JPH0445794A - Production of maltopentaose syrup - Google Patents

Production of maltopentaose syrup

Info

Publication number
JPH0445794A
JPH0445794A JP2150048A JP15004890A JPH0445794A JP H0445794 A JPH0445794 A JP H0445794A JP 2150048 A JP2150048 A JP 2150048A JP 15004890 A JP15004890 A JP 15004890A JP H0445794 A JPH0445794 A JP H0445794A
Authority
JP
Japan
Prior art keywords
starch
enzyme
maltopentaose
syrup
amylase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2150048A
Other languages
Japanese (ja)
Other versions
JP2829329B2 (en
Inventor
Takashi Okemoto
桶本 尚
Akihisa Iwamoto
岩本 昭久
Kozo Hara
耕三 原
Hitoshi Hashimoto
仁 橋本
Shoichi Kobayashi
昭一 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ensuiko Sugar Refining Co Ltd
Japan Science and Technology Agency
National Food Research Institute
Original Assignee
Ensuiko Sugar Refining Co Ltd
National Food Research Institute
Research Development Corp of Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ensuiko Sugar Refining Co Ltd, National Food Research Institute, Research Development Corp of Japan filed Critical Ensuiko Sugar Refining Co Ltd
Priority to JP2150048A priority Critical patent/JP2829329B2/en
Publication of JPH0445794A publication Critical patent/JPH0445794A/en
Application granted granted Critical
Publication of JP2829329B2 publication Critical patent/JP2829329B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain in high efficiency the title syrup having polymerization degree higher than that of maltohexaose, with low content of e.g. maltooligosaccharide by acting maltopentaose-productive enzyme followed by alpha-amylase on starch etc. CONSTITUTION:The objective syrup can be obtained by acting (A) maltopentaose-productive enzyme followed by (B) alpha-amylase on (C) at least one substance selected from starch, its compositional fractions and degradation products of starch. The enzyme A has the following characteristics: (1) acting on amylose, soluble starch, potato starch etc. into maltopentaose; (2) stable at 45 deg.C and a pH of 6.5 - 9; (3) optimal temperature at pH 6.5 is 50 - 55 deg.C; (4) deactivated when left to stand at >=55 deg.C for 15min; and (5) inhibited in a solution containing 0.4mM mercuric p-chlorobenzoic acid and 1mM monoiodoacetamide; however, being pref. 40 - 50% in the inhibition rate.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はマルトペンタオース(以下、G5という、)水
飴の製造方法に関し、詳しくはマルトヘキサオース(以
下、G6という。)以上の重合度をもつマルトオリゴ糧
あるいは高分子デキストリンの含有率が非常に少ないG
5水飴の製造方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for producing maltopentaose (hereinafter referred to as G5) starch syrup, and more specifically, a method for producing maltopentaose (hereinafter referred to as G5) starch syrup, and more specifically, a method for producing maltopentaose (hereinafter referred to as G5) starch syrup. G with very low content of malto-oligo or polymer dextrin
5. Concerning a method for producing starch syrup.

〔従来の技術及び発明が解決しようとする課題]近年、
マルトオリゴ糟に関する研究が進み、マルトオリゴ糖を
特異的に生産する酵素が発見されたり、マルトオリゴ糟
の用途が開発されるに伴い、マルトオリゴ糖の製造方法
についても様々の提案がなされている。
[Problems to be solved by conventional techniques and inventions] In recent years,
As research on maltooligosaccharides progresses, enzymes that specifically produce maltooligosaccharides are discovered, and uses for maltooligosaccharides are developed, various proposals have been made regarding methods for producing maltooligosaccharides.

G5水飴は包接粉末化基材2食品改良剤などのほか、病
人、幼児、老人用滋養食品原料としての用途が期待され
ている。このG5水飴は、従来澱粉等の原料に05生成
酵素を作用させることによって生産されており、該酵素
として本発明者らによって見出されたシュードモナス属
の微生物に由来する酵素(特公昭59−44069号公
報、同59−44070号公報参照)が使用されている
G5 starch syrup is expected to be used not only as a clathrate powdered base material 2 food improver, but also as a raw material for nutritional foods for the sick, infants, and the elderly. This G5 starch syrup has conventionally been produced by treating raw materials such as starch with a 05-generating enzyme. No. 59-44070) is used.

ところが、この方法で得られるG5水飴には、06以上
の重合度をもつマルトオリゴ糖あるいは高分子デキスト
リンが20%以上含まれている。
However, G5 starch syrup obtained by this method contains 20% or more of malto-oligosaccharides or polymer dextrins with a degree of polymerization of 06 or higher.

