JPH0446965B2 - - Google Patents

Info

Publication number
JPH0446965B2
JPH0446965B2 JP59271888A JP27188884A JPH0446965B2 JP H0446965 B2 JPH0446965 B2 JP H0446965B2 JP 59271888 A JP59271888 A JP 59271888A JP 27188884 A JP27188884 A JP 27188884A JP H0446965 B2 JPH0446965 B2 JP H0446965B2
Authority
JP
Japan
Prior art keywords
conjugated diene
catalyst component
aqueous dispersion
polymerization
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59271888A
Other languages
Japanese (ja)
Other versions
JPS61151217A (en
Inventor
Nobuyuki Ito
Toshio Ono
Kyoshi Kasai
Nobuo Sakurai
Eitaro Okuya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Original Assignee
Japan Synthetic Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Synthetic Rubber Co Ltd filed Critical Japan Synthetic Rubber Co Ltd
Priority to JP27188884A priority Critical patent/JPS61151217A/en
Priority to CA000484742A priority patent/CA1269487A/en
Priority to EP85304979A priority patent/EP0170456A1/en
Publication of JPS61151217A publication Critical patent/JPS61151217A/en
Priority to US06/906,192 priority patent/US4742137A/en
Publication of JPH0446965B2 publication Critical patent/JPH0446965B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Polymerisation Methods In General (AREA)
  • Graft Or Block Polymers (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、共役ジエン単量体の重合によつて得
られる、側鎖に不飽和炭化水素基を高い割合で含
有する結晶性重合体と他の重合体とが同一粒子内
に共存する重合体粒子の製造方法に関するもので
ある。 〔従来の技術〕 側鎖にビニル基を高い割合で有する結晶性重合
体である1,2−ポリブタジエンは高い融点なら
びに優れた機械的性質、耐溶剤性などの特長を有
し、例えば接着剤(特開昭56−79169号公報)、コ
ーテイング剤(特開昭56−98160号公報)、アスフ
アルト組成物(特開昭50−135114号公報)、熱融
着剤(特開昭50−13674号公報、特開昭56−89934
号公報)、フレキソ印刷版用感光樹脂(特開昭52
−12004号公報、特開昭52−64301号公報)、カー
ペツト用バツキング剤(特開昭52−72683号公
報)、発泡体(特開昭55−73071号公報、特開昭52
−43873号公報)などの分野に広く使用されてい
る。 しかるに、このような結晶性重合体は、その合
成において一般に触媒として有機金属化合物を用
いる必要があることから水系における重合が困難
とされ、そのため通常溶液重合によつて製造せざ
るを得ないとされているが、このことに起因して
以下のような種々の問題を生ずる。 (1) 反応系溶液の粘度が重合反応の進行に伴つて
増大し、そのため当該溶液の撹ダならびに温度
の制御が不十分となり、所期の特性を有する結
晶性重合体を得ることが困難である。 (2) 得られる結晶性重合体は溶液状態であるた
め、その分離が容易でなくしかも溶媒を回収す
る必要があることから、取扱いが煩雑で作業効
率の点で劣る。 (3) 得られる結晶性重合体を溶液状態のままで使
用する場合においては、有機溶剤の臭気、毒性
あるいは引火性等に対する安全性を確保する必
要があるばかりでなく、最終的に有機溶剤を除
去、回収しなければならず、用途においても限
界がある。 このようなことから、結晶性重合体の製造を水
系において遂行する方法の開発が望まれている。 〔発明が解決しようとする問題点〕 本発明は、以上のような背景のもとになされた
ものであつて、水系における有機金属化合物系触
媒の失活という問題を解消し、そして各種の用途
に有用な、側鎖に不飽和炭化水素基を高い割合で
有する結晶性重合体とその他の重合体とが同一粒
子内に共存する重合体粒子を水性分散体において
効率よく容易に製造することのできる製造方法を
提供することを目的とする。 〔問題点を解決するための手段〕 本発明の製造方法において特に特徴的な点は、
用いる触媒が、後に詳述する第1の触媒成分溶液
と第2の触媒成分とより構成され、両触媒成分を
組み合せてはじめて触媒作用を発揮する特定のも
のであつて、さらにこれらの各触媒成分を以下の
工程()および工程()において段階的に反
応系分散体に添加し、重合を遂行する点にある。 工程():共役ジエン単量体を含有せしめた
重合体シード粒子を水中に分散させてなる水性分
散体と、第1の触媒成分溶液を水中に分散させて
なる水性分散体とを混合し、第1の触媒成分溶液
を重合体シード粒子に接触・吸収させる。 工程():工程()において得られた系内
に第2の触媒成分を加えて重合を行なう。 以下、本発明を詳細に説明する。 前記工程()において用いられる重合体シー
ド粒子の水性分散体は、当該重合体シード粒子内
に共役ジエン単量体を含有して構成され、かかる
水性分散体は例えば以下の方法によつて調製する
ことができる。 水性分散体を調製する第1の方法としては、重
合体シード粒子を分散相とする水性分散体(エマ
ルジヨンあるいはサスペンジヨン)に、当該重合
体シード粒子100重量部に対して200重量部以下に
相当する共役ジエン単量体を加え、これらを混合
撹拌する方法をあげることができる。ここにおい
て、共役ジエン単量体の使用量が重合体シード粒
子に対して過大であると、該重合体シード粒子に
吸収されずに分散媒中に残存する共役ジエン単量
体の量が多くなる結果、予期しない新らたな重合
体粒子の発生を招き、好ましくない。 上記工程()において用いられる重合体シー
ド粒子を分散させた水性分散体は特に制限される
ものではなく、例えば、乳化重合によつて得られ
る、粒径0.05〜6μmの分散粒子よりなるエマルジ
ヨン、あるいは懸濁重合によつて得られる、粒径
1〜100μmの分散粒子よりなるサスペンジヨンな
どを用いることができる。かかる分散粒子を構成
する重合体としては、ポリスチレン、ポリブタジ
エン、スチレン−ブタジエン共重合体、アクリロ
ニトリル−ブタジエン共重合体、アクリルエステ
ル共重合体、メタアクリルエステル共重合体、ポ
リイソプレン、ブタジエン−イソプレン共重合
体、ポリクロロプレンその他をあげることができ
る。また、上記水性分散体としては、溶液重合等
によつて得られた重合体を乳化剤によつて水中に
再分散して形成される、例えばcis−1,4ポリ
イソプレン分散体などの公知の分散体あるいは天
然ゴムラテツクスもしくはその濃縮物などを用い
ることもできる。 水性分散体を調製する第2の方法としては、共
役ジエン単量体を含むエマルジヨンを調製して乳
化重合を行い、重合転化率が99%以下、好ましく
は90%以下に達したところで重合停止剤を加えて
重合を停止させる方法をあげることができる。上
記重合停止剤としては、工程()あるいは工程
()において用いられる第1あるいは第2の触
媒成分の活性を喪失させるものでない限りにおい
て任意のものを用いることができ、N,N−ジエ
チルヒドロキシルアミン、テトラエチレンペンタ
ミン等のアミン化合物;p−tert−ブチルカテコ
ール、ジ−tert−アミルハイドロキノン、α−ニ
トロソ−β−ナフトール等のフエノール化合物;
フエニルヒドラジン等のヒドラジン化合物;亜硝
酸ナトリウムなどを例示することができる。 以上の水性分散体において重合体シード粒子に
含有される共役ジエン単量体としては、ブタジエ
ン、イソプレンなどの炭素数4〜5のものを用い
ることができ、特に1,3−ブタジエンが好まし
い。また、これらの共役ジエン単量体は必要に応
じて有機溶媒に溶解させて使用することもでき
る。かかる有機溶媒としては、ベンゼン、トルエ
ン、キシレンなどの芳香族炭化水素化合物;ペン
タン、ヘキサン、ヘプタン、オクタンなどの脂肪
族炭化水素化合物;塩化メチレン、二塩化エチレ
ン、トリクロロエタン、クロルベンゼンなどのハ
ロゲン化炭化水素化合物;酢酸エチル、酢酸プロ
ピル、酢酸ブチル、オクチル酸エチル、ε−カプ
ロラクトン、γ−バレロラクトンなどのエステル
系溶媒;メタノール、エタノール、イソプロピル
アルコール、n−ブタノール、sec−ブタノール、
オクタノール、エチレングリコールなどのアルコ
ール系溶媒;アセトン、メチルエチルケトン、ア
セトフエノン、アセチルアセトンなどのケトン系
溶媒;アセトニトリル、アジポニトリル、ベンゾ
ニトリルなどのニトリル系溶媒;ε−カプロラク
タム、プロピオラクタム、ブチロラクタム、バレ
ロラクタム、N−メチルピロリドン、N−エチル
ピロリドン、N−メチルホルムアミド、N−エチ
ルホルムアミド、N,N−ジメチルホルムアミド
などのアミド系溶媒を挙げることができる。 また、これらの有機溶媒は、後述する第2の触
媒成分の溶液としても使用することができる。 本発明の工程()において用いられる前記第
1の触媒成分溶液は、(A)コバルト化合物と(B)アル
カリ金属、周期律表第族〜第族の金属によつ
て形成される有機金属化合物および同じく周期律
表第族〜第族の金属によつて形成される金属
水素化物の群から選ばれた少くとも一種の金属あ
るいは化合物とを、前記(A)コバルト化合物に対し
て1〜1000倍モルの(C)共役ジエン系化合物の存在
下において接触させることにより得られる。 前記第1の触媒成分溶液を形成するための(A)コ
バルト化合物としては、例えばオクチル酸コバル
ト、ナフテン酸コバルト、安息香酸コバルト、シ
ヨウ酸コバルト、マロン酸コバルト、酢酸コバル
トなどの有機酸塩類、ビスアセチルアセトナート
コバルト、トリスアセチルアセトナートコバル
ト、アセト酢酸エチルエステルコバルトなどのコ
バルト錯体、臭化コバルトのトリフエニルホスフ
イン錯体、臭化コバルトのトリm−トリスホスフ
イン錯体、臭化コバルトのトリm−キシリルホス
フイン錯体などのハロゲン化コバルトのトリアリ
ールホスフイン錯体、塩化コバルトのピリジン錯
体、塩化コバルトのβ−ピコリン錯体などのハロ
ゲン化コバルトのピリジン誘導体錯体や、塩化コ
バルトのエチルアルコール錯体、(1,3−ブタ
ジエン)〔1−(2−メチル−3−ブテニル)−π
