JPH0445896A - Water purification device - Google Patents

Water purification device

Info

Publication number
JPH0445896A
JPH0445896A JP2152001A JP15200190A JPH0445896A JP H0445896 A JPH0445896 A JP H0445896A JP 2152001 A JP2152001 A JP 2152001A JP 15200190 A JP15200190 A JP 15200190A JP H0445896 A JPH0445896 A JP H0445896A
Authority
JP
Japan
Prior art keywords
water
active carbon
free chlorine
trihalomethane
ion exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2152001A
Other languages
Japanese (ja)
Other versions
JP2789789B2 (en
Inventor
Takayuki Urata
隆行 浦田
Shuzo Tokumitsu
修三 徳満
Noboru Naruo
成尾 昇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2152001A priority Critical patent/JP2789789B2/en
Publication of JPH0445896A publication Critical patent/JPH0445896A/en
Application granted granted Critical
Publication of JP2789789B2 publication Critical patent/JP2789789B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To allow the removal of free chlorine and harmful org. matter, such as trihalomethane, and to control the concn. of mineral components at need by disposing a compd. contg. at least a calcium (Ca) compd. into one of the water routes of branching devices. CONSTITUTION:An active carbon layer 1 decreases part of the free chlorine and red water by adsorption, etc., and an ion exchange material 2 removes dissolved matter from the water. The compd. 4 contg. at least the Ca adds the mineral components, such as Ca, into the water. A 3-way valve 7 mixes the water from which the dissolved matter is removed and the water mixed with the mineral components, such as Ca, at an arbitrary ratio. A photocontact reactor 8 removes and sterilizes the free chlorine and org. matter, such as trihalomethane, remaining in the water. The photocontact reactor 8 may use anatase type titanium oxide, rutile type titanium oxide, tungsten oxide, tin oxide, zinc oxide, or the mixture composed thereof as a semiconductor material. The active carbon layer 1 may be any of coconut shell active carbon, coal active carbon, and active carbon fibers.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、一般家庭や事務所などで使用される給水装置
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a water supply device used in general homes, offices, and the like.

従来の技術 水道水には塩素消毒がされているために多くの遊離塩素
が含まれており、カルキ臭(塩素臭)の多いものとなっ
ている。また、塩素が水中の有機物と反応し、発ガン性
物質であるトリハロメタン等も生成されている。そこで
従来は一般家庭では浄水器を使用してこの遊離塩素を除
去していた。
Conventional Technology Tap water contains a large amount of free chlorine because it has been chlorinated and has a strong chlorine odor (chlorine odor). Chlorine also reacts with organic matter in water, producing carcinogenic substances such as trihalomethane. Conventionally, households used water purifiers to remove this free chlorine.

この浄水器で最も一般的なものを第3図に基づいて説明
する。水路中に配置した活性炭層31と膜32とを備え
ている。水はまず活性炭層31に入り遊離塩素が除かれ
る。またこのとき同時に有機物などの不良成分は、吸着
作用により活性炭中に取り込まれる。活性炭層31を経
た水は、膜32を経て外部に取り出される。この膜32
は0.1μm程度の多数の孔を5有しており、雑菌をこ
しとることができる。
The most common type of water purifier will be explained based on FIG. It includes an activated carbon layer 31 and a membrane 32 arranged in the water channel. The water first enters the activated carbon layer 31 to remove free chlorine. At the same time, defective components such as organic substances are taken into the activated carbon by adsorption. Water that has passed through the activated carbon layer 31 is taken out through the membrane 32 to the outside. This membrane 32
It has many pores of about 0.1 μm and can filter out germs.

