JPH0446249B2 - - Google Patents

Info

Publication number
JPH0446249B2
JPH0446249B2 JP59246134A JP24613484A JPH0446249B2 JP H0446249 B2 JPH0446249 B2 JP H0446249B2 JP 59246134 A JP59246134 A JP 59246134A JP 24613484 A JP24613484 A JP 24613484A JP H0446249 B2 JPH0446249 B2 JP H0446249B2
Authority
JP
Japan
Prior art keywords
hours
benzene
catalyst
molar ratio
ethylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59246134A
Other languages
Japanese (ja)
Other versions
JPS61126040A (en
Inventor
Hiroshi Ishida
Hitoshi Nakajima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KEISHITSU RYUBUN SHINYOTO KAIHATSU GIJUTSU KENKYU KUMIAI
Original Assignee
KEISHITSU RYUBUN SHINYOTO KAIHATSU GIJUTSU KENKYU KUMIAI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KEISHITSU RYUBUN SHINYOTO KAIHATSU GIJUTSU KENKYU KUMIAI filed Critical KEISHITSU RYUBUN SHINYOTO KAIHATSU GIJUTSU KENKYU KUMIAI
Priority to JP59246134A priority Critical patent/JPS61126040A/en
Publication of JPS61126040A publication Critical patent/JPS61126040A/en
Publication of JPH0446249B2 publication Critical patent/JPH0446249B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、スチレンの原料として有用なエチル
ベンゼンを選択的に製造する方法に関するもので
ある。 (従来の技術) ベンゼンを気相においてエチル化する方法に関
しては、近年、モービル社が開発した触媒として
結晶性アルミノシリケートZSM−5を用いる方
法(特公昭56−44050号参照)が知られている。
しかし、ZSM−5をそのまま触媒として使用し
た場合、トルエン、エチルトルエン等の副生が多
いため、モービル社では、ZSM−5をリンの酸
化物で処理した触媒を用いる方法(特開昭51−
57688号参照)を提案しており、実際に、これら
の触媒を用いてモービルーバジヤー法として知ら
れるプロセスが企業化されている。 (発明が解決しようとする問題点) しかしながら、リンの酸化物で処理したZSM
−5を用いる方法は、確かにエチルベンゼン、ジ
エチルベンゼンへの選択率は高く、97%に達する
ものもあるが、99%以上という極めて高い選択率
の実現は困難であり、また、活性が低いという問
題があつた。 (問題点を解決するための手段) 本発明者らは、エチルベンゼン、ジエチルベン
ゼンへの選択率が99%以上で高活性な触媒を開発
すべく鋭意検討を重ねた結果、X線回折図におい
て表1の回折パターンを有する結晶性クロモシリ
ケートを触媒として用いる場合に、99%以上とい
う極めて高い選択率でエチルベンゼンおよびジエ
チルベンゼンが得られることを見い出し、本発明
を完成するに至つた。
(Industrial Application Field) The present invention relates to a method for selectively producing ethylbenzene, which is useful as a raw material for styrene. (Prior art) Regarding the method of ethylating benzene in the gas phase, a method using crystalline aluminosilicate ZSM-5 as a catalyst developed by Mobil Corporation in recent years (see Japanese Patent Publication No. 56-44050) is known. .
However, if ZSM-5 is used directly as a catalyst, many by-products such as toluene and ethyltoluene are produced.
57688), and in fact, a process known as the Mobile-Bazier process using these catalysts has been commercialized. (Problem to be solved by the invention) However, ZSM treated with phosphorus oxide
The method using -5 does have a high selectivity to ethylbenzene and diethylbenzene, reaching 97% in some cases, but it is difficult to achieve an extremely high selectivity of 99% or more, and there is also the problem of low activity. It was hot. (Means for Solving the Problems) The present inventors have conducted intensive studies to develop a highly active catalyst with a selectivity of 99% or more to ethylbenzene and diethylbenzene. The present inventors have discovered that ethylbenzene and diethylbenzene can be obtained with an extremely high selectivity of 99% or more when a crystalline chromosilicate having a diffraction pattern of 1 is used as a catalyst, and the present invention has been completed.