そのため、ll1i!!1度の高い状態では濁度も高く
、製品としては好ましくない。
Therefore, ll1i! ! When the temperature is high, the turbidity is also high, which is not desirable as a product.

そこで、本発明者らは06以上の重合度をもつマルトオ
リゴ糖あるいは高分子デキストリンを可能な限り含まな
いG5水飴の製造法を開発すべく検討した。
Therefore, the present inventors conducted research to develop a method for producing G5 starch syrup containing as little as possible malto-oligosaccharides or polymer dextrins having a degree of polymerization of 0.6 or higher.

[課題を解決するための手段〕 その結果、澱粉等の原料に上記G5生成酵素を作用させ
た後、α−アミラーゼを作用させることにより目的とす
るG5水飴が得られることを見出して本発明を完成した
のである。
[Means for Solving the Problems] As a result, it was discovered that the target G5 starch syrup can be obtained by allowing the above-mentioned G5-generating enzyme to act on raw materials such as starch and then acting on α-amylase, and the present invention has been achieved based on this discovery. It was completed.

すなわち、本発明は澱粉、S粉の組成画分及び澱粉の分
解生成物のうちの少な(とも1種の物質にマルトペンタ
オース生成酵素を作用させた後、α−アミラーゼを作用
させることを特徴とするマルトペンタオース水飴の製造
方法を提供するものである。
That is, the present invention is characterized in that a maltopentaose-generating enzyme is applied to starch, a composition fraction of S powder, and a small amount of starch decomposition products, and then α-amylase is applied to the maltopentaose-generating enzyme. The present invention provides a method for producing maltopentaose starch syrup.

本発明において、澱粉としては各種澱粉を使用でき、例
えば馬鈴薯、甘藷、米、タピオカ、トウモロコシ、モチ
トウモロコシ、サゴ、 大?、 小麦などの任意の原料
から得られるものを単独で、あるいは2種以上を組み合
わせて使用することができる。また、澱粉の組成画分と
しては、例えばアミロース、アミロペクチンなどがある
。さらに、澱粉の分解生成物としては、例えば白色デキ
ストリン、黄色デキストリン、ブリティッシュガムなど
の焙焼デキストリン;酸化澱粉、低粘性変性(酵素、酸
7機械高速攪拌などの処理による)澱粉などの化工澱粉
;リン酸澱粉、酢酸澱粉などで代表される澱粉エーテル
、澱粉エステルなどの澱粉誘導体;放射線や中性子線を
照射したり高周波処理あるいは温熱処理した澱粉などの
物理的処理澱粉;α−澱粉などを挙げることができる。
In the present invention, various starches can be used as the starch, such as potato, sweet potato, rice, tapioca, corn, waxy corn, sago, and maize. , Those obtained from arbitrary raw materials such as wheat can be used alone or in combination of two or more kinds. Examples of starch composition fractions include amylose and amylopectin. Further, starch decomposition products include, for example, roasted dextrins such as white dextrin, yellow dextrin, and British gum; modified starches such as oxidized starch and low-viscosity modified (by treatment with enzymes, acid 7 mechanical high-speed stirring, etc.) starch; Starch derivatives such as starch ethers and starch esters represented by starch phosphate and starch acetate; physically treated starches such as starch irradiated with radiation or neutron beams, high frequency treatment, or heat treatment; α-starch, etc. I can do it.

これら−の澱粉類は単独あるいは2種以上を組み合わせ
て使用する。
These starches may be used alone or in combination of two or more.

次に、G5生成酵素としては、例えばシュードモナスK
O−89,40(FERM  P−7456、木蓮の菌
学的性質は特公昭61−49955号公報を参照)の生
産する酵素を使用することができる。この酵素の性質を
以下に示す。
Next, as a G5-producing enzyme, for example, Pseudomonas K.
The enzyme produced by O-89,40 (FERM P-7456, see Japanese Patent Publication No. 49955/1983 for the mycological properties of magnolia) can be used. The properties of this enzyme are shown below.