−アリル〕コバルト、トリス−π−アリルコバル
ト、ビシクロ−〔3,3,0〕−オクチジエニル−
1,5−シクロオクタジエンコバルト、ビス−
(π−アリル)−ハロゲノコバルト(但しハロゲン
として、I,Br,Clのいずれかである。)、オク
タカルボニルジコバルトなどの1価または零価の
コバルト錯体を挙げることができる。これらのコ
バルト化合物は1種または2種以上を用いること
ができる。 前記第1の触媒成分溶液を形成するための(B)群
のうち、アルカリ金属としてはナトリウム、リチ
ウムが好適に使用され、また周期律表第族〜第
族の金属の有機金属化合物または金属水素化物
としては、コバルト化合物を還元する化合物が好
適に使用される。周期律表第族〜第族の金属
としては、a,b,a,b,a,b
族の金属が使用でき、この中ではa,a,
a族が好ましいものであり、好ましい金属とし
は、リチウム、ナトリウム、カリウム、マグネシ
ウム、亜鉛およびアルミニウムなどをあげること
ができ、特に好ましい金属としてはリチウム、マ
グネシウム、アルミニウムをあげることができ
る。また好ましい有機金属化合物または金属水素
化物としては、上記金属の炭素数1〜6のアルキ
ル誘導体、または水素化誘導体が好ましく、エチ
ルリチウム、n−ブチルリチウム、sec−ブチル
リチウム、t−ブチルリチウムなどの有機リチウ
ム化合物、ジエチル亜鉛、ジメチル亜鉛などの有
機亜鉛化合物、ブチルマグネシウムクロライド、
エチルマグネシウムブロマイド、ジブチルマグネ
シウム、ジヘキシルマグネシウムなどの有機マグ
ネシウム化合物、トリメチルアルミニウム、トリ
エチルアルミニウム、トリイソブチルアルミニウ
ム、トリ−n−ヘキシルアルミニウム、トリドデ
シルアルミニウム、ジエチルアルミニウムクロラ
イド、ジイソブチルアルミニウムクロライド、エ
チルアルミニウムセスキクロライド、エチルアル
ミニウムジクロライド、テトラエチルアルミノキ
サンなどの有機アルミニウム化合物、リチウムア
ルミニウムハイドライド、ナトリウムボロンハイ
ドライド、リチウムボロンハイドライドなどの水
素化金属化合物をあげることができる。これらの
金属化合物は1種または2種以上を組合せて用い
ることができる。 前記第1の触媒成分溶液を形成するための(C)共
役ジエン化合物とは、工程()ににおいて用い
られる共役ジエン単量体と同一または異なつてい
てもよい、例えばブタジエン、イソプレンなどの
炭素数4〜5の共役ジエン化合物を主としていう
が、これに限らずこれら共役ジエン化合物のオリ
ゴマーあるいは複合体を含めるものである。 第1の触媒成分溶液の調製方法は極めて重要で
ある。この触媒成分溶液の調製方法は、まず(C)共
役ジエン系化合物の存在下において特定量の(A)コ
バルト化合物と(B)アルカリ金属、周期律表第,
および族の有機金属化合物または金属水素化
物とを接触、反応させておくことである。この調
製の際(C)共役ジエン系化合物の使用量は(A)コバル
ト化合物1モルに対して1〜1000モルが好まし
く、更に好ましくは6〜300モルであり、(B)アル
カリ金属、周期律表第,および族の有機金
属化合物または金属水素化物の使用量は(A)コバル
ト化合物1モルに対して0.3〜100モルが好まし
く、更に好ましくは0.9〜50モルである。調製時
の温度は−78℃から100℃が好ましく、更に好ま
しくは−30℃から50℃である。調製時に必要に応
じて溶媒と触媒成分とを撹拌することにより(A)コ
バルト化合物と(B)アルカリ金属、有機金属化合物
または金属水素化物との反応を均一に行なわせる
ことができる。ここにおいて、調製のために使用
される溶媒としては、n−ヘキサン、n−ヘプタ
ン、n−ペンタン、精製燈油等の水に対する溶解
度の小さい溶媒、あるいはトルエン、キシレン、
シクロヘキサン等の水に対する溶解度の比較的大
きい溶媒などを用いることができるが、前者の溶
媒あるいはこの溶液と後者の溶媒の混合溶媒を好
ましく用いることができる。 工程()において用いられる前記第2の触媒
成分は、二硫化炭素、フエニルイソチオシアン酸
およびキサントゲル化合物より選択される少くと
も一種の化合物よりなる。これら第2の触媒成分
の使用においては特に限定される条件はないが、
使用に先がけて窒素ガスによるバブリング等によ
つてあらかじめ溶存酸素を除去しておくことが望
ましい。 上記キサントゲン化合物としては、一般式
[Industrial Application Field] The present invention is directed to a method in which a crystalline polymer containing a high proportion of unsaturated hydrocarbon groups in the side chain obtained by polymerization of a conjugated diene monomer and other polymers are the same. The present invention relates to a method for producing polymer particles that coexist within the particles. [Prior Art] 1,2-polybutadiene, which is a crystalline polymer having a high proportion of vinyl groups in its side chains, has features such as a high melting point, excellent mechanical properties, and solvent resistance. JP-A-56-79169), coating agents (JP-A-56-98160), asphalt compositions (JP-A-50-135114), thermal adhesives (JP-A-50-13674) , Japanese Patent Publication No. 56-89934
Publication No.), Photosensitive resin for flexo printing plates (Unexamined Japanese Patent Publication No. 1983), Photosensitive resin for flexographic printing plates
-12004, JP-A-52-64301), carpet backing agent (JP-A-52-72683), foam (JP-A-55-73071, JP-A-52)
-43873 Publication) and other fields. However, since it is generally necessary to use an organometallic compound as a catalyst in the synthesis of such crystalline polymers, it is difficult to polymerize them in an aqueous system, and therefore it is generally said that they must be produced by solution polymerization. However, this causes various problems such as the following. (1) The viscosity of the reaction solution increases as the polymerization reaction progresses, making it difficult to control the agitation and temperature of the solution, making it difficult to obtain a crystalline polymer with desired properties. be. (2) Since the obtained crystalline polymer is in a solution state, it is not easy to separate it, and the solvent must be recovered, so handling is complicated and work efficiency is poor. (3) When using the resulting crystalline polymer in a solution state, it is not only necessary to ensure safety against the odor, toxicity, or flammability of organic solvents, but also to ensure that the organic solvents are not used in the final stage. It must be removed and recovered, and there are limits to its usage. For these reasons, it is desired to develop a method for producing crystalline polymers in an aqueous system. [Problems to be Solved by the Invention] The present invention has been made against the above-mentioned background, and it solves the problem of deactivation of organometallic compound catalysts in aqueous systems, and can be used in various applications. A method for efficiently and easily producing polymer particles in an aqueous dispersion in which a crystalline polymer having a high proportion of unsaturated hydrocarbon groups in the side chain and other polymers coexist in the same particle, which is useful for The purpose is to provide a manufacturing method that can. [Means for solving the problems] Particularly characteristic points of the manufacturing method of the present invention are as follows.
