JPH0446019A - Production of yellow iron hydroxide pigment - Google Patents

Production of yellow iron hydroxide pigment

Info

Publication number
JPH0446019A
JPH0446019A JP15325190A JP15325190A JPH0446019A JP H0446019 A JPH0446019 A JP H0446019A JP 15325190 A JP15325190 A JP 15325190A JP 15325190 A JP15325190 A JP 15325190A JP H0446019 A JPH0446019 A JP H0446019A
Authority
JP
Japan
Prior art keywords
seed crystal
iron oxide
suspension
pigment
yellow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15325190A
Other languages
Japanese (ja)
Inventor
Yukio Fujii
幸男 藤井
Hironobu Koike
宏信 小池
Shigetaka Kubota
窪田 繁尚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP15325190A priority Critical patent/JPH0446019A/en
Publication of JPH0446019A publication Critical patent/JPH0446019A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compounds Of Iron (AREA)

Abstract

PURPOSE:To improve brightness in yellow color by blowing O2-contg. gas into a suspension in which precipitate of iron hydroxide (II) is dispersed to obtain geothite-type iron hydroxide seed crystal, and then oxidizing iron (II) ions with air in this suspension. CONSTITUTION:A suspension containing <=0.3mol/l iron hydroxide (II) prepared by adding an aq. soln. of alkali metal of >=8wt.% concn. to an aq. soln. containing iron (II) ion is stirred to disperse the iron hydroxide (II) precipitate. Then this dispersion liquid is maintained at 20 - 50 deg.C, into which O2-contg. gas is introduced for 5 - 20 hours to obtain a suspension containing geothite-type iron hydroxide seed crystal. Then iron ion (II) soln. is added to this seed crystal suspension and heated at 60 - 90 deg.C so that the seed crystal grows at the rate of <7X10<-5>mol/m<2>/hr per unit surface area of the seed crystal.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、黄味鮮明性に優れる黄色含水酸化鉄顔料に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a yellow hydrated iron oxide pigment that has excellent yellow color clarity.

従来から、無機顔料は耐候性、耐光性に優れるため建設
機械や建築用塗料等の屋外塗料や道路標識等トラフィッ
クペイントとして用いられてきた。
BACKGROUND ART Inorganic pigments have traditionally been used as outdoor paints such as construction machinery and architectural paints and traffic paints such as road signs because of their excellent weather resistance and light resistance.

このうち、黄色顔料としては含水酸化鉄以外にもクロム
酸鉛(黄鉛)、硫化カドミウム、クロム酸亜鉛(亜鉛黄
)等があるが、これ等は黄味鮮明性に優れる一方で重金
属による健康障害が懸念されるため使用は制限されてい
る。
Among these, yellow pigments include lead chromate (yellow), cadmium sulfide, and zinc chromate (zinc yellow) in addition to hydrated iron oxide, but while these have excellent yellow color clarity, they are harmful to health due to heavy metals. Its use is restricted due to concerns about disability.

黄色含水酸化鉄顔料は有害成分を含まず、また耐候性、
耐光性に優れた化合物であるが、従来の黄色含水酸化鉄
顔料は黄味鮮明性においてクロム酸鉛(黄鉛)等の他の
無機顔料には及ばなかった。
The yellow hydrated iron oxide pigment does not contain harmful ingredients and is weather resistant.
Although it is a compound with excellent light resistance, conventional yellow hydrated iron oxide pigments were not as good as other inorganic pigments such as lead chromate (yellow lead) in terms of yellow color clarity.

このため、黄色含水酸化鉄顔料の黄味鮮明性の向上が望
まれており、本発明は、種晶の成長速度を制御すること
により、黄味鮮明性に優れた黄色含水酸化鉄顔料を提供
することを目的としている。
Therefore, it is desired to improve the yellow color sharpness of yellow hydrated iron oxide pigments, and the present invention provides a yellow hydrated iron oxide pigment with excellent yellow color sharpness by controlling the growth rate of seed crystals. It is intended to.

〔従来の技術〕[Conventional technology]

従来から、含水酸化鉄顔料は主として第一鉄塩を水溶液
中で酸化するいわゆる湿式プロセスで生産されてきた。
Hitherto, hydrated iron oxide pigments have been mainly produced by a so-called wet process in which ferrous salts are oxidized in an aqueous solution.