発明が解決しようとする課題 しかし前記した従来の浄水器では、残留塩素は比較的良
く取れるが、トリハロメタンについては活性炭層が新し
いうちしか除去できない。また、地域によってはミネラ
ル成分であるカルシウム(Ca)が非常に多く含有され
ており、一般家庭でアイロンを使用した場合、アイロン
のスチーム穴が詰まるという問題も起きている。従来の
浄水器は、このミネラル成分であるCaには全く作用し
ないものであった。
Problems to be Solved by the Invention However, although the conventional water purifiers described above remove residual chlorine relatively well, they can only remove trihalomethane while the activated carbon layer is new. Furthermore, depending on the region, iron contains a very large amount of the mineral calcium (Ca), and when irons are used at home, there is a problem that the iron's steam holes become clogged. Conventional water purifiers have no effect on this mineral component, Ca.

本発明はこのような従来の構成の浄水器が有していた課
題を解決しようとするものであって、簡単な構成で遊離
塩素やトリハロメタン等の有害有機物が除去でき、かつ
必要に応じてミネラル成分の濃度をコントロールするこ
とができる浄水装置を提供することを第一の目的とする
ものである。
The present invention aims to solve the problems that water purifiers with conventional configurations have had, and is capable of removing harmful organic substances such as free chlorine and trihalomethane with a simple configuration, and can also remove minerals as necessary. The primary objective is to provide a water purification device that can control the concentration of components.

また前記目的に加え、長期間メインテナンスなしで使用
可能な浄水装置を提供することを第二の目的とするもの
である。
In addition to the above object, a second object is to provide a water purification device that can be used for a long period of time without maintenance.

課題を解決するための手段 前記第一の目的を達成する第一の発明は、水路中に、イ
オン交換物質と、複数の水経路を形成する分岐器と、前
記複数の水経路中の水を混合調整可能な混合器と、光触
媒反応器とを有し、前記分岐器の水経路の一つには少な
くともカルシウム(Ca)を含む化合物を配置したもの
である。
Means for Solving the Problems A first invention that achieves the first object includes, in a waterway, an ion exchange substance, a branching device forming a plurality of water paths, and a water channel in the plurality of water paths. It has a mixer that can adjust mixing and a photocatalytic reactor, and a compound containing at least calcium (Ca) is arranged in one of the water paths of the brancher.

前記第二の目的を達成する第二の発明は、第一の発明に
おけるイオン交換物質に代えて逆浸透膜を備えたもので
ある。
A second invention that achieves the second object is equipped with a reverse osmosis membrane in place of the ion exchange substance in the first invention.

作用 第一の発明においては、光触媒反応器は遊離塩素とトリ
ハロメタンなどの有機物を除去する。またイオン交換物
質は水中のイオン成分を除去する。分岐器は脱イオン化
した水を分割し、少なくともCaを含む化合物は、水中
にCa等のミネラル分を添加する。混合器はCa等のミ
ネラル分が溶けた水経路中の水と脱イオン水を任意の割
合で混合する。これらにより水中の遊離塩素やトリハロ
メタンは除去され、ミネラル成分をほとんど0から適量
まで調整することができる。
In the first aspect of the invention, the photocatalytic reactor removes free chlorine and organic substances such as trihalomethane. Ion exchange materials also remove ionic components from water. The splitter splits the deionized water, and at least a compound containing Ca adds minerals such as Ca to the water. The mixer mixes water in the water path in which minerals such as Ca are dissolved and deionized water at an arbitrary ratio. These remove free chlorine and trihalomethane from the water, and the mineral content can be adjusted from almost zero to an appropriate amount.