The catalyst to be used is a specific one that is composed of a first catalyst component solution and a second catalyst component, which will be described in detail later, and exhibits a catalytic effect only when both catalyst components are combined, and each of these catalyst components is added stepwise to the reaction system dispersion in the following steps () and () to carry out polymerization. Step (): Mixing an aqueous dispersion formed by dispersing polymer seed particles containing a conjugated diene monomer in water and an aqueous dispersion formed by dispersing the first catalyst component solution in water, The first catalyst component solution is brought into contact with and absorbed by the polymer seed particles. Step (): A second catalyst component is added to the system obtained in step () to perform polymerization. The present invention will be explained in detail below. The aqueous dispersion of polymer seed particles used in the step () contains a conjugated diene monomer in the polymer seed particles, and such an aqueous dispersion is prepared, for example, by the following method. be able to. The first method for preparing an aqueous dispersion is to add an amount equivalent to 200 parts by weight or less per 100 parts by weight of the polymer seed particles to an aqueous dispersion (emulsion or suspension) containing polymer seed particles as a dispersed phase. An example of this method is to add a conjugated diene monomer and mix and stir the mixture. Here, if the amount of conjugated diene monomer used is excessive with respect to the polymer seed particles, the amount of conjugated diene monomer remaining in the dispersion medium without being absorbed by the polymer seed particles will increase. As a result, unexpected new polymer particles are generated, which is undesirable. The aqueous dispersion in which polymer seed particles are dispersed used in the above step () is not particularly limited, and examples include an emulsion made of dispersed particles with a particle size of 0.05 to 6 μm obtained by emulsion polymerization, or A suspension made of dispersed particles with a particle size of 1 to 100 μm and the like obtained by suspension polymerization can be used. Polymers constituting such dispersed particles include polystyrene, polybutadiene, styrene-butadiene copolymer, acrylonitrile-butadiene copolymer, acrylic ester copolymer, methacrylic ester copolymer, polyisoprene, butadiene-isoprene copolymer. Polychloroprene, etc. can be mentioned. The aqueous dispersion may be a known dispersion such as a cis-1,4 polyisoprene dispersion, which is formed by redispersing a polymer obtained by solution polymerization or the like in water using an emulsifier. It is also possible to use natural rubber latex or a concentrate thereof. The second method for preparing an aqueous dispersion is to prepare an emulsion containing a conjugated diene monomer and perform emulsion polymerization, and when the polymerization conversion rate reaches 99% or less, preferably 90% or less, a polymerization terminator is added. An example of this method is to add a substance to stop the polymerization. Any polymerization terminator can be used as long as it does not cause loss of activity of step () or the first or second catalyst component used in step (), and N,N-diethylhydroxylamine , amine compounds such as tetraethylenepentamine; phenolic compounds such as p-tert-butylcatechol, di-tert-amylhydroquinone, α-nitroso-β-naphthol;
Examples include hydrazine compounds such as phenylhydrazine; sodium nitrite; and the like. As the conjugated diene monomer contained in the polymer seed particles in the above aqueous dispersion, those having 4 to 5 carbon atoms such as butadiene and isoprene can be used, and 1,3-butadiene is particularly preferred. Moreover, these conjugated diene monomers can also be used after being dissolved in an organic solvent, if necessary. Examples of such organic solvents include aromatic hydrocarbon compounds such as benzene, toluene, and xylene; aliphatic hydrocarbon compounds such as pentane, hexane, heptane, and octane; and halogenated hydrocarbon compounds such as methylene chloride, ethylene dichloride, trichloroethane, and chlorobenzene. Hydrogen compounds; Ester solvents such as ethyl acetate, propyl acetate, butyl acetate, ethyl octylate, ε-caprolactone, γ-valerolactone; methanol, ethanol, isopropyl alcohol, n-butanol, sec-butanol,
Alcohol solvents such as octanol and ethylene glycol; Ketone solvents such as acetone, methyl ethyl ketone, acetophenone, and acetylacetone; Nitrile solvents such as acetonitrile, adiponitrile, and benzonitrile; ε-caprolactam, propiolactam, butyrolactam, valerolactam, N- Amide solvents such as methylpyrrolidone, N-ethylpyrrolidone, N-methylformamide, N-ethylformamide, and N,N-dimethylformamide can be mentioned. Furthermore, these organic solvents can also be used as a solution for the second catalyst component described below. The first catalyst component solution used in step () of the present invention comprises (A) a cobalt compound and (B) an organometallic compound formed by an alkali metal, a metal of Groups 1 to 3 of the periodic table; Similarly, at least one