(特公昭27−786号公報、米国特許第2.939.
767号、米国特許第2.388.659号)この湿式
プロセスは、−船釣に硫酸第一鉄、塩化第一鉄塩を出発
原料とし、これを水酸化ナトリウム、アンモニア等アル
カリで中和し水酸化第一鉄の沈澱を得る工程(1)、 Fe”+ 2・NaOH−4Fe(OH)z + 2・
Na’ −−−−−(1)生成した水酸化第一鉄の沈澱
を空気酸化することで微粒の含水酸化鉄(ゲーサイト)
種晶(以下種晶と称する)を得る工程(2)、 44e(OH)2+ 02 →4・FeOOH+ 2・
HtO−−−(2)得られた種晶を核として第一鉄イオ
ンを空気酸化しゲーサイト粒子を成長させる工程(3)
、この際に生成する水素イオンをアルカリ土類金属鉄で
中和する工程(4)及び(4)゛ からなっている。
(Japanese Patent Publication No. 27-786, U.S. Patent No. 2.939.
(No. 767, U.S. Pat. No. 2,388,659) This wet process uses ferrous sulfate and ferrous chloride as starting materials and neutralizes them with alkalis such as sodium hydroxide and ammonia. Step (1) of obtaining a precipitate of ferrous hydroxide, Fe”+ 2.NaOH-4Fe(OH)z + 2.
Na' ------- (1) Fine particles of hydrated iron oxide (goethite) are obtained by air oxidizing the precipitate of ferrous hydroxide produced.
Step (2) of obtaining seed crystals (hereinafter referred to as seed crystals), 44e(OH)2+ 02 →4・FeOOH+ 2・
HtO --- (2) Step of air oxidizing ferrous ions using the obtained seed crystals as nuclei to grow goethite particles (3)
The process consists of steps (4) and (4)' in which hydrogen ions generated at this time are neutralized with alkaline earth metal iron.

4 ・Fe”  +  Oz  +  6 ・HtO→
 4 ・Fe0OH+  8 ・H=  (3)H” 
+ OH−→H!O−−−−−−(4)2・H” + 
Fe −Fe” + Hz     −−−−−−−(
4)’硫酸第一鉄を原料とし黄色含水酸化鉄顔料を得る
方法では、成長工程で遊離する水素イオンを金属鉄で中
和する方法とアルカリで中和する方法の2法に大別され
る。
4 ・Fe" + Oz + 6 ・HtO→
4 ・Fe0OH+ 8 ・H= (3)H”
+OH-→H! O------(4)2・H"+
Fe −Fe” + Hz −−−−−−−(
4) Methods for obtaining yellow hydrated iron oxide pigments using ferrous sulfate as a raw material are broadly divided into two methods: a method in which hydrogen ions liberated during the growth process are neutralized with metallic iron, and a method in which they are neutralized with an alkali. .

金属鉄で中和する方法では、遊離する硫酸で金属鉄を溶
解し硫酸第一鉄として再利用するため、硫酸第一鉄の利
用効率はよいが反応速度の制御が難しく、吸油量や色相
等の顔料特性の制御か難しいという問題がある。また、
得られた顔料は多結晶粒子を多く含み、金属鉄中に含ま
れるカーボンが顔料に混入するため黄味鮮明性の向上は
難しい。
In the method of neutralization with metallic iron, the metallic iron is dissolved in the liberated sulfuric acid and reused as ferrous sulfate. Although the ferrous sulfate is used efficiently, it is difficult to control the reaction rate, and the amount of oil absorbed, color, etc. However, there is a problem in that it is difficult to control the properties of pigments. Also,
The resulting pigment contains many polycrystalline particles, and the carbon contained in the metal iron mixes into the pigment, making it difficult to improve yellow color clarity.

一方、成長工程で遊離する酸をアルカリで中和する方法
(アルカリ法)では、硫酸第一鉄の利用効率は悪いが反
応速度や顔料の粒径の制御が比較的容易であるため、安
定した顔料特性が得やすいという特徴がある。しかし、
反応条件として出発原料、原料中の不純物、中和剤の種
類、硫酸第一鉄の濃度、中和剤の濃度、反応温度等多く
の因子が選択できるが、優れた黄味鮮明性の黄色含水酸
化鉄顔料は未だ得られていない。
On the other hand, the method of neutralizing the acid liberated during the growth process with an alkali (alkaline method) has poor utilization efficiency of ferrous sulfate, but it is relatively easy to control the reaction rate and pigment particle size, so it is stable. It has the characteristic that it is easy to obtain pigment properties. but,
Many factors can be selected as reaction conditions, such as starting raw materials, impurities in raw materials, type of neutralizing agent, concentration of ferrous sulfate, concentration of neutralizing agent, and reaction temperature. Iron oxide pigments have not yet been obtained.