【表】 X線回折分析はCuKα線を用いて測定する。た
だし、8.8±0.2と8.9±0.2の回折線のどちらかを
相対強度を100とする。 すなわち、本発明は、ベンゼンを気相において
エチレンと反応させる際に、触媒としてX線回折
図において表1に示される回折パターンを有する
結晶性クロモシリケートを用いることを特徴とす
るベンゼンのエチル化法を提供するものである。 本発明に用いられる表1に示される回折パター
ンを有する結晶性クロモシリケートとは、AZ−
3(特願昭59−81849号)と呼ばれる特異な結晶構
造を有する結晶性クロモシリケートである。 本発明における反応温度は200〜600℃、好まし
くは300〜500℃の範囲である。また、圧力は常圧
または加圧で行なわれるが、好ましい範囲は常圧
〜20Kg/cm2の範囲である。 本発明は、気相流通法で行なわれるが、その
際、ベンゼンとエチレンのみ、または窒素、水素
等の希釈剤を用いて行うことができる、特に、希
釈剤として水素を用いる場合には、活性低下が極
めて小さくなるという利点を有するため好まし
い。 本発明におけるベンゼン/エチレンモル比は1
〜20、好ましくは2〜10の範囲で行なわれる。ま
た、希釈剤として水素を用いる場合の水素/エチ
レンモル比は0.5〜20、好ましくは1〜10の範囲
で行なわれる。 (発明の効果) 本発明の方法によれば、従来のリンの酸化物で
処理したZSM−5を触媒として用いる方法に比
べて、高収率で、しかも、極めて高い選択率でエ
チルベンゼンおよびジエチルベンゼンを得ること
ができる。このことは、工業的に実施する際に極
めて有利になる。 (実施例) 実施例 1 1,8−ジアミノ−4−アミノメチルオクタン
200g、硝酸クロム〔Cr(NO33・9H2O〕5g、
水酸化ナトリウム10gを水340gにとかし、さら
に、シリカゾル(30重量%SiO2)400gを加えて
均質な溶液を得た。この溶液に、かきまぜながら
20%硫酸60gを滴下して、均質なゲルを得た。さ
らに、このゲルをホモジナイザー中で10000rpm
で高速撹拌した後、テフロン内張り耐圧容器中で
180℃、60時間静置して結晶化を行つた。 得られた生成物を過、洗浄した後、120℃で
10時間乾燥して、さらに500℃で6時間空気中で
焼成した後のX線回折パターンを図面に示す。こ
のX線回折パターンより、この生成物は、結晶性
クロモシリケートAZ−3と同定された。 また、焼成後の生成物を0.5N塩酸中で24時間
イオン交換して過、洗浄した後、120℃で4時
間乾燥、500℃で4時間空気中で焼成した後、螢
光X線分析でSiO2/Cr2O3モル比を測定した結
果、SiO2/Cr2O3モル比は20であつた。 この結晶性クロモシリケートAZ−3を触媒と
して用い、ベンゼンとエチレンの反応を行つた。
実験条件は、ベンゼン/エチレンモル比=
4.0WHSV(ベンゼン基準)=4.0hr- +、反応温度
400℃、常圧で行つた。 反応開始後、2時間と6時間の結果を表2に示
す。
[Table] X-ray diffraction analysis is performed using CuKα radiation. However, the relative intensity of either the 8.8±0.2 or 8.9±0.2 diffraction lines is set to 100. That is, the present invention provides a benzene ethylation method characterized in that a crystalline chromosilicate having a diffraction pattern shown in Table 1 in an X-ray diffraction diagram is used as a catalyst when benzene is reacted with ethylene in a gas phase. It provides: The crystalline chromosilicate having the diffraction pattern shown in Table 1 used in the present invention is AZ-
It is a crystalline chromosilicate having a unique crystal structure called 3 (Japanese Patent Application No. 59-81849). The reaction temperature in the present invention is in the range of 200 to 600°C, preferably 300 to 500°C. Further, the pressure may be normal pressure or increased pressure, but the preferred range is normal pressure to 20 kg/cm 2 . The present invention is carried out by a gas phase flow method, which can be carried out using only benzene and ethylene or a diluent such as nitrogen or hydrogen. In particular, when hydrogen is used as a diluent, the This is preferable since it has the advantage that the decrease is extremely small. The benzene/ethylene molar ratio in the present invention is 1
-20, preferably 2-10. Further, when hydrogen is used as a diluent, the hydrogen/ethylene molar ratio is in the range of 0.5 to 20, preferably 1 to 10. (Effects of the Invention) According to the method of the present invention, ethylbenzene and diethylbenzene can be produced with higher yield and extremely high selectivity compared to the conventional method using ZSM-5 treated with phosphorus oxide as a catalyst. Obtainable. This becomes extremely advantageous in industrial implementation. (Example) Example 1 1,8-diamino-4-aminomethyloctane
200g, chromium nitrate [Cr(NO 3 ) 3・9H 2 O] 5g,
10 g of sodium hydroxide was dissolved in 340 g of water, and 400 g of silica sol (30% by weight SiO 2 ) was added to obtain a homogeneous solution. Add to this solution while stirring.
60 g of 20% sulfuric acid was added dropwise to obtain a homogeneous gel. Furthermore, this gel was heated in a homogenizer at 10,000 rpm.
After stirring at high speed, in a Teflon-lined pressure container.
Crystallization was performed by standing at 180°C for 60 hours. After filtering and washing the obtained product, it was heated at 120℃.
The X-ray diffraction pattern after drying for 10 hours and further baking in air at 500°C for 6 hours is shown in the drawing. From this X-ray diffraction pattern, this product was identified as crystalline chromosilicate AZ-3. In addition, the calcined product was filtered and washed by ion exchange in 0.5N hydrochloric acid for 24 hours, dried at 120℃ for 4 hours, calcined in air at 500℃ for 4 hours, and then analyzed by fluorescent X-ray analysis. As a result of measuring the SiO 2 /Cr 2 O 3 molar ratio, the SiO 2 /Cr 2 O 3 molar ratio was 20. Using this crystalline chromosilicate AZ-3 as a catalyst, benzene and ethylene were reacted.
The experimental conditions were: benzene/ethylene molar ratio =
4.0WHSV (benzene standard) = 4.0hr - + , reaction temperature
The test was carried out at 400°C and normal pressure. Table 2 shows the results 2 hours and 6 hours after the start of the reaction.