)9本酵素はアミロース、可溶性澱粉、馬鈴薯澱粉、甘
藷澱粉、米澱粉、タピオカ澱粉、トウモロコシ澱粉、モ
チトウモロコシ澱粉、サゴ澱粉などに作用してマルトペ
ンタオースを生成する。
)9 This enzyme acts on amylose, soluble starch, potato starch, sweet potato starch, rice starch, tapioca starch, corn starch, waxy corn starch, sago starch, etc. to produce maltopentaose.

ii)、本酵素は45℃にてp)16〜7が至適であり
、pH6,5〜9で安定である。
ii) This enzyme is optimally p) 16 to 7 at 45°C and is stable at pH 6.5 to 9.

ij)、本酵素はpH6,5において至適温度は50〜
55℃であり、55℃以上の温度で15分間放置すると
失活する。
ij), this enzyme has an optimum temperature of 50 to 50 at pH 6.5.
The temperature is 55°C, and it is deactivated if left at a temperature of 55°C or higher for 15 minutes.

iv ) 、本酵素は0.4mMパラクロロ安息香酸第
二水銀及び1mMモノヨードアセトアミド溶液中で阻害
を受けるが、阻害率は40〜50%である。
iv) The enzyme is inhibited in 0.4mM mercuric parachlorobenzoate and 1mM monoiodoacetamide solution, but the inhibition rate is 40-50%.

v)0本酵素の分子量は72500+2500(ディス
クゲル電気泳動法による)である。
v) The molecular weight of this enzyme is 72,500+2,500 (according to disk gel electrophoresis).

vi)、本酵素の等電点はpt16. 5 (アンフオ
ライン電気泳動法による)である。
vi), the isoelectric point of this enzyme is pt16. 5 (by ampholine electrophoresis).

また、α−アミラーゼとしては、例えばバチルス・リケ
ニホルミスの生産する酵素(ノボ ノルディスク バイ
オ インダストリー製、商品名:ターマミル)などがあ
る0本発明では、G5をさらに効率良く生成させるため
Lこ、枝切り酵素のプルラナーゼなどを併用することが
できる。
In addition, examples of α-amylase include enzymes produced by Bacillus licheniformis (manufactured by Novo Nordisk Bio-Industry, trade name: Termamil).In the present invention, in order to generate G5 more efficiently, Enzymes such as pullulanase can be used together.

C5水飴の製造にあたり原料として用いる前記澱粉類は
、必要に応して液化する。液化には、液化型α−アミラ
ーゼなどを用いる酵素液化法や酸。
The starches used as raw materials for producing C5 starch syrup are liquefied if necessary. For liquefaction, enzyme liquefaction methods using liquefied α-amylase, etc., or acids.

アルカリを用いる物理的方法が適用できる。A physical method using an alkali can be applied.

G5生成率は酵素濃度、基質濃度2反応pH,反応温度
などの影響を受けるので、最適な条件を選定すべきであ
る。
Since the G5 production rate is affected by enzyme concentration, substrate concentration, reaction pH, reaction temperature, etc., optimal conditions should be selected.

G5生成酵素はpH6,5〜9の範囲で安定であり、p
H8〜8.5で作用させることによりG5生成率が高ま
る。また、基質濃度は低い程G5生成率は高いが、工業
的には5〜20%が望ましい。
G5-generating enzyme is stable in the pH range of 6.5 to 9, and p
By acting at H8-8.5, the G5 production rate increases. Furthermore, the lower the substrate concentration, the higher the G5 production rate, but industrially it is preferably 5 to 20%.

反応温度については、45〜50℃が適当であるが、カ
ルシウム塩の存在下では60℃以下で反応が進む、なお
、酵素濃度は反応が十分に行われるように選定すればよ
く、過剰量の酵素を用いる必要はない。
The appropriate reaction temperature is 45 to 50°C, but in the presence of calcium salts, the reaction proceeds at 60°C or lower.The enzyme concentration should be selected so that the reaction is sufficiently carried out, and excessive amounts should be avoided. There is no need to use enzymes.

一方、α−アミラーゼ(商品名:ターマミル)は一般に
pH6〜6.5で反応させるが、pH5〜8でも良好に
作用する。本酵素の作用温度は95〜100℃であるが
、本発明では50℃を適用した。
On the other hand, α-amylase (trade name: Termamil) is generally reacted at a pH of 6 to 6.5, but also works well at a pH of 5 to 8. The action temperature of this enzyme is 95 to 100°C, but in the present invention, 50°C was used.