metal or compound selected from the group of metal hydrides formed by metals from Groups to Groups of the Periodic Table is added in a molar amount of 1 to 1000 times the cobalt compound (A). (C) in the presence of a conjugated diene compound. Examples of the cobalt compound (A) for forming the first catalyst component solution include organic acid salts such as cobalt octylate, cobalt naphthenate, cobalt benzoate, cobalt oxalate, cobalt malonate, and cobalt acetate; Cobalt complexes such as cobalt acetylacetonate, cobalt trisacetylacetonate, cobalt acetoacetate ethyl ester, triphenylphosphine complex of cobalt bromide, tri-m-trisphosphine complex of cobalt bromide, tri-m-cobalt bromide Triarylphosphine complexes of cobalt halides such as xylylphosphine complexes, pyridine complexes of cobalt chloride, pyridine derivative complexes of cobalt halides such as β-picoline complexes of cobalt chloride, ethyl alcohol complexes of cobalt chloride, (1 ,3-butadiene)[1-(2-methyl-3-butenyl)-π
-allyl]cobalt, tris-π-allylcobalt, bicyclo-[3,3,0]-octidienyl-
1,5-cyclooctadiene cobalt, bis-
Examples include monovalent or zero-valent cobalt complexes such as (π-allyl)-halogenocobalt (where the halogen is any one of I, Br, and Cl) and octacarbonyl dicobalt. These cobalt compounds can be used alone or in combination of two or more. Among group (B) for forming the first catalyst component solution, sodium and lithium are preferably used as alkali metals, and organometallic compounds of metals from Groups to Groups of the periodic table or metal hydrogen are preferably used. As the compound, a compound that reduces a cobalt compound is preferably used. Metals from Groups to Groups of the Periodic Table include a, b, a, b, a, b
Metals of the groups a, a,
Group a is preferred, and preferred metals include lithium, sodium, potassium, magnesium, zinc, and aluminum, and particularly preferred metals include lithium, magnesium, and aluminum. Preferred organometallic compounds or metal hydrides include alkyl derivatives having 1 to 6 carbon atoms or hydrogenated derivatives of the above metals, such as ethyllithium, n-butyllithium, sec-butyllithium, t-butyllithium, etc. Organolithium compounds, organozinc compounds such as diethylzinc and dimethylzinc, butylmagnesium chloride,
Organomagnesium compounds such as ethylmagnesium bromide, dibutylmagnesium, dihexylmagnesium, trimethylaluminum, triethylaluminum, triisobutylaluminum, tri-n-hexylaluminum, tridodecylaluminum, diethylaluminum chloride, diisobutylaluminum chloride, ethylaluminum sesquichloride, ethyl Examples include organoaluminum compounds such as aluminum dichloride and tetraethylaluminoxane, and metal hydride compounds such as lithium aluminum hydride, sodium boron hydride, and lithium boron hydride. These metal compounds can be used alone or in combination of two or more. The conjugated diene compound (C) for forming the first catalyst component solution may be the same or different from the conjugated diene monomer used in step (), for example, a carbon compound such as butadiene or isoprene. It mainly refers to conjugated diene compounds of numbers 4 to 5, but is not limited thereto, and also includes oligomers or complexes of these conjugated diene compounds. The method of preparing the first catalyst component solution is extremely important. The method for preparing this catalyst component solution is as follows: First, in the presence of (C) a conjugated diene compound, a specific amount of (A) a cobalt compound and (B) an alkali metal,
and an organometallic compound or a metal hydride of the above group. In this preparation, the amount of the conjugated diene compound (C) to be used is preferably 1 to 1000 mol, more preferably 6 to 300 mol, per 1 mol of the cobalt compound (A), and (B) an alkali metal, periodic The amount of the organometallic compound or metal hydride in Table 1 and Group 1 to be used is preferably 0.3 to 100 mol, more preferably 0.9 to 50 mol, per 1 mol of cobalt compound (A). The temperature during preparation is preferably -78°C to 100°C, more preferably -30°C to 50°C. By stirring the solvent and catalyst component as necessary during preparation, the reaction between (A) the cobalt compound and (B) the alkali metal, organometallic compound, or metal hydride can be carried out uniformly. Here, the solvent used for the preparation is a solvent with low solubility in water such as n-hexane, n-heptane, n-pentane, refined kerosene, or toluene, xylene,
Although a solvent having relatively high solubility in water such as cyclohexane can be used, the former solvent or a mixed solvent of this solution and the latter solvent can be preferably used. The second catalyst component used in step () consists of at least one compound selected from carbon disulfide, phenylisothiocyanate, and a xanthogel compound. There are no particular restrictions on the use of these second catalyst components, but
It is desirable to remove dissolved oxygen by bubbling with nitrogen gas or the like before use. The above xanthogen compound has the general formula

