-21 松下電器産業株式会社 Positive temperature coefficient thermistor heat generator
JPH01125802A (en) * 1987-11-10 1989-05-18 Murata Mfg Co Ltd Positive temperature coefficient thermistor
JP2556877B2 (en) * 1988-03-10 1996-11-27 株式会社村田製作所 PTC thermistor device
JPH0631655A (en) * 1992-07-13 1994-02-08 Mitsubishi Heavy Ind Ltd Vehicle type robot having connector
JP2009080946A (en) * 2007-09-25 2009-04-16 Kayu Fu Heater and manufacturing method therefor
CN104144530B (en) * 2014-07-21 2016-06-22 谢彦君 A kind of electricity heat-producing machine and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5218436U (en) * 1975-07-28 1977-02-09
JPS5537718A (en) * 1978-09-08 1980-03-15 Ngk Insulators Ltd Heating element

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5389627U (en) * 1976-12-24 1978-07-22

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5218436U (en) * 1975-07-28 1977-02-09
JPS5537718A (en) * 1978-09-08 1980-03-15 Ngk Insulators Ltd Heating element

Also Published As

Publication number Publication date
JPS5763790A (en) 1982-04-17

Similar Documents

Publication Publication Date Title
US4482801A (en) Positive-temperature-coefficient thermistor heating device
JPH10335579A (en) High power semiconductor module device
JPH07153553A (en) Heater
JPH044713B2 (en)
KR950008482B1 (en) Hot-press head for connection of electrodes
JP2827460B2 (en) Method for manufacturing positive temperature coefficient thermistor heating element
US5263115A (en) PTC electric heating element assembly
JPH039282Y2 (en)
JPS6297284A (en) Heater
JP2846244B2 (en) heater
JPH0249673Y2 (en)
JP2800207B2 (en) Positive characteristic thermistor heating element
JP3222324U (en) Insulated heater and heater device
JPS6333352Y2 (en)
JPH0974001A (en) Thermistor
JP3183196B2 (en) Positive characteristic thermistor heating element
JP3968669B2 (en) Thermoelectric converter
JPS6338556Y2 (en)
JPH07153554A (en) Heater unit
TWI654901B (en) Thermistor heater with heat sink and assembly method thereof
JPH044391Y2 (en)
JP2022097721A (en) Insulated heater and heater device
JPH08148262A (en) Positive characteristic thermistor heating element
JP2518847Y2 (en) Fin heater
JP3139288B2 (en) Method of manufacturing positive temperature coefficient thermistor heating element