これまで、黄味鮮明性の優れた含水酸化鉄顔料を得るた
めに顔料の粒子の粒径を最適化し、また、粒度分布を最
適粒径の範囲で狭くする努力がなされてきた。(借問ら
、工業化学雑誌、Vo 1.66 (4)+p412−
416(1963)) このような顔料粒子の粒度分布の改善や結晶性の向上を
達成する方法としては、たとえば、湿式合成した含水酸
化鉄顔料をアルカリ液中で100〜250°Cで水熱処
理する方法(特開昭51−115698号公報、特開昭
63−64923号公報)や硫酸第一鉄溶液の一部をカ
セイソーダまたはアンモニアで部分中和し、生成した水
酸化第一鉄を酸性条件で空気酸化して黄色含水酸化鉄顔
料を得る方法(特開昭53−73497号公報、特開昭
62−128929号公報)等が提案されている。
Until now, efforts have been made to optimize the particle size of pigment particles and to narrow the particle size distribution within the optimum particle size range in order to obtain a hydrated iron oxide pigment with excellent yellow color clarity. (Koroku et al., Industrial Chemistry Magazine, Vo 1.66 (4) + p412-
416 (1963)) To improve the particle size distribution and crystallinity of pigment particles, for example, wet-synthesized hydrated iron oxide pigments are hydrothermally treated in an alkaline solution at 100 to 250°C. Method (Japanese Unexamined Patent Publications No. 51-115698, No. 63-64923), a part of the ferrous sulfate solution is partially neutralized with caustic soda or ammonia, and the generated ferrous hydroxide is neutralized under acidic conditions. A method of obtaining a yellow hydrated iron oxide pigment by air oxidation (JP-A-53-73497, JP-A-62-128929) has been proposed.

しかしながら、湿式合成した含水酸化鉄顔料をアルカリ
液中で100〜250℃で水熱処理する方法では、黄味
鮮明性は向上するが高価なオートクレーブでの処理を必
要とし、また、多量のアルカリを用いるため工業的には
実用性に乏しい。
However, the method of hydrothermally treating a wet-synthesized hydrated iron oxide pigment in an alkaline solution at 100 to 250°C improves yellow color clarity, but requires treatment in an expensive autoclave and also uses a large amount of alkali. Therefore, it is not industrially practical.

硫酸第一鉄の一部をカセイソーダまたはアンモニアで部
分中和し、生成した水酸化第一鉄を酸性条件で空気酸化
し黄色含水酸化鉄顔料を得る方法においては、粒度分布
の狭い種晶を得やすい反面、双晶に起因する枝分かれ粒
子の生成や、多量の多結晶粒子が生成する等、優れた黄
味鮮明性を有する黄色含水酸化鉄顔料の製法を開示する
には至っていない。
In the method of partially neutralizing ferrous sulfate with caustic soda or ammonia and air-oxidizing the generated ferrous hydroxide under acidic conditions to obtain a yellow hydrated iron oxide pigment, seed crystals with a narrow particle size distribution are obtained. On the other hand, a method for producing a yellow hydrated iron oxide pigment with excellent yellow color clarity has not yet been disclosed due to the generation of branched particles due to twin crystals and the generation of a large amount of polycrystalline particles.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明の目的は、黄味鮮明性に優れた黄色含水酸化鉄顔
料を提供することにあるが、顔料の黄味鮮明性を向上す
るためには塗膜中の顔料粒子の充填性を向上させること
が必要で、このためには顔料粒子の平均粒径を最適な範
囲に制御し、粒度分布を狭くし、かつ双晶等を含まない
単分散、単結晶粒子とすることが理想とされている。
The purpose of the present invention is to provide a yellow hydrated iron oxide pigment with excellent yellow color clarity.In order to improve the yellow color clarity of the pigment, it is necessary to improve the filling properties of pigment particles in the coating film. To achieve this, it is ideal to control the average particle diameter of pigment particles within an optimal range, narrow the particle size distribution, and make monodisperse, single-crystal particles free from twins. There is.

しかし、これまでの製法では、たとえ平均粒径を最適化
した場合でも双晶粒子や凝集粒子の発生を充分に抑制す
ることは困難で、黄味鮮明性に優れた黄色含水酸化鉄顔
料を合成するには至っていない。
However, with conventional manufacturing methods, it is difficult to sufficiently suppress the generation of twinned particles and agglomerated particles even when the average particle size is optimized, and a yellow hydrated iron oxide pigment with excellent yellow color clarity is synthesized. I haven't reached the point yet.