〔発明の効果〕〔Effect of the invention〕

本発明の製造方法によれば、あらかじめ共役ジ
エン単量体を含有せしめた重合体シード粒子に、
第1の触媒成分溶液を吸収させ、ついで第2の触
媒成分を吸収させて重合反応を遂行することによ
り、後述する実施例からも明らかなように、工業
上きわめて有用な結晶性共役ジエン重合体とその
他の重合体が同一粒子内に共存する重合体粒子を
高収率で容易に製造することができる。 そして、重合体シード粒子にあらかじめ共役ジ
エン単量体を含有せしめ、次に触媒を添加して重
合を行うことは、通常の合成ゴム製造における乳
化重合プロセスを大きく変えることなく、若干の
付属設備を設けることで実施できるので、工業化
が容易である利点を有する。 また、第1の触媒成分溶液をあらかじめ水性分
散体とし、これと共役ジエン単量体を含有する重
合体シード粒子の水性分散体とを混合撹拌するこ
とは、第1の触媒成分溶液と重合体シード粒子と
の接触の機会が増大する結果、第1の触媒成分溶
液を重合体シード粒子へ効率よく吸収させること
ができる点で有利である。 また、重合体シード粒子を構成する重合体の種
類、該重合体と重合体シード粒子に含有される共
役ジエン単量体との組成比等を適宜選択すること
によつて、結果的に、得られる重合体の融点ある
いは微細な組織構造等をコントロールすることが
でき、重合体の改質を容易に達成することができ
る。かかる重合体は、その側鎖にビニル基を高い
割合で有していて高い結晶化度を有し、高融点で
あつてさらに耐衝撃性、耐溶剤性などの点で優れ
ている結晶性重合体を含有しており、きわめて多
種の用途に使用することができ、特に水性分散体
の状態で用いられる用途、例えば紙塗被用組成
物、カーペツト用バツキング剤、アスフアルト組
成物、フオームラバー、塗料、接着剤に、さらに
はゴムあるいは樹脂の有機フイラー等に好適であ
り、これらの各種材料の強度ならびに耐熱性の改
良、改質に効果的である。 〔発明の実施例〕 以下、本発明の実施例について述べるが、本発
明がこれに限定されるものではない。なお、「部」
および「%」は重量部および重量%を表わす。 実施例 1 分散粒子の平均粒径が0.4μmの天然ゴムラテツ
クス(マレーシア国Felda産)を固形分で15.5部
および蒸留水48部を耐圧反応容器に入れ、系を窒
素ガスにより充分バブリングした。次に系を5℃
まで冷却した後、1,3−ブタジエン3.1部を加
えて30分間撹拌してラテツクス粒子(シード粒
子)に1,3−ブタジエンを吸収させた。これを
「シード分散体A」とする。 あらかじめ窒素置換した耐圧容器に、コバルト
オクチル酸0.2mol/lのn−ヘキサン溶液0.33部
を入れた後、シクロヘキサン0.56部を入れてよく
撹拌した。系を5℃まで冷却した後、1,3−ブ
タジエン0.11部を加えて30分間撹拌した。これに
トリイソブチルアルミニウム0.5mol/lのn−
ヘキサン溶液0.39部を加え、冷却しながら30分間
撹拌し、第1の触媒成分溶液を得た。 この第1の触媒成分溶液にドデシルベンゼンス
ルホン酸ナトリウム0.2部(固形分)と窒素によ
つてバブリングした蒸留水10部を加え、窒素ガス
雰囲気下でホモミキサーによつて予備分散した
後、ホモジナイザー(マントンガウリン社製
「15M型」)で乳化分散し、分散粒子の粒径0.1〜
0.3μmの水性分散体を調製した。これを「第1の
触媒分散体A」という。 先に調製したシード分散体Aにこの第1の触媒
分散体Aを加え、5℃に温度を保ちながら30分間
撹拌した。次にこの液に二硫化炭素0.6mol/l
のn−ヘキサン溶液(以下、「第2の触媒溶液A」
という。0.11部を添加し、5℃に温度をコントロ
ールしながら3時間にわたつてゆつくり撹拌しな
がら重合を行なつた。 以上の重合において、重合収率は95%、また凝
固物の発生は観察されなかつた。得られた重合体
について検討したところ、示差熱走査熱量計によ
る融点は200℃、赤外線吸収スペクトルのMorero
解析法によるビニル基の含有割合は98%であつ
た。 実施例 2 1,3−ブタジエン70部、スチレン30部、ステ
アリン酸カリウム5.0部、リン酸カリウム0.1部、
エチレンジアミン四酢酸ナトリウム0.06部、硫酸
第一鉄0.005部、ナトリウムホルムアルデヒドス
ルホキシレート0.03部、ジイソプロピルベンゼン
ヒドロペルオキシド0.03部、第3級ドデシルメル
カプタン0.2部および蒸留水190部を窒素ガスによ
つて置換した反応器に仕込み、5℃で撹拌しなが
ら重合を開始した。反応を開始してから約15時間
後に重合率が72%に達したので、N,N−ジエチ
ルヒドロキシルアミン0.15部を重合系に添加し、
反応を停止させた。これを「シード分散体B」と
する。 以後は、実施例1におけるシード分散体Aのか
わりに上記シード分散体Bを用い、かつ実施例1
における量の5倍に相当する第1の触媒分散体A
および第2の触媒溶液Aを用いたほかは、実施例
1と同様に重合を行ない、重合転化率が70%に達
したときにジメチルジチオカルバミン酸カリウム
0.1部を加えて重合を停止させた。その結果、凝
固物がなく分散安定性の良好なラテツクスを得
た。 得られた重合体について検討したところ、示差
熱走査熱量計による融点は200℃、赤外吸収スペ
クトルのMorero解析法によるビニル基の含有割
合は95%であつた。 実施例 3 第1図に示す多段重合反応槽方式を用いて、実
施例2と同様の重合を行つた。その結果、実施例
2と同様、凝固物の発生のない分散安定性の良好
なラテツクスを連続的に効率よく得ることができ
た。 実施例 4 市販のアクリル系ラテツクス「AE203」(日本
合成ゴム社製)を固形分として124部および蒸留
水400部を耐圧反応容器にに入れ、系を窒素ガス
により充分バブリングした。次に系を5℃まで冷
却した後、1,3−ブタジエン3.1部を加えて30
分間撹拌してシード粒子に1,3−ブタジエンを
吸収させた。これを「シード分分散体C」とす
る。 あらかじめ窒素置換した耐圧容器にコバルトオ
クチル酸0.2mol/lのシクロヘキサン溶液0.39部
を入れた後、系を5℃まで冷却し、さらに1,3
−ブタジエン0.11部を加えた後、30分間撹拌し
た。これにナトリウムボロンハイドライド
0.2mol/lのiso−プロパノール溶液1.2部を加
え、冷却しながら30分間撹拌し、第1の触媒成分
溶液を得た。 この第1の触媒成分溶液にドデシルベンゼンス
ルホン酸ナトリウム0.2部(固形分)と窒素によ
つてバブリングした蒸留水10部を加え、窒素ガス
雰囲気下でホモミキサーによつて予備分散した
後、ホモジナイザー(マントンガウリン社製
「15M型」)で乳化分散して水性分散体を調製し
た。これは「第1の触媒分散体B」とする。 先に調製したシード分散体Cにこの第1の触媒
分散体Bを加え、5℃に温度を保ちながら30分間
撹拌した。次にこれに第2の触媒溶液A(二硫化
炭素0.6mol/lのn−ヘキサン溶液)0.11部を添
加し、5℃に温度を保ちながら、3時間にわたつ
てゆつくり撹拌しながら重合を行なつた。 その結果、重合収率が97%であつて、凝固物の
少い分散安定性の良好なラテツクスを得た。得ら
れた重合体について検討したところ、示差熱走査
熱量計による融点は197℃、Morero解析法による
ビニル基の含有割合は96%であつた。 実施例 5 あらかじめ窒素置換した耐圧容器に、塩化コバ
ルトとピリジンの重量比1:5.7で調製した塩化
コバルト濃度0.2mol/lのテトラヒドロフラン
溶液0.45部を入れ、系を5℃で冷却した後、1,
3−ブタジエン0.1部を加え、30分間撹拌した。
これにn−ヘキサン中に金属ナトリウムを懸濁分
散した1.5重量%(0.4mol/l)溶液を0.31部加
え、冷却しながら30分間撹拌し、第一の触媒成分
溶液を得た。 この触媒成分溶液にドデシルベンゼンスルホン
酸ナトリウム0.2部(固形分)と窒素ガスによつ
てバブリングした蒸留水10部を加え、窒素ガス雰
囲気下でホモミキサーによつて予備分散した後、
ホモジナイザーで乳化分散し、水性分散体を調製
した。これを「第1の触媒分散体C」とする。 実施例1と同様にしてシード分散体Aを調製
し、これに上記第1の触媒分散体Cを加え、5℃
に保ちながら30分間撹拌した。 次に第2の触媒溶液A(二硫化炭素0.6mol/l
のn−ヘキサン溶液)0.11部を添加し、5℃に重
合温度をコントロールしながら、3時間ゆつくり
撹拌しながら重合を行つた。 以上の重合反応における重合収率は70%で、凝
固物の発生は観察されなかつた。また、既述の方
法と同様にして求めた重合体の融点は188℃、ビ
ニル基の含有率は93%であつた。 実施例 6 あらかじめ窒素置換した耐圧容器にナフテン酸
コバルト0.2mol/lのシクロヘキサン溶液0.39部
を入れた後、系を5℃まで冷却した後、1,3−
ブタジエン0.11部を加え、その後30分間撹拌し
た。これにナトリウムアルミニウムハイドライド
0.2mol/lのテトラヒドロフラン溶液1.2部を加
え、冷却しながら、30分間撹拌し、第1の触媒成
分溶液を得た。 第1の触媒成分溶液として上記のものを用い、
また第2の触媒成分としてジメチルキサントゲン
ジスルフイド0.6mol/lのn−ヘキサン溶液0.11
部を用いた以外は、実施例4と同様にして重合を
行つた。 以上の重合反応における重合収率は20%で、凝
固物の少い分散安定性の良好なラテツクスを得
た。また既述の方法と同様にして求めた重合体の
融点は160℃、ビニル基の含有割合は88%であつ
た。 実施例 7 実施例4における、ナトリウムボロンハイドラ
イド0.2mol/lのiso−プロパノール溶液1.2部の
代りに、金属ナトリウムミナフタレン(重量比
15:85)0.7mol/lのテトラヒドロフラン溶液
0.78部を用いた以外は、実施例4と同様に重合を
行つた。その結果、重合収率が98%であつて、凝
固物の少ない分散安定性の良好なラツテクスを得
た。また、得られた重合体について検討したとこ
ろ、示差熱走査熱量計による融点は150℃、
Morero解析法によるビニル基の含有割合は94%
であつた。
According to the production method of the present invention, polymer seed particles containing a conjugated diene monomer in advance,
By absorbing the first catalyst component solution and then absorbing the second catalyst component to carry out the polymerization reaction, a crystalline conjugated diene polymer which is extremely useful industrially can be produced, as is clear from the examples described later. and other polymers coexisting within the same particle can be easily produced in high yield. By pre-containing a conjugated diene monomer in the polymer seed particles and then adding a catalyst to carry out polymerization, it is possible to carry out polymerization without significantly changing the emulsion polymerization process used in ordinary synthetic rubber production, and with the addition of some additional equipment. Since it can be implemented by providing it, it has the advantage of being easy to industrialize. Further, by preparing the first catalyst component solution as an aqueous dispersion in advance and mixing and stirring this with an aqueous dispersion of polymer seed particles containing a conjugated diene monomer, the first catalyst component solution and the polymer This is advantageous in that the first catalyst