【表】 実施例 2 実施例1で得られた触媒を用いて、ベンゼン/
エチレンモル比=2、WHSV=6.0hr-1、反応温
度420℃、常圧で反応を行つた。 反応開始後、4時間の成積を表3に示す。
[Table] Example 2 Using the catalyst obtained in Example 1, benzene/
The reaction was carried out at an ethylene molar ratio of 2, a WHSV of 6.0 hr -1 , a reaction temperature of 420° C., and normal pressure. Table 3 shows the results for 4 hours after the start of the reaction.

【表】 実施例 3 実施例1で得られた触媒を用いて、ベンゼン/
エチレン/H2モル比=4/1/4、WHSV=
4.0hr-1、反応温度420℃、圧力3Kg/cm2(ゲージ
圧)で行つた。 反応開始後、3時間、32時間、80時間、170時
間の成積を表4に示す。
[Table] Example 3 Using the catalyst obtained in Example 1, benzene/
Ethylene/ H2 molar ratio = 4/1/4, WHSV =
The reaction time was 4.0 hr -1 , the reaction temperature was 420°C, and the pressure was 3 Kg/cm 2 (gauge pressure). Table 4 shows the results at 3 hours, 32 hours, 80 hours, and 170 hours after the start of the reaction.

【表】 実施例 4 1,8−ジアミノ−4−アミノメチルオクタン
250g、硝酸クロム〔Cr(NO33・9H2O〕10g、
水酸化ナトリウム10gを水400gにとかし、さら
に、シリカゲル(30重量%SiO2))500gを加え
て均質な溶液を得た。この溶液に、かきまぜなが
ら20%硫酸50gを滴下して、均質なゲルを得た。
さらに、このゲルをホモジナイザー中で8000rpm
で高速撹拌した後、テフロン内張り耐圧容器中で
160℃、70時間静置して結晶化を行つた。 得られた生成物を過洗浄した後、120℃で8
時間焼成した後のX線回折パターンより、この生
成物は、結晶性クロモシリケートAZ−3と同定
された。 また、焼成後の生成物を0.5N塩酸中で24時間
イオン交換して過洗浄した後、120℃で4時間
乾燥、500℃で4時間空気中で焼成した後の螢光
X線分析より求めたSiO2/Cr2O3モル比は40であ
つた。 この結晶性クロモシリケートAZ−3を用いて、
ベンゼン/エチレンの/H2モル比=5/1/3、
WHSV=6.0hr-1、反応温度440℃、圧力5Kg/cm2
(ゲージ圧)で反応を行つた。 反応開始後、20時間、60時間の成積を表5に示
す。
[Table] Example 4 1,8-diamino-4-aminomethyloctane
250g, chromium nitrate [Cr(NO 3 ) 3・9H 2 O] 10g,
10 g of sodium hydroxide was dissolved in 400 g of water, and 500 g of silica gel (30% by weight SiO 2 ) was added to obtain a homogeneous solution. 50 g of 20% sulfuric acid was added dropwise to this solution while stirring to obtain a homogeneous gel.
Furthermore, this gel was heated in a homogenizer at 8000 rpm.
After stirring at high speed, in a Teflon-lined pressure container.
Crystallization was performed by standing at 160°C for 70 hours. After over-washing the obtained product, it was incubated at 120°C for 8
The product was identified as crystalline chromosilicate AZ-3 based on the X-ray diffraction pattern after calcination. In addition, the results were determined by fluorescent X-ray analysis after ion-exchanging the fired product in 0.5N hydrochloric acid for 24 hours, drying it at 120°C for 4 hours, and firing it in air at 500°C for 4 hours. The SiO 2 /Cr 2 O 3 molar ratio was 40. Using this crystalline chromosilicate AZ-3,
Benzene/ethylene/ H2 molar ratio = 5/1/3,
WHSV=6.0hr -1 , reaction temperature 440℃, pressure 5Kg/ cm2