また第二の発明においては、逆浸透膜を使用しており、
この逆浸透膜は水中の微粒子やイオン成分など水に溶は
込んでいる成分を除去する機能を有している。また逆浸
透膜は比較的長期間(2〜3年)メインテナンスの必要
がなく、極めて実用的である。光触媒反応器及び分岐器
は前記第一の発明の場合と同様に作用する。これらによ
り、水中の遊離塩素やトリハロメタンは除去でき、ミネ
ラル成分についてはほとんど0から適量まで調整するこ
とができ、長期間メインテナンスの必要がない浄水装置
を実現することができるものである。
In the second invention, a reverse osmosis membrane is used,
This reverse osmosis membrane has the function of removing components dissolved in water, such as fine particles and ionic components. In addition, reverse osmosis membranes do not require maintenance for a relatively long period (2 to 3 years) and are extremely practical. The photocatalytic reactor and branching device function in the same manner as in the first invention. As a result, free chlorine and trihalomethane in water can be removed, mineral components can be adjusted from almost zero to an appropriate amount, and a water purification device that does not require long-term maintenance can be realized.

実施例 以下第一の発明の実施例を第1図に従って説明する。1
は活性炭層であり、2はイオン交換物質、3は分岐器を
構成している二叉コックである。活性炭層1およびイオ
ン交換物質2を通過した水は、二叉コック3によって水
経路5と水経路6に分岐される。水経路5中には少なく
ともCaを含む化合物4が配置されている。7は混合器
を構成している3方バルブで、水経路5と水経路6を通
過した水が任意の割合で混合される。8は紫外線発生器
と光触媒反応を行う半導体物質で構成されている光触媒
反応器であり、発癌物質であるトリハロメタンや、水中
に残留している遊離塩素等の有機物を除去するとともに
殺菌の機能を果たすものである。
EXAMPLE Hereinafter, an example of the first invention will be described with reference to FIG. 1
is an activated carbon layer, 2 is an ion exchange material, and 3 is a two-pronged cock constituting a branching device. Water that has passed through the activated carbon layer 1 and the ion exchange material 2 is branched into a water path 5 and a water path 6 by a two-pronged cock 3. A compound 4 containing at least Ca is arranged in the water path 5. 7 is a three-way valve constituting a mixer, and the water that has passed through the water path 5 and the water path 6 is mixed in an arbitrary ratio. 8 is a photocatalytic reactor consisting of an ultraviolet generator and a semiconductor material that performs a photocatalytic reaction, and it functions as a sterilizer as well as removing carcinogenic trihalomethane and organic substances such as free chlorine remaining in the water. It is something.

以下本実施例の動作を説明する。活性炭層1は、遊離塩
素や赤水の一部を吸着等により減らし、イオン交換物質
2は水から溶解物を除去する。少なくともCaを含む化
合物4は水中にCa等のミネラル分を添加する。3方バ
ルブ7は溶解物が除かれた水とCa等のミネラル分が添
加された水を任意の割合で混合する。光触媒反応器8は
、水中に残っている遊離塩素やトリハロメタン等の有機
物を除去するとともに殺菌する。こうして光触媒反応器
8を経て外部に取り出された水は、飲用として最適な適
量のミネラル分を含有するものからアイロン掛けに適し
た純水まで自由に調整されたものとなる。
The operation of this embodiment will be explained below. The activated carbon layer 1 reduces free chlorine and part of the red water by adsorption or the like, and the ion exchange material 2 removes dissolved substances from the water. Compound 4 containing at least Ca adds minerals such as Ca to water. The three-way valve 7 mixes water from which dissolved substances have been removed and water to which minerals such as Ca have been added in an arbitrary ratio. The photocatalytic reactor 8 removes organic substances such as free chlorine and trihalomethane remaining in the water and also sterilizes the water. In this way, the water taken out to the outside through the photocatalytic reactor 8 can be freely adjusted from water containing an appropriate amount of minerals that is optimal for drinking to pure water that is suitable for ironing.

なお活性炭層1としては椰子殻活性炭・石炭系活性炭・
活性炭繊維などいずれでも良いが、本実施例ではよく洗
浄され中性に調整された椰子殻活性炭を使用している。
The activated carbon layer 1 includes coconut shell activated carbon, coal-based activated carbon,
Any activated carbon fiber or the like may be used, but in this example, coconut shell activated carbon that has been thoroughly washed and adjusted to neutrality is used.