component solution can be efficiently absorbed into the polymer seed particles as a result of the increased opportunity for contact with the seed particles. In addition, by appropriately selecting the type of polymer constituting the polymer seed particles, the composition ratio of the polymer and the conjugated diene monomer contained in the polymer seed particles, etc., the results can be obtained. The melting point or fine structure of the polymer can be controlled, and the polymer can be easily modified. Such polymers are crystalline polymers that have a high proportion of vinyl groups in their side chains, have a high degree of crystallinity, have a high melting point, and are excellent in impact resistance, solvent resistance, etc. It can be used in a wide variety of applications, especially in the form of aqueous dispersions, such as paper coating compositions, carpet backing agents, asphalt compositions, foam rubbers, paints. , adhesives, and organic fillers for rubber or resin, and is effective for improving and modifying the strength and heat resistance of these various materials. [Embodiments of the Invention] Examples of the present invention will be described below, but the present invention is not limited thereto. In addition, “department”
and "%" represent parts by weight and % by weight. Example 1 15.5 parts of solid content of natural rubber latex (manufactured in Felda, Malaysia) with an average particle diameter of 0.4 μm and 48 parts of distilled water were placed in a pressure-resistant reaction vessel, and the system was sufficiently bubbled with nitrogen gas. Next, the system was heated to 5°C.
After the mixture was cooled to 3.1 parts, 3.1 parts of 1,3-butadiene was added and stirred for 30 minutes to allow the latex particles (seed particles) to absorb 1,3-butadiene. This will be referred to as "seed dispersion A." 0.33 part of a solution of 0.2 mol/l of cobalt octylic acid in n-hexane was placed in a pressure-resistant container that had been previously purged with nitrogen, and then 0.56 part of cyclohexane was added thereto and stirred well. After the system was cooled to 5°C, 0.11 part of 1,3-butadiene was added and stirred for 30 minutes. To this was added 0.5 mol/l of triisobutylaluminum.
0.39 parts of hexane solution was added and stirred for 30 minutes while cooling to obtain a first catalyst component solution. To this first catalyst component solution, 0.2 parts of sodium dodecylbenzenesulfonate (solid content) and 10 parts of distilled water bubbled with nitrogen were added, and the mixture was preliminarily dispersed using a homomixer under a nitrogen gas atmosphere. Emulsifying and dispersing with Manton Gaulin's "15M type"), the particle size of the dispersed particles is 0.1 ~
A 0.3 μm aqueous dispersion was prepared. This is called "first catalyst dispersion A." This first catalyst dispersion A was added to the seed dispersion A prepared previously and stirred for 30 minutes while maintaining the temperature at 5°C. Next, add 0.6 mol/l of carbon disulfide to this liquid.
n-hexane solution (hereinafter referred to as "second catalyst solution A")
That's what it means. 0.11 part was added, and polymerization was carried out with gentle stirring for 3 hours while controlling the temperature at 5°C. In the above polymerization, the polymerization yield was 95%, and no coagulum was observed. When we examined the obtained polymer, we found that its melting point was 200°C by differential scanning calorimetry, and the infrared absorption spectrum showed a melting point of 200°C.
The content of vinyl groups was found to be 98% by analytical method. Example 2 70 parts of 1,3-butadiene, 30 parts of styrene, 5.0 parts of potassium stearate, 0.1 part of potassium phosphate,
Reaction in which 0.06 parts of sodium ethylenediaminetetraacetate, 0.005 parts of ferrous sulfate, 0.03 parts of sodium formaldehyde sulfoxylate, 0.03 parts of diisopropylbenzene hydroperoxide, 0.2 parts of tertiary dodecyl mercaptan, and 190 parts of distilled water were replaced with nitrogen gas. The mixture was charged into a vessel, and polymerization was started at 5°C while stirring. Approximately 15 hours after starting the reaction, the polymerization rate reached 72%, so 0.15 parts of N,N-diethylhydroxylamine was added to the polymerization system.
The reaction was stopped. This will be referred to as "seed dispersion B." Hereinafter, the above seed dispersion B was used instead of the seed dispersion A in Example 1, and Example 1
first catalyst dispersion A corresponding to 5 times the amount of
Polymerization was carried out in the same manner as in Example 1, except that the second catalyst solution A was used, and when the polymerization conversion rate reached 70%, potassium dimethyldithiocarbamate
Polymerization was stopped by adding 0.1 part. As a result, a latex with no coagulum and good dispersion stability was obtained. When the obtained polymer was examined, the melting point was 200° C. as measured by differential scanning calorimetry, and the vinyl group content was 95% as determined by Morero analysis of infrared absorption spectrum. Example 3 Polymerization was carried out in the same manner as in Example 2 using the multistage polymerization reactor system shown in FIG. As a result, as in Example 2, a latex with good dispersion stability without the generation of coagulum could be obtained continuously and efficiently. Example 4 124 parts of commercially available acrylic latex "AE203" (manufactured by Japan Synthetic Rubber Co., Ltd.) as a solid content and 400 parts of distilled water were placed in a pressure-resistant reaction vessel, and the system was sufficiently bubbled with nitrogen gas. Next, after cooling the system to 5℃, 3.1 parts of 1,3-butadiene was added to