(gauge pressure). Table 5 shows the amount of product formed 20 hours and 60 hours after the start of the reaction.

【表】 比較例 水350gに硫酸アルミニウム5gとテトラプロ
ピルアンモニウムプロミド10gを溶かし、さらに
Q brandケイ酸塩水溶液(Na2O=8.9重量%、
SiO2=28.9重量%、H2O=62.2重量%)150gを
加え、かきまぜて均質なゲルを得た。このゲル
に、20%H2SO450gをかきまぜながら滴下して
ゲル化を促進させた。このゲルをテフロン内張り
オートクレーブに入れ、150℃で20時間撹拌しな
がら結晶化させた。 得られた生成物を過洗浄後、120℃で3時間
乾燥し、500℃で4時間空気中で焼成を行つた。 この生成物のX線回折パターンは、ZSM−5
の回折パターンと一致した。また、螢光X線分析
より求めたシリカ/アルミナモル比は50であつ
た。 このZSM−5を、1N塩化アンモニウム水溶液
で60℃、24時間イオン交換を行つた後、過、洗
浄、120℃で6時間乾燥後、500℃で5時間空気焼
成してH−ZSM−5を得た。 得られたH−ZSM−5 10gをフラスコで、
n−オクタン50c.c.にトリメチルフオスフアイト4
c.c.を溶解した溶液に加えた。窒素を徐々に流しな
がら、この混合物を還流温度で80時間加熱した。
その後、この混合物を蒸発乾固して、得られた固
体をペンタンで洗浄した後、120℃で10時間乾燥、
500℃で3時間焼成した。 得られた生成物のリン酸化物の担持量は8.2重
量%であつた。 このリン含有H−ZSM−5を触媒に用いて、
ベンゼン/エチレンモル比=5.5、WHSV=
4.0hr-1、反応温度420℃、常圧で反応を行つた。 反応開始後、4時間の成積を表6に示す。
[Table] Comparative example Dissolve 5 g of aluminum sulfate and 10 g of tetrapropylammonium bromide in 350 g of water, and add Q brand silicate aqueous solution (Na 2 O = 8.9% by weight,
150 g of SiO 2 =28.9% by weight, H 2 O = 62.2% by weight) was added and stirred to obtain a homogeneous gel. 50 g of 20% H 2 SO 4 was added dropwise to this gel while stirring to promote gelation. This gel was placed in a Teflon-lined autoclave and crystallized with stirring at 150°C for 20 hours. After over-washing the obtained product, it was dried at 120°C for 3 hours and calcined in air at 500°C for 4 hours. The X-ray diffraction pattern of this product is ZSM-5
It matched the diffraction pattern of Further, the silica/alumina molar ratio determined by fluorescent X-ray analysis was 50. This ZSM-5 was ion-exchanged with a 1N ammonium chloride aqueous solution at 60℃ for 24 hours, filtered, washed, dried at 120℃ for 6 hours, and air-calcined at 500℃ for 5 hours to obtain H-ZSM-5. Obtained. 10g of the obtained H-ZSM-5 was placed in a flask.
Trimethyl phosphorite 4 in n-octane 50 c.c.
cc was added to the solution. The mixture was heated at reflux temperature for 80 hours with a gradual flow of nitrogen.
The mixture was then evaporated to dryness, the resulting solid was washed with pentane, and then dried at 120°C for 10 hours.
It was baked at 500°C for 3 hours. The amount of phosphoric oxide supported in the obtained product was 8.2% by weight. Using this phosphorus-containing H-ZSM-5 as a catalyst,
Benzene/ethylene molar ratio=5.5, WHSV=
The reaction was carried out at 4.0 hr −1 , reaction temperature 420° C., and normal pressure. Table 6 shows the results for 4 hours after the start of the reaction.