またイオン交換物質2としては、イオン交換樹脂・ゼオ
ライト・イオン交換繊維などいずれでも良いが、本実施
例ではイオン交換樹脂を使用している。更に少なくとも
Caを含む化合物4としては、本実施例では石灰石(C
aCO)を使用している。又さらに光触媒反応器8は、
半導体物質としてアナターゼ型酸化チタン−ルチン型酸
化チタン−酸化タングステン・酸化すず・酸化亜鉛、あ
るいはこれらの混合物などでも良いが、本実施例ではア
ナターゼ型酸化チタンに白金を添着したものを使用して
いる。また光触媒反応器8を構成している紫外線発生器
として、本実施例では13W流水紫外線灯を、面積10
00c++fの筒状に成型した半導体物質の中心に配置
して使用している。
The ion exchange material 2 may be any of ion exchange resins, zeolites, ion exchange fibers, etc., but in this embodiment, ion exchange resins are used. Furthermore, as the compound 4 containing at least Ca, limestone (C
aCO) is used. Furthermore, the photocatalytic reactor 8 is
The semiconductor material may be anatase-type titanium oxide, rutin-type titanium oxide, tungsten oxide, tin oxide, zinc oxide, or a mixture thereof, but in this example, anatase-type titanium oxide impregnated with platinum is used. . In addition, in this embodiment, a 13W running water ultraviolet lamp is used as the ultraviolet light generator constituting the photocatalytic reactor 8.
It is used by placing it in the center of a cylindrical semiconductor material of 00c++f.

以下本実施例の浄水装置を使用した実験例について説明
する。実験水は、超純水にMgC0を100ppm−、
C12を2ppm、  )リハロメタンとしてCHCl
3− CI(Brcl  −CHBr C1−CHBr
がそれぞれ10ppbとなるように添加して作成した。
An experimental example using the water purification device of this example will be described below. The experimental water was ultrapure water containing 100 ppm of MgC0.
2 ppm of C12, ) CHCl as rihalomethane
3-CI(Brcl-CHBr C1-CHBr
were added so that each amount was 10 ppb.

サンプル1は、前記実験水を第1図の装置に流量100
0 CC/min、で送り込み、水経路6を通過したも
のを10割採取したものであり、サンプル2は水経路5
を通過した実験水と水経路6を通過した実験水を1:1
で混合したものである。また実験結果の分析は、Ca−
Mg濃度については原子吸光光度計測定法により、遊離
塩素濃度については浄水試験法の残留塩素項目であるD
PD法に従って、トリハロメタンについてはガスクロ分
析のECD検出によりそれぞれ測定した。実験結果は表
1に示す通りであった。
For sample 1, the experimental water was introduced into the apparatus shown in Fig. 1 at a flow rate of 100.
0 CC/min, 100% of the sample was collected from water that passed through water route 6, and sample 2 was sampled from water route 5.
The experimental water that passed through water route 6 and the experimental water that passed through water route 6 were mixed at a ratio of 1:1.
It is a mixture of In addition, the analysis of the experimental results is based on Ca-
The Mg concentration is measured using an atomic absorption spectrophotometer, and the free chlorine concentration is determined using D, which is a residual chlorine item in the water purification test method.
According to the PD method, trihalomethane was measured by ECD detection of gas chromatography. The experimental results were as shown in Table 1.

表   1 塩素やトリハロメタンはほとんど除去されている。なお
、これらの物質の除去は主に光触媒反応によるので、こ
れまでの活性炭の吸着に比べて長期間能力が維持される
。さらにサンプル1の水はMgがほとんど除かれており
、アイロンに使ってみたところスチームのつまりは起こ
らなかった。
Table 1 Most of chlorine and trihalomethane have been removed. Note that since the removal of these substances is mainly through photocatalytic reactions, the ability is maintained for a longer period of time compared to conventional activated carbon adsorption methods. Furthermore, Mg was almost completely removed from the water in Sample 1, and when I used it in an iron, no steam clogging occurred.

