JPH0446424A - Optical transmission equipment - Google Patents

Optical transmission equipment

Info

Publication number
JPH0446424A
JPH0446424A JP2155660A JP15566090A JPH0446424A JP H0446424 A JPH0446424 A JP H0446424A JP 2155660 A JP2155660 A JP 2155660A JP 15566090 A JP15566090 A JP 15566090A JP H0446424 A JPH0446424 A JP H0446424A
Authority
JP
Japan
Prior art keywords
agc
optical transmission
optical
control
equalization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2155660A
Other languages
Japanese (ja)
Inventor
Shigeki Tanaka
田中 重喜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2155660A priority Critical patent/JPH0446424A/en
Publication of JPH0446424A publication Critical patent/JPH0446424A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Amplification And Gain Control (AREA)
  • Optical Communication System (AREA)

Abstract

PURPOSE:To attain optimum AGC(automatic gain control) automatically even in the case of long or short range transmission by providing an equalization amplifier means, a gain control amplifier means and a control means. CONSTITUTION:In the case of long distance optical transmission, gain control amplifier means 221, 222 control the gain of a photoelectric conversion means 201, 202 and an equalization amplifier means 21 with a control voltage in response to an output level of the equalization amplifier means 21 to form 2 system of AGC loops. On the other hand, in the case of short distance optical transmission, a control means 23 inactivate the means 202 in the means 201, 202 to activate only one system in the 2 system of AGC loops. Thus, in the case of short distance optical transmission, the AGC loop of one system only is formed automatically and optimum AGC is applied to the system without deviation of AGC dynamic range. Thus, optimum AGC is applied automatically even in any of the long or short range transmission.

Description

【発明の詳細な説明】 〔概要〕 長距離光伝送システム及び短距離光伝送システムに用い
る光伝送装置に関し、 いずれの場合の伝送時においても自動的に最適のAGC
(自動利得制御)をかけることを目的とし、 2個の光/電変換手段と、この各出力を加算した信号を
等化増幅する等化増幅手段と、この出力レベルに応じた
制御電圧で2個の光/電変換手段及び等化増幅手段の夫
々の利得を制御する2個の利得制御用増幅手段と、等化
増幅手段の出力レベルが閾値以下の時はこの出力レベル
をそのまま出力する一方、この出力レベルが該閾値を越
えた時は2個の光/電変換手段のうちの一方を動作不能
状態になるように制御する制御手段とを設けた構成とす
る。
[Detailed Description of the Invention] [Summary] Regarding an optical transmission device used for a long-distance optical transmission system and a short-distance optical transmission system, the present invention automatically performs optimal AGC during transmission in any case.
(automatic gain control), two optical/electrical conversion means, an equalization amplification means that equalizes and amplifies the signal obtained by adding these respective outputs, and a control voltage corresponding to the output level. two gain control amplification means that control the respective gains of the optical/electrical conversion means and equalization amplification means, and one that outputs the output level as it is when the output level of the equalization amplification means is below a threshold value. , and control means for controlling one of the two photo/electric conversion means to become inoperable when the output level exceeds the threshold.

〔産業上の利用分野〕[Industrial application field]

本発明は、長距離光伝送システム及び短距離光伝送シス
テムに用いる光伝送装置に関する。
The present invention relates to an optical transmission device used in a long-distance optical transmission system and a short-distance optical transmission system.

長距離光伝送システムに用いる光伝送装置は、最長距離
間(例えば40km〜50b)の伝送時に受信利得が最
大になるようにAGCをかけている。
Optical transmission equipment used in long-distance optical transmission systems performs AGC so that the reception gain is maximized during transmission over the longest distance (for example, 40 km to 50 km).

然るに、この光伝送装置を極く短距離間(例えば数10
0 m〜数km)の伝送に使用することもあり、このよ
うな場合はAGCのダイナミックレンジが外れてしまう
。そこで、このような場合においても最適のAGCをか
けて伝送を行なう必要がある。
However, this optical transmission device can be used over extremely short distances (for example, several tens of
It may be used for transmission over distances of 0 m to several km), and in such cases, the dynamic range of AGC is out of range. Therefore, even in such a case, it is necessary to perform transmission by applying optimal AGC.