〔課題を解決するための手段〕[Means to solve the problem]

そこで、本発明者らはこのような黄味鮮明性に優れた黄
色含水酸化鉄顔料を合成するためには、粒径の最適化、
粒度分布の制御に加え双晶粒子の生成の抑制や二次核発
生を抑制することが必要であるとの考えに基づき、顔料
合成条件と顔料の凝集、双晶粒子の生成、二次核発生頻
度等との関係を検討した。
Therefore, in order to synthesize such a yellow hydrated iron oxide pigment with excellent yellow color clarity, the present inventors have focused on optimizing the particle size,
Based on the idea that in addition to controlling particle size distribution, it is necessary to suppress the generation of twinned particles and secondary nucleation, we have developed pigment synthesis conditions, pigment aggregation, twinned particle generation, and secondary nucleation. We examined the relationship with frequency, etc.

その結果、種晶の成長速度を制御することにより、顔料
の黄味鮮明性を大幅に向上した顔料の合成が可能となる
ことを見出し本発明を完成するに至ったものである。
As a result, the inventors discovered that by controlling the growth rate of seed crystals, it is possible to synthesize a pigment with significantly improved yellow color clarity, leading to the completion of the present invention.

すなわち、本発明は水酸化第一鉄沈澱を含む懸濁液を非
酸化性の雰囲気で撹拌し、水酸化第一鉄沈澱を分散した
後酸素を含有する気体を吹き込み、ゲーサイト型含水酸
化鉄(α−FeOOH)の種晶懸濁液を調製し、該種晶
の存在下で第一鉄イオンを空気酸化して種晶を成長する
黄色含水酸化鉄顔料の製造方法において、種晶の成長速
度が種晶の表面積につき7x10−’mol/m”/h
r以下であることを特徴とする黄色含水酸化鉄顔料の製
造方法を提供するものである。
That is, in the present invention, a suspension containing a ferrous hydroxide precipitate is stirred in a non-oxidizing atmosphere, and after the ferrous hydroxide precipitate is dispersed, an oxygen-containing gas is blown into the goethite type hydrated iron oxide. A method for producing a yellow hydrated iron oxide pigment in which a seed crystal suspension of (α-FeOOH) is prepared, and ferrous ions are air-oxidized in the presence of the seed crystal to grow the seed crystal. The speed is 7x10-'mol/m''/h per surface area of the seed crystal.
The present invention provides a method for producing a yellow hydrated iron oxide pigment characterized in that the pigment content is less than or equal to r.

以下、本発明をさらに詳細に説明する。The present invention will be explained in more detail below.

分散性に優れた種晶は、たとえば硫酸第一鉄等の第一鉄
イオンを含む水溶液に対して、8wt%以下の濃度の水
酸化ナトリウム水溶液等のアルカリ金属の水酸化物水溶
液を加え、水酸化第一鉄を0.3 mol/j’以下含
む懸濁液を調製し、非酸化性の雰囲気で懸濁液を撹拌し
、水酸化第一鉄沈澱の分散を行い、分散液を20〜50
 ’Cに保ちながら酸素含有気体を5〜20時間通気す
ることにより得られる。
Seed crystals with excellent dispersibility can be obtained by adding an aqueous alkali metal hydroxide solution, such as an aqueous sodium hydroxide solution, with a concentration of 8 wt% or less to an aqueous solution containing ferrous ions, such as ferrous sulfate. A suspension containing 0.3 mol/j' or less of ferrous oxide is prepared, and the suspension is stirred in a non-oxidizing atmosphere to disperse the ferrous hydroxide precipitate. 50
It is obtained by aerating an oxygen-containing gas for 5 to 20 hours while maintaining the temperature at 'C.

ここで、種晶のBET比表面積は種晶の合成温度と水酸
化第一鉄沈澱の酸化速度で決定され、懸濁液の撹拌条件
や合成温度、空気の吹き込み速度で制御することが可能
である。
Here, the BET specific surface area of the seed crystal is determined by the synthesis temperature of the seed crystal and the oxidation rate of the ferrous hydroxide precipitate, and can be controlled by the stirring conditions of the suspension, the synthesis temperature, and the air blowing rate. be.

また、種晶の成長は60〜90℃で行い、成長速度は種
晶の単位表面積あたり7x10〜’mol/m!/hr
以下とすることが望ましい。さらに好ましくは5x10
−’mol/m’/hr以下である。ここで、種晶の表
面積は種晶の乾燥粉末のBET比表面積を意味する。
In addition, the seed crystals are grown at 60-90°C, and the growth rate is 7 x 10-'mol/m per unit surface area of the seed crystals! /hr
The following is desirable. More preferably 5x10
-'mol/m'/hr or less. Here, the surface area of the seed crystal means the BET specific surface area of the dry powder of the seed crystal.

成長速度が7x10−’mol/が/hr以上となれば
、黄味鮮明性が低下するので好ましくない。
If the growth rate is 7×10 −'mol//hr or more, it is not preferable because the yellow color sharpness decreases.