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

図面は実施例1で得られた結晶性クロモシリケ
ートAZ−3のX線回折パターンを示す。
The drawing shows the X-ray diffraction pattern of the crystalline chromosilicate AZ-3 obtained in Example 1.

Claims (1)

【特許請求の範囲】 1 ベンゼンを気相においてエチレンと反応させ
る際に、触媒としてX線回折図において下表の回
折パターンを有する結晶性クロモシリケートを用
いることを特徴とするベンゼンのエチル化法。 【表】 X線回折分析はCuKα線を用いて測定する。た
だし、8.8±0.2と8.9±0.2の回折線のどちらかを
相対強度を100とする。
[Scope of Claims] 1. A method for ethylating benzene, which is characterized in that a crystalline chromosilicate having a diffraction pattern shown in the table below in an X-ray diffraction diagram is used as a catalyst when benzene is reacted with ethylene in a gas phase. [Table] X-ray diffraction analysis is performed using CuKα radiation. However, the relative intensity of either the 8.8±0.2 or 8.9±0.2 diffraction lines is set to 100.
JP59246134A 1984-11-22 1984-11-22 Ethylation of benzene Granted JPS61126040A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59246134A JPS61126040A (en) 1984-11-22 1984-11-22 Ethylation of benzene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59246134A JPS61126040A (en) 1984-11-22 1984-11-22 Ethylation of benzene

Publications (2)

Publication Number Publication Date
JPS61126040A JPS61126040A (en) 1986-06-13
JPH0446249B2 true JPH0446249B2 (en) 1992-07-29

Family

ID=17143985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59246134A Granted JPS61126040A (en) 1984-11-22 1984-11-22 Ethylation of benzene

Country Status (1)

Country Link
JP (1) JPS61126040A (en)

Also Published As

Publication number Publication date
JPS61126040A (en) 1986-06-13

Similar Documents

Publication Publication Date Title
US4547605A (en) Catalyst for alkylation of aromatic hydrocarbons
US4049738A (en) Selective production of para-xylene
US4304686A (en) Method of preparing improved catalysts
JPS59222431A (en) Method for hydrating olefin
JPH0331220A (en) Manufacture of alkyl benzene using dealuminized zeolite y based catalyst and dealuminzed mordenite based catalyst
SU1315014A1 (en) Crystalline aluminosilicate as a basis for catalyst component of conversion of methyl alcohol into hydrocarbons
JPS6345646B2 (en)
CA1122619A (en) Disproportionation of toluene
JPH0238571B2 (en)
JPS646816B2 (en)
CN101676027B (en) Petroleum hydrocarbon cracking catalyst
JPH0446249B2 (en)
JPS607604B2 (en) Selective method for producing para-substituted benzene
JPH0366293B2 (en)
JPH0446250B2 (en)
CN109701621B (en) SSZ-13/SSZ-39 composite structure molecular sieve catalyst, preparation method and application thereof
JPH0453851B2 (en)
US5215736A (en) Mordenite type zeolite and its preparation process
JPS6247809B2 (en)
US5133952A (en) Method for modifying a zeolite
JPS6241656B2 (en)
JPH0342248B2 (en)
JPH0226607B2 (en)
CN111097503B (en) AEI/MFI composite structure molecular sieve catalyst, preparation method and application thereof
JPH0246011B2 (en)