また、サンプル2は適度のCaを含んでおり、健康に良
いものである。
Furthermore, Sample 2 contains a moderate amount of Ca and is good for health.

次に第二の発明の実施例について第2図にしたがって説
明する。
Next, a second embodiment of the invention will be described with reference to FIG.

この実施例は第一の実施例のイオン交換化合物に代えて
ポンプ22と逆浸透膜23を設けたものである。この構
成により長期間メンテナンスなしで使用できるようにし
た点で第一の実施例と相違するものである。
In this embodiment, a pump 22 and a reverse osmosis membrane 23 are provided in place of the ion exchange compound in the first embodiment. This configuration differs from the first embodiment in that it can be used for a long period of time without maintenance.

この実施例において、水は活性炭層21からポンプ22
で加圧された後、逆浸透膜23を経て分岐器である二叉
コック24に送られる。ここで水は水経路26と水経路
27に分けられる。水経路26中には、前記第一の実施
例と同様少なくともCaを含む化合物25が配置されて
いる。水経路26と水経路27を通った水は、混合器を
構成する3方バルブ28により任意の割合で混合される
。29は前記第一の実施例と同様の光触媒反応器である
。光触媒反応器29を経た水は浄水となる。なお、送ら
れてきた水の一部は逆浸透膜23で排水となって放出さ
れるものである。
In this embodiment, water is pumped from the activated carbon layer 21 to the pump 22.
After being pressurized at , it is sent through a reverse osmosis membrane 23 to a two-pronged cock 24 which is a branching device. Here, water is divided into a water path 26 and a water path 27. In the water path 26, a compound 25 containing at least Ca is disposed as in the first embodiment. The water that has passed through the water path 26 and the water path 27 is mixed at an arbitrary ratio by a three-way valve 28 that constitutes a mixer. 29 is a photocatalytic reactor similar to the first embodiment. The water that has passed through the photocatalytic reactor 29 becomes purified water. Note that a part of the sent water is discharged as waste water at the reverse osmosis membrane 23.

以下本実施例の動作を説明する。活性炭層21は、遊離
塩素や赤水の一部を吸着等により減らし、逆浸透膜23
は水から溶解物を除去する。少なくともCaを含む化合
物25は水中にCa等のミネラル分を添加する。3方バ
ルブ28は溶解物を除かれた水とCa等のミネラル分が
添加された水を任意に割合で混合する。光触媒反応器2
9は、水中に残っている遊離塩素やトリハロメタン等の
有機物を除去するとともに殺菌する。こうして光触媒反
応器29を経て外部に取り出された水は、飲用として最
適な適量のミネラル分を含有するものからアイロン掛け
に適した純水まで自由に調整されたものとなる。
The operation of this embodiment will be explained below. The activated carbon layer 21 reduces part of free chlorine and red water by adsorption, etc., and reverse osmosis membrane 23
removes lysate from water. Compound 25 containing at least Ca adds minerals such as Ca to water. The three-way valve 28 mixes water from which dissolved substances have been removed and water to which minerals such as Ca have been added, in any proportion. Photocatalytic reactor 2
Step 9 removes organic matter such as free chlorine and trihalomethane remaining in the water and sterilizes it. In this way, the water taken out to the outside through the photocatalytic reactor 29 is freely adjusted from water containing an appropriate amount of minerals that is optimal for drinking to pure water that is suitable for ironing.