〔従来の技術〕[Conventional technology]

長距離光伝送システムは、第4図に示す如く、例えば4
0km〜50km離れて設置されている光伝送装置1,
2の間を光フアイバケーブル3を介して光情報信号を送
信、受信するものである。光伝送装置1.2の夫々には
第5図に示すような受信系回路がその一部として設けら
れており、互いに相手側から送信されてくる情報信号を
電気信号に変換して所定の処理を行なう。
As shown in Figure 4, a long-distance optical transmission system includes, for example, four
Optical transmission equipment 1 installed at a distance of 0km to 50km,
An optical information signal is transmitted and received between the two via an optical fiber cable 3. Each of the optical transmission devices 1.2 is provided with a receiving system circuit as shown in FIG. 5 as a part thereof, and each converts information signals transmitted from the other side into electrical signals and performs predetermined processing. Do this.

第5図は長距離光伝送システムに用いる光伝送装置を例
えば数100 m〜数すの極く短距離間において使用す
る場合の従来の受信系回路を示す。第5図において、光
フアイバケーブル3にて送られてきた光情報は後述の光
減衰器4で減衰された後、光/電変換回路(以下、変換
回路という)5で電気信号に変換され、等化増幅回路6
で周波数特性を補正され、後段の回路(図示せず)で所
定の処理が行なわれる。この場合、等化増幅回路6の出
力信号はAGCアンプ7に供給されてその出力信号レベ
ルに応じた利得制御電圧とされ、等化増幅回路6の出力
信号レベルが一定になるように変換回路5の利得(バイ
アス電流)及び等化増幅回路6の増幅利得を夫々制御す
る。
FIG. 5 shows a conventional receiving system circuit when an optical transmission device used in a long-distance optical transmission system is used over a very short distance, for example, from several hundred meters to several tens of meters. In FIG. 5, optical information sent through an optical fiber cable 3 is attenuated by an optical attenuator 4, which will be described later, and then converted into an electrical signal by an optical/electrical conversion circuit (hereinafter referred to as a conversion circuit) 5. Equalization amplifier circuit 6
The frequency characteristics are corrected, and predetermined processing is performed in a subsequent circuit (not shown). In this case, the output signal of the equalization amplifier circuit 6 is supplied to the AGC amplifier 7 and is made into a gain control voltage according to the output signal level, and the conversion circuit 5 (bias current) and the amplification gain of the equalization amplifier circuit 6, respectively.

ところで、長距離光伝送システムにおいては、このAG
Cは最長距離で受信利得が最大になるようにしており、
これをそのまま極く短距離間の伝送に用いると装置への
入力光情報レベル(受光パワー)が余りにも大き過ぎて
AGCのダイナミックレンジを外れる。そこで、第5図
に示す如く、従来では入力段に光減衰器4を設けて光情
報レベルを減衰させ、受光パワーかAGCのダイナミッ
クレンジ内に入るようにしている。
By the way, in long-distance optical transmission systems, this AG
C is designed to maximize the reception gain at the longest distance.
If this is used as it is for transmission over a very short distance, the input optical information level (received light power) to the device will be too large and will be out of the dynamic range of AGC. Therefore, as shown in FIG. 5, conventionally, an optical attenuator 4 is provided at the input stage to attenuate the optical information level so that the received light power falls within the dynamic range of the AGC.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の回路は、光減衰器4を設けた構成としているため
、極く短距離間の伝送時にはこの光減衰器4を作動させ
るべく手動で調整を行なゎなければならず、取扱いか面
倒であり、この場合、受光パワーをパワーメータ等で確
認してから調整を行なう必要がある。或いは、従来、光
減衰器4を設ける代りに2個の変換回路を設けて受光パ
ワーに応じて2個の変換回路を用いるか、いずれか一方
の変換回路を用いるように切換えるか、又は、2個の変
換回路を用意しておいて受光パワーに応じてこれを差換
えて用いるようにする方法もある。
Since the conventional circuit is configured with an optical attenuator 4, manual adjustment must be made to activate the optical attenuator 4 during extremely short distance transmission, making it cumbersome to handle. In this case, it is necessary to check the received light power with a power meter or the like before making adjustments. Alternatively, instead of the conventional optical attenuator 4, two conversion circuits may be provided and the two conversion circuits may be used depending on the received light power, or either one of the conversion circuits may be used. There is also a method in which multiple conversion circuits are prepared and used by replacing them depending on the received light power.

これら従来例は、いずれも操作に時間がかかり、短時間
で光伝送システムの開設を行なうことができず、特に、
緊急時等に用いる野外移動用のシステムにおいては極め
て不都合である問題点かあった。
All of these conventional examples require time to operate, making it impossible to set up an optical transmission system in a short time.
There are some problems that are extremely inconvenient for outdoor transportation systems used in emergencies.