このような成長速度は、種晶スラリーへの酸素の溶解速
度が種晶スラリー中に含まれる種晶の全固体表面積あた
り7x10−’mol/m”/hr以下となるように撹
拌速度、空気吹き込み量を設定することで達成される。
Such a growth rate is determined by adjusting the stirring speed and air blowing so that the dissolution rate of oxygen into the seed crystal slurry is 7 x 10-'mol/m''/hr or less per total solid surface area of the seed crystals contained in the seed crystal slurry. This is achieved by setting the amount.

以下、実施例により本発明をさらに詳細に説明するが、
これらは本発明の説明を目的とするものであり本発明を
制限するものではない。
Hereinafter, the present invention will be explained in more detail with reference to Examples.
These are for the purpose of illustrating the invention and are not intended to limit the invention.

なお、顔料の評価法としては、顔料の試料1gを薫あま
に油0.9gと練り合わせて均一なノリ状の顔料分散物
とした後、6倍量(重量)のクリアラッカーで希釈しア
ート紙に塗布し乾燥して色差計で測色した。
To evaluate the pigment, 1 g of the pigment sample was kneaded with 0.9 g of linseed oil to make a uniform paste-like pigment dispersion, and then diluted with 6 times the amount (by weight) of clear lacquer and applied to art paper. The color was measured using a color difference meter after drying.

また、色の定量的表現としてCIELAB単位があり、
色相はL”  a”、b8の3つの色価で表現される。
In addition, there is a CIELAB unit as a quantitative expression of color.
Hue is expressed by three color values: L"a" and b8.

ここでL1値は明度を、a1値が赤色度を、b1値が黄
色度を示し、黄味はb1値に、鮮明性はa1値とb″値
の距離(all+ b6りl/!に対応する。
Here, the L1 value indicates brightness, the a1 value indicates redness, and the b1 value indicates yellowness. do.

従って、黄味鮮明性の黄色含水酸化鉄ではb″値が高い
ことが望ましい。また、L8値が高いことも明度を向上
するため鮮明性の点で好ましい。
Therefore, it is desirable that the yellow hydrated iron oxide has a high b″ value.It is also preferable to have a high L8 value from the viewpoint of brightness because it improves the brightness.

実施例1 硫酸第一鉄(FeSO4−7H!O) (和光純薬工業
(IIり製、試薬1級)をイオン交換水に溶解し18.
2wt%の溶液とした。また、水酸化ナトリウム(Na
OH) (和光純薬工業(練製、試薬1級)をイオン交
換水に溶解し5.0wt%溶液とした。
Example 1 Ferrous sulfate (FeSO4-7H!O) (manufactured by Wako Pure Chemical Industries (II), reagent grade 1) was dissolved in ion-exchanged water and 18.
A 2 wt % solution was prepared. In addition, sodium hydroxide (Na
OH) (Wako Pure Chemical Industries (refined, grade 1 reagent) was dissolved in ion-exchanged water to make a 5.0 wt% solution.

18、2wt%の硫酸第一鉄溶液19.6kgを301
のステンレス反応槽に充填し30℃とした。液温か安定
した後、5.0wt%の水酸化ナトリウム溶液7.8k
gを反応槽の上部から撹拌しながら添加し、中和物の懸
濁液を得た。
18. 19.6 kg of 2 wt% ferrous sulfate solution was added to 301
The mixture was filled into a stainless steel reaction tank and heated to 30°C. After the liquid temperature stabilizes, 5.0 wt% sodium hydroxide solution 7.8k
g was added from the top of the reaction tank with stirring to obtain a suspension of the neutralized product.

該懸濁液に窒素を5〜10β/minで通気し、径15
0I1mの撹拌羽根を用い25Orpmで2時間撹拌し
、析出物を充分に分散させた後、窒素を410cc/m
inの空気に切替え、懸濁液を9.3時間で酸化するこ
とにより、BET比表面積54m’/gの種晶を430
g含む種晶スラリー27.2kgを得た。
Nitrogen was bubbled through the suspension at a rate of 5 to 10 β/min, and a diameter of 15
After stirring for 2 hours at 25 rpm using a 0I1m stirring blade to sufficiently disperse the precipitate, nitrogen was added at 410cc/m.
The seed crystals with a BET specific surface area of 54 m'/g were oxidized for 9.3 hours by switching to air at
27.2 kg of seed crystal slurry containing g was obtained.