なお本実施例で使用する活性炭としては椰子殻活性炭・
石炭系活性炭・活性炭繊維などいずれでも良いが、ここ
ではよく洗浄され中性に調整された椰子殻活性炭を使用
した。また逆浸透膜としては酢酸セルロース系・ナイロ
ン系・ポリスルホンなどいずれでも良いが、本実施例で
はナイロン系のポリアミド複合膜を使用している。少な
くともCaを含む化合物としては、本実施例では石灰石
(CaCO)を使用している。光触媒反応器を構成する
半導体物質としては、アナターゼ型酸化チタン・ルチン
型酸化チタン・酸化タングステン・酸化すず・酸化亜鉛
、あるいはこれらの混合物などでも良いが、本実施例で
はアナターゼ型酸化チタンに白金を添着したものを使用
している。
The activated carbon used in this example is coconut shell activated carbon.
Coal-based activated carbon or activated carbon fibers may be used, but here we used coconut shell activated carbon that has been thoroughly washed and adjusted to neutrality. The reverse osmosis membrane may be of cellulose acetate type, nylon type, polysulfone type, etc., but in this embodiment, a nylon type polyamide composite membrane is used. In this embodiment, limestone (CaCO) is used as the compound containing at least Ca. The semiconductor material constituting the photocatalytic reactor may be anatase-type titanium oxide, rutin-type titanium oxide, tungsten oxide, tin oxide, zinc oxide, or a mixture thereof, but in this example, platinum was added to anatase-type titanium oxide. I am using the attached one.

また紫外線発生器として、本実施例は第一の発明の実施
例と同様の構成で、13W流水紫外線灯を使用している
Further, as an ultraviolet generator, this embodiment uses a 13W running water ultraviolet lamp with the same configuration as the embodiment of the first invention.

次に、本実施例のミネラル調整浄水装置を使用した実験
例について説明する。この実験方法、実験結果の分析方
法については第一の発明の実施例の実験と同様であり、
サンプル1は水経路27を、サンプル2は水経路26と
27を利用したものである。この実験結果を表2に記載
する。
Next, an experimental example using the mineral-adjusted water purification device of this example will be explained. The method of this experiment and the method of analyzing the experimental results are the same as those of the example of the first invention.
Sample 1 uses water path 27, and sample 2 uses water paths 26 and 27. The results of this experiment are listed in Table 2.

(以下余白) 表 このように、いずれのサンプルにおいても遊離塩素やト
リへロメタンはほとんど除去されている。なお、これら
の物質の除去は主に光触媒反応によるので、これまでの
活性炭の吸着に比べて長期間能力が維持される。さらに
サンプル1の水はCaがOでかっMgがほとんど除かれ
ているため、アイロンにおいてスチームのつまりは起こ
らなかった。またサンプル2は適度のをCa含んでおり
、健康に良い水となった。
(Margins below) Table As shown, free chlorine and trihalomethane were almost completely removed in all samples. Note that since the removal of these substances is mainly through photocatalytic reactions, the ability is maintained for a longer period of time compared to conventional activated carbon adsorption methods. Furthermore, since the water of Sample 1 contained a large amount of Ca and almost all Mg, no steam clogging occurred in the iron. Sample 2 also contained a moderate amount of Ca, making it a healthy water.

発明の効果 以上の実施例から明らかなように、第一の発明によれば
、水路中に、イオン交換物質と、複数の水経路を形成す
る分岐器と、前記複数の水経路中の水を混合調整可能な
混合器と、光触媒反応器とを有し、前記分岐器の水経路
の一つには少なくともカルシウム(Ca)を含む化合物
を配置したため、遊離塩素やトリへロメタン等の有害宵
搬物が除去でき、かつ必要に応じてミネラル成分の濃度
をコントロールすることができるものである。
Effects of the Invention As is clear from the above embodiments, according to the first invention, an ion exchange substance is provided in the water channel, a branching device that forms a plurality of water paths, and a water channel that connects the water in the plurality of water paths. It has a mixer that can adjust mixing and a photocatalytic reactor, and because a compound containing at least calcium (Ca) is placed in one of the water paths of the branching device, harmful substances such as free chlorine and trihalomethane are not transported. It is possible to remove substances and control the concentration of mineral components as necessary.