本発明は、長距離及び短距離いずれの場合の伝送時にお
いても自動的に最適のAGCをかけることかできる光伝
送装置を提供することを目的とする。
An object of the present invention is to provide an optical transmission device that can automatically apply optimal AGC during both long-distance and short-distance transmission.

〔課題を解決するための手段〕[Means to solve the problem]

第1図は本発明の原理図を示す。同図(A)中、20+
、20*は光/電変換手段で、光情報信号を電気信号に
変換する。21は等化増幅手段で、光/電変換手段20
+、20tの各出力を加算した信号を等化増幅する。2
21.221は利得制御用増幅手段で、等化増幅手段2
1の出力レベルに応じた制御電圧で光/電変換手段20
1゜20、及び等化増幅手段21の夫々の利得を制御す
る。23は制御手段で、等化増幅手段21の出力レベル
が閾値以下の時はこの出力レベルをそのまま出力する一
方、等化増幅手段21の出力レベルが該閾値を越えた時
は光/電変換手段20.。
FIG. 1 shows a diagram of the principle of the present invention. In the same figure (A), 20+
, 20* is an optical/electrical conversion means that converts an optical information signal into an electrical signal. 21 is an equalization amplification means, and a photo/electrical conversion means 20
The signal obtained by adding the respective outputs of + and 20t is equalized and amplified. 2
21 and 221 are gain control amplification means, equalization amplification means 2
The photo/electrical conversion means 20 is controlled by a control voltage according to the output level of 1.
1.20 and the gain of the equalization amplification means 21. 23 is a control means which outputs the output level as it is when the output level of the equalization amplification means 21 is below a threshold value, while when the output level of the equalization amplification means 21 exceeds the threshold value, it outputs the output level as it is; 20. .

20、のうちの一方(200)を動作不能状態になるよ
うに制御する。又、本発明は、同図(B)に示す如く、
光/電変換手段20.,201と、等化増幅手段21と
、利得制御用増幅手段22I。
20 (200) is controlled to be inoperable. In addition, the present invention, as shown in FIG.
Optical/electric conversion means 20. , 201, equalization amplification means 21, and gain control amplification means 22I.

222と、制御手段23とよりなる受信系24と、電/
光変換手段25を含む送信系26とを一つのユニットで
構成してなる。
222, a receiving system 24 consisting of a control means 23, and an electric/
A transmitting system 26 including an optical conversion means 25 is constituted as one unit.

〔作用〕[Effect]

長距離光伝送の場合、利得制御用増幅手段22+、22
.は等化増幅手段21の出力レベルに応じた制御電圧で
光/電変換手段201゜20、及び等化増幅手段21の
夫々の利得を制御する。つまり、この場合は2系統のA
GCループが構成される。一方、短距離光伝送の場合、
受光パワーが高くなるため、制御手段23は光/電変換
手段20+、20*のうちの一方(20りを動作不能状
態にし、2系統のAGCループのうちの片系統のみのA
GCループを動作させる。これにより、実質的に受光パ
ワーが2系統ループの場合の1/2になったのと等価と
なり、短距離光伝送の場合は、自動的にこの片系統のみ
のAGCループが構成され、AGCダイナミックレンジ
を外れることなく最適のAGCをかけることができる。
In the case of long-distance optical transmission, gain control amplification means 22+, 22
.. controls the respective gains of the optical/electric conversion means 201.degree. 20 and the equalization amplification means 21 using a control voltage corresponding to the output level of the equalization amplification means 21. In other words, in this case, two systems of A
A GC loop is configured. On the other hand, in the case of short-distance optical transmission,
Since the received light power becomes high, the control means 23 makes one of the optical/electrical conversion means 20+ and 20* (20) inoperable, and turns the A of only one of the two AGC loops into an inoperable state.
Operate the GC loop. This effectively reduces the received light power to 1/2 of that in the case of a two-system loop, and in the case of short-distance optical transmission, an AGC loop with only one system is automatically configured, and the AGC dynamic Optimal AGC can be applied without going out of range.

従って、長距離及び短距離のいずれの場合においても自
動的に最適のAGCをかけることができる。
Therefore, optimal AGC can be automatically applied for both long-distance and short-distance situations.