該種晶のスラリー1000gと18.2wt%の硫酸第
一鉄溶液330gとをセパラブルフラスコに充填し、8
0℃に昇温した後、種晶の固体表面積あたり2.5x1
0−11mol/m’/hrの成長速度で種晶の成長を
行った。
A separable flask was filled with 1000 g of the seed crystal slurry and 330 g of a 18.2 wt% ferrous sulfate solution.
After heating to 0℃, 2.5x1 per solid surface area of seed crystal
Seed crystal growth was performed at a growth rate of 0-11 mol/m'/hr.

硫酸第一鉄の酸化に伴って遊離する硫酸を11wt%の
水酸化ナトリウム水溶液で中和し、pHを3.6に保ち
ながら47時間、種晶の成長を行った。
Sulfuric acid liberated due to oxidation of ferrous sulfate was neutralized with an 11 wt% aqueous sodium hydroxide solution, and seed crystals were grown for 47 hours while maintaining the pH at 3.6.

成長終了後の顔料スラリーを濾過、洗浄後70°Cで一
昼夜乾燥し、黄色含水酸化鉄顔料を得た。
After the growth, the pigment slurry was filtered, washed, and dried at 70°C for a day and night to obtain a yellow hydrated iron oxide pigment.

該含水酸化鉄顔料の1gと煮あまに油0.9gをツーバ
ー式マーラー(安田精機(株)を用い150ポンド(6
8kg)の荷重で50回線り合わせた。この操作を3回
繰り返すことで均一な糊状の顔料分散物を調製した。得
られた糊状の混練物は6倍量(重量)のニトロセルロー
スクリアラッカー(関西ペイント■No、26 )で希
釈し、ベーカー式フィルムアブ・リケーター(天佑機材
(株)によって両面アート紙に6m1lの厚さに塗布し
、室温で12時間乾燥して色価評価用試料とした。
1 g of the hydrated iron oxide pigment and 0.9 g of boiled linseed oil were mixed using a two-bar mala (Yasuda Seiki Co., Ltd.) at 150 pounds (6
50 lines were connected with a load of 8 kg). By repeating this operation three times, a uniform paste-like pigment dispersion was prepared. The resulting paste-like kneaded material was diluted with 6 times the amount (weight) of nitrocellulose clear lacquer (Kansai Paint ■No. 26), and applied to 6 ml of double-sided art paper using a Baker-type film ab licator (Tenyu Kizai Co., Ltd.). The sample was coated to a thickness of 1,000 ml and dried at room temperature for 12 hours to prepare a sample for color value evaluation.

色価の定量化はMacbeth社製MS−2020プラ
ス型測色用分光光度計で行い、C置AB単位で比較した
The color values were quantified using a Macbeth MS-2020 Plus type colorimetric spectrophotometer and compared in units of C and AB.

色価の評価結果を表1に示す。Table 1 shows the evaluation results of color value.

実施例2 実施例1と同様にして18.2wt%の硫酸第一鉄溶液
820gをセパラブルフラスコに充填し、温水槽にて3
0℃とした。液温か安定した後、5.0wt%の水酸化
ナトリウム溶液365gをセパラブルフラスコ上部から
添加し中和物の懸濁液を得た。
Example 2 In the same manner as in Example 1, 820 g of 18.2 wt% ferrous sulfate solution was filled into a separable flask, and heated in a hot water tank for 3
The temperature was 0°C. After the liquid temperature became stable, 365 g of 5.0 wt % sodium hydroxide solution was added from the top of the separable flask to obtain a suspension of the neutralized product.

該懸濁液に窒素を500cc/minで通気し、径80
mmの撹拌羽根を用い550rpmで2時間撹拌し、析
出物を充分に分散させた後、窒素を30cc/minの
空気に切替え、懸濁液を4.8時間で酸化することによ
り、BET比表面積59m2/gの種晶を19g含む種
晶スラリー1150gを得た。
Nitrogen was bubbled through the suspension at a rate of 500 cc/min.
After stirring for 2 hours at 550 rpm using a stirring blade of mm to sufficiently disperse the precipitate, the nitrogen was changed to air at 30 cc/min, and the suspension was oxidized for 4.8 hours to determine the BET specific surface area. 1150 g of seed crystal slurry containing 19 g of 59 m2/g seed crystals was obtained.

該種晶のスラリー450gと18.2wt%の硫酸第一
鉄溶液750gとをセパラブルフラスコに充填し、70
°Cに昇温した後、種晶の固体表面積あたり2.6X1
0−’mol/m2/hrの成長速度で種晶の成長を行
った。
A separable flask was filled with 450 g of the seed crystal slurry and 750 g of a 18.2 wt% ferrous sulfate solution.
2.6X1 per solid surface area of seed crystal after heating to °C
Seed crystal growth was performed at a growth rate of 0-'mol/m2/hr.