また第二の発明によれば、イオン交換物質に代えて逆浸
透膜を備えたことにより、前記第一の発明による効果に
加え、長期間メインテナンスなしで使用できる浄水装置
が実現できるものである。
Further, according to the second invention, by providing a reverse osmosis membrane in place of the ion exchange substance, a water purification device that can be used for a long period of time without maintenance can be realized in addition to the effects of the first invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の浄水装置の第一の実施例を示す流れ図
、第2図は同第二の実施例を示す流れ図、第3図は従来
の技術を示す装置の流れ図である。 2・・・イオン交換樹脂、3・24・・・二叉コック、
4・25・・・石灰石、7・28・・・3方バルブ、8
・29・・・光触媒反応器、23・・・逆浸透膜。 代理人の氏名 弁理士 粟野重孝 ほか1名1−猜竹衆
1 2−(、tyi−+V$ 3−m−二叉]・・/り 7−−−3大バルフ /2t−−−:古川 23−跣侵旌践 2チー(l+肋 2G、2’l−・−永耗路 2訃−3方べ゛ルブ 第 図
FIG. 1 is a flowchart showing a first embodiment of a water purification device of the present invention, FIG. 2 is a flowchart showing a second embodiment of the same, and FIG. 3 is a flowchart of a device showing a conventional technique. 2...Ion exchange resin, 3.24...Two-pronged cock,
4.25...limestone, 7.28...3-way valve, 8
・29...Photocatalytic reactor, 23...Reverse osmosis membrane. Name of agent: Patent attorney Shigetaka Awano and 1 other person 1-Kitakeshu1 2-(,tyi-+V$ 3-m-two-pronged).../ri7--3 major Balfs/2t--: Furukawa 23-Skin invasion practice 2 Qi (l+rib 2G, 2'l-...-Eireiji 2 death-3-way bevel figure)

Claims (2)

【特許請求の範囲】[Claims] (1)水路中に、イオン交換物質と、複数の水経路を形
成する分岐器と、前記複数の水経路中の水を混合調整可
能な混合器と、光触媒反応器とを有し、前記分岐器の水
経路の一つには少なくともカルシウム(Ca)を含む化
合物を配置した浄水装置。
(1) In a waterway, an ion exchange substance, a branching device forming a plurality of water paths, a mixer capable of mixing and adjusting water in the plurality of water paths, and a photocatalytic reactor are provided, and the branching A water purification device in which a compound containing at least calcium (Ca) is placed in one of the water paths of the vessel.
(2)イオン交換物質に代えて逆浸透膜を備えた請求項
1記載の浄水装置。
(2) The water purification device according to claim 1, further comprising a reverse osmosis membrane in place of the ion exchange material.
JP2152001A 1990-06-11 1990-06-11 Water purification equipment Expired - Lifetime JP2789789B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2152001A JP2789789B2 (en) 1990-06-11 1990-06-11 Water purification equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2152001A JP2789789B2 (en) 1990-06-11 1990-06-11 Water purification equipment

Publications (2)

Publication Number Publication Date
JPH0445896A true JPH0445896A (en) 1992-02-14
JP2789789B2 JP2789789B2 (en) 1998-08-20

Family

ID=15530902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2152001A Expired - Lifetime JP2789789B2 (en) 1990-06-11 1990-06-11 Water purification equipment

Country Status (1)

Country Link
JP (1) JP2789789B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2741871A1 (en) * 1995-08-24 1997-06-06 Nippon Denso Co METHOD AND DEVICE FOR PRODUCING MINERAL WATER
WO2002081383A1 (en) * 2001-04-06 2002-10-17 Kazuo Takaku Far infrared ray radiant wave water and method of manufacturing the radiant wave water