Stir for a minute to allow the seed particles to absorb the 1,3-butadiene. This will be referred to as "seed dispersion C." After putting 0.39 parts of a cyclohexane solution containing 0.2 mol/l of cobalt octylic acid into a pressure-resistant container that had been purged with nitrogen in advance, the system was cooled to 5°C, and then 1,3
- After adding 0.11 parts of butadiene, the mixture was stirred for 30 minutes. In this, sodium boron hydride
1.2 parts of a 0.2 mol/l iso-propanol solution was added and stirred for 30 minutes while cooling to obtain a first catalyst component solution. To this first catalyst component solution, 0.2 parts of sodium dodecylbenzenesulfonate (solid content) and 10 parts of distilled water bubbled with nitrogen were added, and the mixture was preliminarily dispersed using a homomixer under a nitrogen gas atmosphere. An aqueous dispersion was prepared by emulsifying and dispersing the mixture using a Manton-Gaulin (Model 15M). This will be referred to as "first catalyst dispersion B." This first catalyst dispersion B was added to the seed dispersion C prepared previously and stirred for 30 minutes while maintaining the temperature at 5°C. Next, 0.11 part of the second catalyst solution A (an n-hexane solution containing 0.6 mol/l of carbon disulfide) was added, and the polymerization was carried out with gentle stirring for 3 hours while maintaining the temperature at 5°C. I did it. As a result, a latex with a polymerization yield of 97% and good dispersion stability with little coagulum was obtained. When the obtained polymer was examined, its melting point was 197°C by differential scanning calorimetry, and the vinyl group content was 96% by Morero analysis. Example 5 0.45 parts of a tetrahydrofuran solution with a cobalt chloride concentration of 0.2 mol/l prepared at a weight ratio of cobalt chloride and pyridine of 1:5.7 was placed in a pressure-resistant container that had been purged with nitrogen in advance, and after cooling the system at 5°C, 1.
0.1 part of 3-butadiene was added and stirred for 30 minutes.
To this was added 0.31 parts of a 1.5% by weight (0.4 mol/l) solution of metallic sodium suspended and dispersed in n-hexane, and the mixture was stirred for 30 minutes while cooling to obtain a first catalyst component solution. To this catalyst component solution, 0.2 parts of sodium dodecylbenzenesulfonate (solid content) and 10 parts of distilled water bubbled with nitrogen gas were added, and after preliminary dispersion using a homomixer under a nitrogen gas atmosphere,
An aqueous dispersion was prepared by emulsifying and dispersing with a homogenizer. This will be referred to as "first catalyst dispersion C." Seed dispersion A was prepared in the same manner as in Example 1, the above-mentioned first catalyst dispersion C was added thereto, and the mixture was heated at 5°C.
The mixture was stirred for 30 minutes while maintaining the temperature. Next, the second catalyst solution A (carbon disulfide 0.6 mol/l
0.11 part of n-hexane solution) was added, and polymerization was carried out with gentle stirring for 3 hours while controlling the polymerization temperature at 5°C. The polymerization yield in the above polymerization reaction was 70%, and no coagulum was observed. Further, the melting point of the polymer determined in the same manner as described above was 188°C, and the content of vinyl groups was 93%. Example 6 After putting 0.39 parts of a cyclohexane solution containing 0.2 mol/l of cobalt naphthenate into a pressure-resistant container that had been purged with nitrogen in advance, the system was cooled to 5°C, and then 1,3-
0.11 part of butadiene was added, followed by stirring for 30 minutes. Sodium aluminum hydride
1.2 parts of a 0.2 mol/l tetrahydrofuran solution was added and stirred for 30 minutes while cooling to obtain a first catalyst component solution. Using the above as the first catalyst component solution,
Also, as a second catalyst component, dimethylxanthogen disulfide 0.6 mol/l n-hexane solution 0.11
Polymerization was carried out in the same manner as in Example 4, except that The polymerization yield in the above polymerization reaction was 20%, and a latex with good dispersion stability and little coagulum was obtained. Further, the melting point of the polymer determined in the same manner as described above was 160°C, and the content of vinyl groups was 88%. Example 7 Instead of 1.2 parts of iso-propanol solution containing 0.2 mol/l of sodium boron hydride in Example 4, metallic sodium minaphthalene (weight ratio
15:85) 0.7mol/l tetrahydrofuran solution
Polymerization was carried out in the same manner as in Example 4 except that 0.78 part was used. As a result, a latex with a polymerization yield of 98% and good dispersion stability with little coagulum was obtained. In addition, when examining the obtained polymer, the melting point measured by differential scanning calorimetry was 150°C;
The content of vinyl groups is 94% according to Morero analysis method.
It was hot.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の製造方法の実施に用いること
のできる多段重合反応槽方式を模式的に表わす説
明図である。 1〜6……原材料供給源、8(1)〜8(1
2)……重合反応槽、12……第1の触媒成分溶
液の供給源、10……第2の触媒成分溶液の供給
源。
FIG. 1 is an explanatory diagram schematically showing a multistage polymerization reaction tank system that can be used to carry out the production method of the present invention. 1-6...Raw material supply source, 8(1)-8(1
2)... Polymerization reaction tank, 12... Source of first catalyst component solution, 10... Source of second catalyst component solution.