硫酸第一鉄の酸化に伴って遊離する硫酸を11wt%の
水酸化ナトリウム水溶液で中和し、pHを3.6に保ち
ながら69時間、種晶の成長を行った。
The sulfuric acid liberated due to the oxidation of ferrous sulfate was neutralized with an 11 wt % aqueous sodium hydroxide solution, and seed crystals were grown for 69 hours while maintaining the pH at 3.6.

成長終了後の顔料スラリーを濾過、洗浄後70℃で一昼
夜乾燥し、黄色含水酸化鉄顔料を得た。
After the growth, the pigment slurry was filtered, washed, and dried at 70° C. for a day and night to obtain a yellow hydrated iron oxide pigment.

得られた黄色含水酸化鉄顔料は実施例1と同様にして色
価評価を行った。色価の評価結果を表1に示す。
The obtained yellow hydrated iron oxide pigment was evaluated for color value in the same manner as in Example 1. Table 1 shows the evaluation results of color value.

比較例1 実施例1と同様にして18.2wt%の硫酸第一鉄溶液
820gをセパラブルフラスコに充填し、温水槽にて3
0℃とした。液温か安定した後、5.0wt%の水酸化
ナトリウム溶液365gをセパラブルフラスコ上部から
添加し中和物の懸濁液を得た。
Comparative Example 1 In the same manner as in Example 1, 820 g of 18.2 wt% ferrous sulfate solution was filled into a separable flask, and heated in a hot water tank for 30 minutes.
The temperature was 0°C. After the liquid temperature became stable, 365 g of 5.0 wt % sodium hydroxide solution was added from the top of the separable flask to obtain a suspension of the neutralized product.

該懸濁液に窒素を500cc/minで通気し、径80
mrnの撹拌羽根を用い550rpmで2時間撹拌し、
析出物を充分に分散させた後、窒素を30cc/min
の空気に切替え、懸濁液を4.1時間で酸化することに
より、BET比表面積67m”/Hの種晶を19g含む
種晶スラリー1150gを得た。
Nitrogen was bubbled through the suspension at a rate of 500 cc/min.
Stir at 550 rpm for 2 hours using mrn stirring blade,
After sufficiently dispersing the precipitate, nitrogen was supplied at 30cc/min.
By switching to air and oxidizing the suspension for 4.1 hours, 1150 g of a seed crystal slurry containing 19 g of seed crystals with a BET specific surface area of 67 m''/H was obtained.

該種晶スラリーの225gと18.2wt%の硫酸第一
鉄溶液975gとをセパラブルフラスコに充填し、80
°Cに昇温した後に空気を通気し、種晶の固体表面積あ
たり8.2x10”’ mol/m”/hrの成長速度
で種晶の成長を行った。
A separable flask was filled with 225 g of the seed crystal slurry and 975 g of 18.2 wt% ferrous sulfate solution, and
After the temperature was raised to °C, air was aerated, and the seed crystals were grown at a growth rate of 8.2 x 10''mol/m''/hr per solid surface area of the seed crystals.

硫酸第一鉄の酸化に伴って遊離する硫酸を11wt%の
水酸化ナトリウム水溶液で中和し、pHを3.6に保ち
ながら61時間、種晶の成長を行った。
The sulfuric acid liberated due to the oxidation of ferrous sulfate was neutralized with an 11 wt % aqueous sodium hydroxide solution, and seed crystals were grown for 61 hours while maintaining the pH at 3.6.

成長終了後の顔料スラリーを濾過、洗浄後70°Cで一
昼夜乾燥し、黄色含水酸化鉄顔料を得た。
After the growth, the pigment slurry was filtered, washed, and dried at 70°C for a day and night to obtain a yellow hydrated iron oxide pigment.

得られた黄色含水酸化鉄顔料は実施例1と同様にして色
価評価を行った。色価の評価結果を表1に示す。
The obtained yellow hydrated iron oxide pigment was evaluated for color value in the same manner as in Example 1. Table 1 shows the evaluation results of color value.

表  1 成長速度     色 相 xl、o−5mol/m2/hr  L ”  a ”
  b ”実施例1   2.5     60 18
  54実施例2   2.6     60 18 
 55比較例1   8.2     ’58 19 
 50〔発明の効果〕 本発明では、従来の黄色含水酸化鉄顔料におい得られな
かった黄味鮮明性の優れた黄色含水酸化鉄顔料を得るこ
とができる。
Table 1 Growth rate Color Phase xl, o-5mol/m2/hr L ” a ”
b ”Example 1 2.5 60 18
54 Example 2 2.6 60 18
55 Comparative Example 1 8.2 '58 19
50 [Effects of the Invention] According to the present invention, it is possible to obtain a yellow hydrated iron oxide pigment with excellent yellow color clarity, which cannot be obtained with conventional yellow hydrated iron oxide pigments.