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5220657A (en) * 1975-08-07 1977-02-16 Toyo Giken Kk Apparatus for purification of water
JPS60220107A (en) * 1984-04-17 1985-11-02 Kurita Seibi Kk Water purifier
JPS6274483A (en) * 1985-09-30 1987-04-06 Ebara Infilco Co Ltd Method for improving water quality
JPS6297693A (en) * 1985-10-24 1987-05-07 Kazuhiko Kawamura Method for adjusting liquid composition
JPH0268190A (en) * 1988-09-01 1990-03-07 Matsushita Electric Ind Co Ltd Water sterilizing and purifying apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5220657A (en) * 1975-08-07 1977-02-16 Toyo Giken Kk Apparatus for purification of water
JPS60220107A (en) * 1984-04-17 1985-11-02 Kurita Seibi Kk Water purifier
JPS6274483A (en) * 1985-09-30 1987-04-06 Ebara Infilco Co Ltd Method for improving water quality
JPS6297693A (en) * 1985-10-24 1987-05-07 Kazuhiko Kawamura Method for adjusting liquid composition
JPH0268190A (en) * 1988-09-01 1990-03-07 Matsushita Electric Ind Co Ltd Water sterilizing and purifying apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2741871A1 (en) * 1995-08-24 1997-06-06 Nippon Denso Co METHOD AND DEVICE FOR PRODUCING MINERAL WATER
WO2002081383A1 (en) * 2001-04-06 2002-10-17 Kazuo Takaku Far infrared ray radiant wave water and method of manufacturing the radiant wave water

Also Published As

Publication number Publication date
JP2789789B2 (en) 1998-08-20

Similar Documents

Publication Publication Date Title
Acero et al. Micropollutants removal from retentates generated in ultrafiltration and nanofiltration treatments of municipal secondary effluents by means of coagulation, oxidation, and adsorption processes
US5271830A (en) Water treatment installation for a tangential filtration loop
Lalezary‐Craig et al. Optimizing the removal of geosmin and 2‐methylisoborneol by powdered activated carbon
Yacouba et al. Removal of organic micropollutants from domestic wastewater: The effect of ozone-based advanced oxidation process on nanofiltration
Gorenflo et al. Nanofiltration of a German groundwater of high hardness and NOM content: performance and costs
Szymanska et al. Hybrid ozonation–microfiltration system for the treatment of surface water using ceramic membrane
Ranieri et al. DBPs control in European drinking water treatment plants using chlorine dioxide: two case studies
Zouboulis et al. Hybrid membrane processes for the treatment of surface water and mitigation of membrane fouling
Plantard et al. Coupling of photocatalytic and separation processes as a contribution to mineralization of wastewater
RU2528989C2 (en) Water treatment water
JPH0445896A (en) Water purification device
Kim et al. Competitive adsorption of trace organics on membranes and powdered activated carbon in powdered activated carbon-ultrafiltration system
JP2002282860A (en) Method and equipment for purifying swimming pool water
Sierka et al. Enhancement of biotreatment effluent quality by illuminated titanium dioxide and membrane pretreatment of the Kraft extraction waste stream and by increased chlorine dioxide substitution
JPH0751236B2 (en) How to purify drinking water
SA516370558B1 (en) System for removing radioactive nuclides from water
JPH03151092A (en) Column for producing ultra-pure water
JP3308183B2 (en) Water purification device and purification method
Sbardella Evaluation and comparison of advanced treatment technologies to enhance the removal of pharmaceutical active compounds from wwtp secondary effluent
Culp Breakpoint chlorination for virus inactivation
Steinbergs Removal of By‐products of Chlorine and Chlorine Dioxide at a Hemodialysis Center
Culp et al. Carbon adsorption enhancement with ozone
Hyndshaw Treatment application points for activated carbon
Ranjan Removal of Disinfection By-Products by Physico-Chemical Treatment Methods
Sisira et al. Heterogeneous Fenton and Microfiltration for the Treatment of Textile Waste Water

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080612

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090612

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100612

Year of fee payment: 12

EXPY Cancellation because of completion of term