〔実施例〕〔Example〕

第2図は本発明の一実施例のブロック図を示し、同図中
、第5図と同一構成部分には同一番号を付してその説明
を省略する。第2図中、10.。
FIG. 2 shows a block diagram of an embodiment of the present invention, and in the figure, the same components as those in FIG. 5 are given the same numbers and their explanations will be omitted. In Figure 2, 10. .

10、は光/電変換回路(以下、変換回路という)で、
その出力は加算器11を介して等化増幅回路6に接続さ
れている。12は制御回路で、等化増幅回路6の出力レ
ベルに応じた制御、つまり、等化増幅回路6の出力レベ
ルか予め設定された閾値以下の場合はその出力レベルを
そのままAGCアンプ1.3..13.に供給し、閾値
を越えた場合のみ2系統あるAGCアンプ13+、13
tのうちの例えばAGCアンプ13.の方を出力電圧を
例えば零にするような制御を行なう構成とされている。
10 is a photo/electric conversion circuit (hereinafter referred to as a conversion circuit),
Its output is connected to an equalization amplifier circuit 6 via an adder 11. 12 is a control circuit that performs control according to the output level of the equalization amplifier circuit 6, that is, when the output level of the equalization amplifier circuit 6 is below a preset threshold, the output level is directly applied to the AGC amplifiers 1.3. .. 13. AGC amplifier 13+, 13 which has two systems only when the threshold is exceeded.
For example, the AGC amplifier 13.t. The configuration is such that control is performed to reduce the output voltage to zero, for example.

2系統あるAGCアンプ13..132は夫々変換回路
を10□、102に接続されていると共に、加算器14
を介して等化増幅回路6に接続されている。このように
本発明では、AGCループを2系統設けた構成とされて
いる。
AGC amplifier with 2 systems 13. .. 132 is connected to the conversion circuits 10□ and 102, respectively, and the adder 14
It is connected to the equalization amplifier circuit 6 via. In this way, the present invention has a configuration in which two AGC loops are provided.

変換回路を10..10.は、例えば第3図(A)に示
す如く、ケース15内に互いに近接して設けられており
、その回路図は同図(B)に示す如くである。
Conversion circuit 10. .. 10. are provided close to each other in the case 15, as shown in FIG. 3(A), for example, and their circuit diagram is as shown in FIG. 3(B).

先ず、例えば40km〜501anの長距離光伝送シス
テムに用いる場合について説明する。第2図において、
光フアイバケーブル3にて送られてきた光情報は変換回
路を10..10!で電気信号に変換され、加算器11
にて加算された後に等化増幅回路6て周波数特性を補正
されて出力される。
First, a case will be described in which the present invention is used in a long-distance optical transmission system of, for example, 40 km to 501 ann. In Figure 2,
The optical information sent through the optical fiber cable 3 is sent to the conversion circuit 10. .. 10! is converted into an electrical signal by adder 11
After being added in the equalizing amplifier circuit 6, the frequency characteristics are corrected and output.

このとき、等化増幅回路6の出力信号は制御回路12に
供給され、制御回路12はその出力信号レベルが閾値以
下(長距離光伝送であるので、受光パワーは比較的低い
ことによる)であることを検出し、その出力信号をその
ままアンプ131゜13、に供給する。AGCアンプI
 3+ 、  132は等化増幅回路6の出力信号レベ
ルに応じた制御電圧を出力し、等化増幅回路6の出力信
号レベルが一定になるように変換回路10+、+02の
夫々の利得(バイアス電流)を制御すると共に、加算器
14で加算した制御電圧で等化増幅回路6の増幅利得を
制御する。
At this time, the output signal of the equalization amplifier circuit 6 is supplied to the control circuit 12, and the control circuit 12 determines that the output signal level is below the threshold value (this is because the received light power is relatively low due to long-distance optical transmission). It detects this and supplies the output signal as it is to the amplifier 131-13. AGC amplifier I
3+ and 132 output a control voltage according to the output signal level of the equalization amplifier circuit 6, and the respective gains (bias currents) of the conversion circuits 10+ and +02 are adjusted so that the output signal level of the equalization amplifier circuit 6 is constant. At the same time, the amplification gain of the equalization amplifier circuit 6 is controlled by the control voltage added by the adder 14.