Claims (1)

【特許請求の範囲】[Claims] 水酸化第一鉄沈澱を含む懸濁液を非酸化性の雰囲気で撹
拌し、水酸化第一鉄沈澱を分散した後酸素を含有する気
体を吹き込み、ゲーサイト型含水酸化鉄(α−FeOO
H)の種晶懸濁液を調製し、該種晶の存在下で第一鉄イ
オンを空気酸化して種晶を成長する黄色含水酸化鉄顔料
の製造方法において、種晶の成長を種晶の表面積につき
7x10^−^5mol/m^2/hr以下の速度で行
うことを特徴とする黄色含水酸化鉄顔料の製造方法。
The suspension containing the ferrous hydroxide precipitate is stirred in a non-oxidizing atmosphere, and after the ferrous hydroxide precipitate is dispersed, an oxygen-containing gas is blown into it to form a goethite-type hydrated iron oxide (α-FeOO).
H) In the method for producing a yellow hydrated iron oxide pigment, the seed crystal suspension is prepared and ferrous ions are air-oxidized in the presence of the seed crystal to grow the seed crystal. A method for producing a yellow hydrated iron oxide pigment, which is carried out at a rate of 7x10^-^5 mol/m^2/hr or less per surface area.
JP15325190A 1990-06-11 1990-06-11 Production of yellow iron hydroxide pigment Pending JPH0446019A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15325190A JPH0446019A (en) 1990-06-11 1990-06-11 Production of yellow iron hydroxide pigment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15325190A JPH0446019A (en) 1990-06-11 1990-06-11 Production of yellow iron hydroxide pigment

Publications (1)

Publication Number Publication Date
JPH0446019A true JPH0446019A (en) 1992-02-17

Family

ID=15558373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15325190A Pending JPH0446019A (en) 1990-06-11 1990-06-11 Production of yellow iron hydroxide pigment

Country Status (1)

Country Link
JP (1) JPH0446019A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0918076A3 (en) * 1997-11-19 1999-10-13 Bayer Aktiengesellschaft Non-silking yellow iron oxide pigments with high variegation
JP2017201039A (en) * 2006-05-13 2017-11-09 ランクセス・ドイチュランド・ゲーエムベーハー Improved yellow iron oxide pigment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0918076A3 (en) * 1997-11-19 1999-10-13 Bayer Aktiengesellschaft Non-silking yellow iron oxide pigments with high variegation
JP2017201039A (en) * 2006-05-13 2017-11-09 ランクセス・ドイチュランド・ゲーエムベーハー Improved yellow iron oxide pigment

Similar Documents

Publication Publication Date Title
US2388659A (en) Manufacture of pigments
US3970738A (en) Process for producing iron oxide products from waste liquids containing ferrous salts
CN102390870B (en) Preparation method of superfine iron oxide red pigment with high glossiness and pure red tone
CN112408450A (en) Preparation method of cubic-like nano calcium carbonate
JPS586688B2 (en) Method for producing black iron oxide pigment
US5885545A (en) Highly transparent, yellow iron oxide pigments, process for the production thereof and use thereof
US2785991A (en) Preparation of red oxide of iron
JPS60122728A (en) Black color pigment and manufacture
CN110228823B (en) Iron oxide yellow and preparation method thereof, and iron oxide red and preparation method thereof
US3974267A (en) Manufacture of iron oxides
JP2000290452A (en) Mg-al-based hydrotalcite type particle powder, stabilizer for chlorine-containing resin and production of the same powder
US2866686A (en) Preparation of red oxide of iron
JPH0446019A (en) Production of yellow iron hydroxide pigment
JP4182669B2 (en) Manufacturing method of granular hematite particle powder
JP5081438B2 (en) Method for producing magnesium oxide
US4256723A (en) Process for preparing precipitated red iron oxides
JP4157202B2 (en) Process for producing spindle-shaped calcium carbonate
JPH0657167A (en) Method of surface treatment of heavy calcium carbonate
JPH03195779A (en) Yellow hydrated iron oxide pigment and production thereof
US4024232A (en) Method of preparing magnetite having a controlled particle size, starting from ferrous sulphate solutions
JP3509842B2 (en) Production method of heat-resistant yellow iron hydroxide hydroxide pigment
JP4336224B2 (en) Composite black oxide particles, method for producing the same, black paint and black matrix
JP2829644B2 (en) Production method of α-iron oxide
JPH04122780A (en) Yellow hydrated iron oxide pigment
US3009821A (en) Red oxide of iron