Claims (1)

【特許請求の範囲】 1 工程()において、共役ジエン単量体を含
有する重合体シード粒子の水性分散体(イ)と、(A)コ
バルト化合物、(B)アルカリ金属、周期律表第族
〜第族の金属を含む有機金属化合物および周期
律表第族〜第族の金属を含む金属水素化物の
群から選ばれた少くとも一種、(C)前記(A)コバルト
化合物の1〜1000倍モルに相当する共役ジエン系
化合物を含有する第1の触媒成分溶液の水性分散
体(ロ)とを混合し、工程()において、二硫化炭
素、フエニルイソチオシアン酸およびキサントゲ
ン化合物の群から選ばれた少くとも一種の化合物
よりなる第2の触媒成分を加えて重合することを
特徴とする重合体粒子の製造方法。 2 水性分散体(ロ)における第1の触媒成分溶液よ
りなる分散粒子の平均粒径が、水性分散体(イ)にお
ける共役ジエン単量体を含有する重合体シード粒
子の平均粒径以下である特許請求の範囲第1項記
載の重合体粒子の製造方法。 3 共役ジエン単量体を含有する重合体シード粒
子の水性分散体(イ)が、前記共役ジエン単量体を含
む単量体組成物を乳化重合し、該共役ジエン単量
体が残存した状態で重合を停止せしめることによ
り得られるものである特許請求の範囲第1項記載
の重合体粒子の製造方法。 4 水性分散体(イ)の調製と工程()および工程
()とを、多段重合反応槽方式を用いて連続的
に行なう特許請求の範囲第1項記載の重合体粒子
の製造方法。
[Claims] 1. In step (), an aqueous dispersion (a) of polymer seed particles containing a conjugated diene monomer, (A) a cobalt compound, (B) an alkali metal, group group of the periodic table. ~ At least one selected from the group of organometallic compounds containing metals of Group 3 and metal hydrides containing metals of Groups 1 to 10 of the periodic table, (C) 1 to 1000 times as much as the cobalt compound (A) above. and an aqueous dispersion (b) of a first catalyst component solution containing a conjugated diene compound corresponding to the mole thereof, and in step (b), a dispersion of a first catalyst component solution selected from the group of carbon disulfide, phenylisothiocyanate and A method for producing polymer particles, characterized in that polymerization is carried out by adding a second catalyst component consisting of at least one type of compound. 2 The average particle size of the dispersed particles made of the first catalyst component solution in the aqueous dispersion (b) is equal to or less than the average particle size of the polymer seed particles containing the conjugated diene monomer in the aqueous dispersion (a). A method for producing polymer particles according to claim 1. 3. A state in which the aqueous dispersion (a) of polymer seed particles containing a conjugated diene monomer emulsion polymerizes the monomer composition containing the conjugated diene monomer, and the conjugated diene monomer remains. 2. The method for producing polymer particles according to claim 1, wherein the polymer particles are obtained by stopping polymerization. 4. The method for producing polymer particles according to claim 1, wherein the preparation of the aqueous dispersion (a), step (), and step () are carried out continuously using a multistage polymerization reaction tank system.
JP27188884A 1984-07-11 1984-12-25 Production of polymer particle Granted JPS61151217A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP27188884A JPS61151217A (en) 1984-12-25 1984-12-25 Production of polymer particle
CA000484742A CA1269487A (en) 1984-07-11 1985-06-21 Polymer particles and process for producing the same
EP85304979A EP0170456A1 (en) 1984-07-11 1985-07-11 Polymer particles and process for producing the same
US06/906,192 US4742137A (en) 1984-07-11 1986-09-11 Polymer particles and process for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27188884A JPS61151217A (en) 1984-12-25 1984-12-25 Production of polymer particle

Publications (2)

Publication Number Publication Date
JPS61151217A JPS61151217A (en) 1986-07-09
JPH0446965B2 true JPH0446965B2 (en) 1992-07-31

Family

ID=17506294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27188884A Granted JPS61151217A (en) 1984-07-11 1984-12-25 Production of polymer particle

Country Status (1)

Country Link
JP (1) JPS61151217A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4645809A (en) * 1986-01-23 1987-02-24 The Goodyear Tire & Rubber Company Direct method for preparing syndiotactic 1,2-polybutadiene
US5346971A (en) * 1992-05-15 1994-09-13 Ube Industries, Ltd. Aqueous suspension polymerization of 1,3-butadiene to produce syndiotactic-1,2-polybutadiene

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4939194A (en) * 1972-08-22 1974-04-12
JPS5978213A (en) * 1982-09-17 1984-05-07 ザ・グツドイヤ−・タイヤ・アンド・ラバ−・カンパニ− Aqueous polymerization catalyst enclosed in microcapsule

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4939194A (en) * 1972-08-22 1974-04-12
JPS5978213A (en) * 1982-09-17 1984-05-07 ザ・グツドイヤ−・タイヤ・アンド・ラバ−・カンパニ− Aqueous polymerization catalyst enclosed in microcapsule

Also Published As

Publication number Publication date
JPS61151217A (en) 1986-07-09

Similar Documents

Publication Publication Date Title
US7825201B2 (en) Process for producing polydienes
EP2619233B1 (en) Process for producing polydienes
JP3789521B2 (en) Synthesis of trans 1,4-polybutadiene with controlled molecular weight
JP2014159571A (en) Branched polymers and methods for their synthesis and use
EP2658887B1 (en) Bulk polymerization of conjugated dienes using a nickel-based catalyst system
EP0170456A1 (en) Polymer particles and process for producing the same
US8623975B2 (en) Process for producing polydienes
JPH0446965B2 (en)
US3577395A (en) Novel catalyst for the polymerization of conjugated dienes
EP0152175B1 (en) Process for producing a diene polymer
JPH0564163B2 (en)
KR100515452B1 (en) Process for manufacturing selective hydrogenated conjugated-diene polymer using lithium hydride made from high injection nozzle-type reactor
JPH0531567B2 (en)
JP3966175B2 (en) Method for polymerizing butadiene
US3649605A (en) System for the polymerization of conjugated diolefins
US3448095A (en) Process and catalytic compositions for the polymerization and copolymerization of conjugated dienes and the products thereof
JPH0586411B2 (en)
JP3598695B2 (en) Method for producing polybutadiene
JPH0155287B2 (en)
JPH0519562B2 (en)
US3640989A (en) Novel binary catalyst system for the polymerization of diolefins
JP3546507B2 (en) Method for producing polybutadiene
JPH0215565B2 (en)
JPS60147410A (en) Production of diene polymer
JP3823398B2 (en) Method for producing polybutadiene