次に、例えば数100m〜数すの極く短距離の光伝送シ
ステムに用いる場合について説明する。この場合、受光
パワーは比較的高いために制訂回路12は等化増幅回路
6の出力信号レベルが閾値を越えたことを検出し、アン
プ13!の方の出力電圧を零にする制御を行なう。これ
により、変換回路10tは動作不能状態とされると共に
、等化増幅回路6はその利得を低くされる。このように
受光パワーが高くなると自動的に変換回路10+。
Next, a case will be described in which the present invention is used in an extremely short distance optical transmission system of, for example, several hundred meters to several meters. In this case, since the received light power is relatively high, the correction circuit 12 detects that the output signal level of the equalization amplifier circuit 6 exceeds the threshold value, and the amplifier 13! Control is performed to make the output voltage of the other side zero. As a result, the conversion circuit 10t is rendered inoperable, and the gain of the equalization amplifier circuit 6 is lowered. In this way, when the received light power becomes high, the conversion circuit 10+ is automatically activated.

加算器11.等化増幅回路6.アンプ13.の各回路に
よる片系統のみのAGCループが構成され、実質的に受
光パワーが2系統ループの場合のI/2になったのと等
価とされる。従って、この片系統のみのAGCループに
より、AGCダイナミックレンジを外れることなく最適
のAGCをかけることができる。
Adder 11. Equalization amplifier circuit 6. Amplifier 13. An AGC loop with only one system is constructed by each circuit, and the received light power is substantially equivalent to I/2 in the case of a two-system loop. Therefore, by using only one AGC loop, optimal AGC can be applied without going outside the AGC dynamic range.

なお、本発明になる光伝送装置は第2図に示す受信系回
路の他、送信系回路も設けられている。
The optical transmission device according to the present invention is provided with a transmitting circuit in addition to the receiving circuit shown in FIG. 2.

送信系回路には1系統の電/光変換回路が設けられてい
る。
The transmission system circuit is provided with one system of electrical/optical conversion circuit.

〔発明の効果〕〔Effect of the invention〕

以上説明した如く、本発明によれば、長距離光伝送及び
短距離光伝送いずれの場合においても最適のAGCをか
けることができ、従来例のように短距離光伝送時に光減
衰器を手動調整したりするようなことは必要でないため
、緊急時における野外用の光伝送システムを即時開設で
きる。
As explained above, according to the present invention, it is possible to apply optimal AGC in both long-distance optical transmission and short-distance optical transmission, and manually adjust the optical attenuator during short-distance optical transmission as in the conventional example. Since there is no need to do anything like this, an optical transmission system for outdoor use can be immediately set up in case of an emergency.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の原理図、 第2図は本発明の一実施例のブロック図、第3図は光/
電変換回路の構成図、 第4図は光伝送システムの構成図、 第5図は従来の一例のブロック図である。 図において、 1.2は光伝送装置、 3は光フアイバケーブル、 6は等化増幅回路、 10、.101は光/電変換回路、 11.14は加算器、 12は制御回路、 13、.11はAGCアンプ、 20、.201は光/を変換手段、 21は等化増幅手段、 22+、22*は利得制御用増幅手段、24は受信系、 25は電/光変換手段、 26は送信系 を示す。 (A) 本発明の原理図 第1図 特許出願人 富 士 通 株式会社 つ 本発明の一実施例のプロ・ンク図 第2図
Fig. 1 is a principle diagram of the present invention, Fig. 2 is a block diagram of an embodiment of the present invention, and Fig. 3 is a diagram of the principle of the present invention.
FIG. 4 is a block diagram of an electrical conversion circuit, FIG. 4 is a block diagram of an optical transmission system, and FIG. 5 is a block diagram of a conventional example. In the figure, 1.2 is an optical transmission device, 3 is an optical fiber cable, 6 is an equalization amplifier circuit, 10, . 101 is a photo/electric conversion circuit, 11.14 is an adder, 12 is a control circuit, 13, . 11 is an AGC amplifier, 20, . 201 is an optical/optical conversion means, 21 is an equalization amplification means, 22+, 22* is a gain control amplification means, 24 is a reception system, 25 is an electric/optical conversion means, and 26 is a transmission system. (A) Principle diagram of the present invention (Fig. 1) Patent applicant: Fujitsu Limited (Professional diagram of an embodiment of the present invention) (Fig. 2)

Claims (2)

【特許請求の範囲】[Claims] (1)2個の光/電変換手段(20_1、20_2)と
、 該2個の光/電変換手段(20_1、20_2)の各出
力を加算した信号を等化増幅する等化増幅手段(21)
と、 該等化増幅手段(21)の出力レベルに応じた制御電圧
で上記2個の光/電変換手段(20_1、20_2)及
び該等化増幅手段(21)の夫々の利得を制御する2個
の利得制御用増幅手段(22_1、22_2)と、 上記等化増幅手段(21)の出力レベルが閾値以下の時
は該出力レベルをそのまま出力する一方、上記等化増幅
手段(21)の出力レベルが該閾値を越えた時は上記2
個の光/電変換手段(20_1、20_2)のうちの一
方(20_2)を動作不能状態になるように制御する制
御手段(23)とを設けてなることを特徴とする光伝送
装置。
(1) Two optical/electrical conversion means (20_1, 20_2), and an equalization amplification means (21 )
and 2 for controlling the respective gains of the two optical/electric conversion means (20_1, 20_2) and the equalization amplification means (21) with a control voltage according to the output level of the equalization amplification means (21). When the output level of the equalizing amplifying means (21) is below the threshold value, the output level of the equalizing amplifying means (21) is output as is, while the output of the equalizing amplifying means (21) When the level exceeds the threshold, 2 above
1. An optical transmission device comprising: a control means (23) for controlling one (20_2) of the optical/electrical conversion means (20_1, 20_2) to be in an inoperable state.
(2)前記2個の光/電変換手段(20_1、20_2
)と、前記等化増幅手段(21)と、前記2個の利得制
御用増幅手段(22_1、22_2)と、前記制御手段
(23)とよりなる受信系(24)と、 電/光変換手段(25)を含む送信系(26)とを一つ
のユニットで構成してなることを特徴とする請求項1記
載の光伝送装置。
(2) The two photo/electric conversion means (20_1, 20_2
), a reception system (24) comprising the equalization amplification means (21), the two gain control amplification means (22_1, 22_2), and the control means (23), and an electrical/optical conversion means. 2. The optical transmission device according to claim 1, wherein the transmission system (26) including the transmission system (25) is configured as one unit.
JP2155660A 1990-06-14 1990-06-14 Optical transmission equipment Pending JPH0446424A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2155660A JPH0446424A (en) 1990-06-14 1990-06-14 Optical transmission equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2155660A JPH0446424A (en) 1990-06-14 1990-06-14 Optical transmission equipment

Publications (1)

Publication Number Publication Date
JPH0446424A true JPH0446424A (en) 1992-02-17

Family

ID=15610813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2155660A Pending JPH0446424A (en) 1990-06-14 1990-06-14 Optical transmission equipment

Country Status (1)

Country Link
JP (1) JPH0446424A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6808854B2 (en) 2001-04-27 2004-10-26 Canon Kabushiki Kaisha Polyhydroxyalkanoates having in its side chain phenylsulfinyl structure and/or phenyl sulfonyl structure and production process therefor; charge control agent, toner binder and toner containing same; and image forming method and image forming apparatus using the toner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6808854B2 (en) 2001-04-27 2004-10-26 Canon Kabushiki Kaisha Polyhydroxyalkanoates having in its side chain phenylsulfinyl structure and/or phenyl sulfonyl structure and production process therefor; charge control agent, toner binder and toner containing same; and image forming method and image forming apparatus using the toner

Similar Documents

Publication Publication Date Title
US6429966B1 (en) Multistage optical amplifier with Raman and EDFA stages
US5335109A (en) Optical receiver with extended dynamic range
JPH0446424A (en) Optical transmission equipment
JPH04150324A (en) Optical reception circuit
US6212311B1 (en) Light signal transmission system and light signal transmission method
JP3479124B2 (en) AGC method for CATV optical receiver
JPH10303820A (en) Optical receiver using apd
JP2953799B2 (en) Optical receiving circuit
JP2616389B2 (en) Bidirectional CATV system and bidirectional CATV repeater / amplifier used therefor
JPH07177099A (en) Optical reception equipment
JP3237933B2 (en) Temperature compensation method
JPH0563653A (en) Gain control circuit for optical amplifier
JPH02271727A (en) Optical transmission/reception level adjusting circuit
JPH06152535A (en) Light transmitting and receiving circuit
JPH04306929A (en) Agc control system using optical fiber amplifier
JP2000307518A (en) Optical signal transmission system
JP2021197736A (en) Variable gain amplifier system, particularly for optical receiver systems
JPH0355924A (en) Communication equipment
JPH04334137A (en) Burst optical receiver
JPH0470802B2 (en)
JPH0697887A (en) Optical reception equipmnent
JPH09200140A (en) Optical receiver
JPH05181019A (en) Optical dynamic range compressing device
JPH0697891A (en) Optical preamplifier and receiver
JPH04290319A (en) Digital transmission system