したがって、本発明によるG5生成反応は、基質濃度5
〜20%、pH8〜8.5.温度50℃でG5生成酵素
を作用させ、適当な段階で失活、反応停止後、α−アミ
ラーゼ(商品名:ターマミル)を加え、p)16.温度
50℃で作用させることが望ましい。なお、技切り酵素
を加える場合、その添加時期は制限がなく、G5生成酵
素の添加前もしくは同時に添加すればよい。
Therefore, the G5 production reaction according to the present invention has a substrate concentration of 5
~20%, pH 8-8.5. The G5-generating enzyme is allowed to act at a temperature of 50°C, and after inactivation and termination of the reaction at an appropriate stage, α-amylase (trade name: Termamil) is added, p) 16. It is desirable to operate at a temperature of 50°C. In addition, when adding the waikikiri enzyme, there is no restriction on the timing of its addition, and it may be added before or at the same time as the addition of the G5-generating enzyme.

本発明により得られるG5水飴は、G5が50%以上含
まれ、05未満のグルコース(以下、G1という。)、
マルトース(以下、G2という、)マルトトリオース(
以下、G3という。)およびマルトテトラオース(以下
、G4という。)の合計が40%以上であるが、06以
上の重合度の高分子糖は10%以下に抑えられる。
The G5 starch syrup obtained by the present invention contains 50% or more of G5 and less than 0.05 glucose (hereinafter referred to as G1),
Maltose (hereinafter referred to as G2) Maltotriose (
Hereinafter, it will be referred to as G3. ) and maltotetraose (hereinafter referred to as G4) is 40% or more, but the amount of polymeric sugar with a degree of polymerization of 06 or higher is suppressed to 10% or less.

その結果、G5水飴の性状が改良され、低温でも清澄な
高濃度のG5水飴が得られ、甘味も若干増す。
As a result, the properties of G5 starch syrup are improved, and a highly concentrated G5 starch syrup that is clear even at low temperatures is obtained, and its sweetness is slightly increased.

〔実施例〕〔Example〕

次に、本発明を実施例により詳しく説明する。 Next, the present invention will be explained in detail with reference to examples.

なお、実施例で使用したC5生成酵素はシュードモナス
KO−8940(FERM  P−7456)を桶本ら
の方法(^pp1.Microbio1.Biotec
hno1.、(1986)25:137〜142)に従
って培養し、培養液を硫安塩析にて濃縮したものを緩衝
液に溶解して粗酵素液とした。なお、酵素の活性は以下
の方法により測定したが、その活性は5210/Miで
あった。
The C5-generating enzyme used in the Examples was Pseudomonas KO-8940 (FERM P-7456) by the method of Okemoto et al. (^pp1.Microbio1.Biotec
hno1. (1986) 25:137-142), and the culture solution was concentrated by salting out ammonium sulfate and dissolved in a buffer solution to obtain a crude enzyme solution. In addition, the activity of the enzyme was measured by the following method, and the activity was 5210/Mi.

還元した2%可溶性澱粉(メルク社製)0.5紙、O,
1Mリン酸緩衝液0.4dに酵素液0. 1dを加え、
45℃で反応させ、生成した還元糖をソモギ・ネルフン
法で測定し、1分間に1μm+aolのグルコシド結合
を切断する酵素活性を1単位(IU)とした。また、α
−アミラーゼ(商品名:ターマミル)の活性は、37±
0.05℃,カルシウム濃度0.0003M、pH5,
6の条件下で1時間に5.26gの澱粉(メルク社製)
を分解する酵素活性を1ノボ・α−アミラーゼ単位(I
 Ntl)とした。プルラナーゼの活性は、40±0.
1℃。
Reduced 2% soluble starch (Merck) 0.5 paper, O,
Add 0.4 d of enzyme solution to 0.4 d of 1M phosphate buffer. Add 1d,
The reaction was carried out at 45° C., and the resulting reducing sugar was measured by the Somogyi-Nerhun method, and the enzyme activity for cleaving a glucoside bond of 1 μm+aol per minute was defined as 1 unit (IU). Also, α
-The activity of amylase (trade name: Termamil) is 37±
0.05℃, calcium concentration 0.0003M, pH 5,
5.26g of starch (manufactured by Merck & Co.) per hour under the conditions of 6.
The enzyme activity that degrades 1 novo α-amylase unit (I
Ntl). The activity of pullulanase was 40±0.
1℃.

p)Is、  o、基質0.5%プルラン水溶液の条件
下で1分間に1μMのグルコースに相当する還元力の増
加をもたらす酵素量を1プルラナ一ゼ力単位(PtlN
)とした。
p) Is, o, Substrate The amount of enzyme that brings about an increase in reducing power equivalent to 1 μM glucose per minute under the conditions of 0.5% pullulan aqueous solution is 1 pullulanase power unit (PtlN
).

実施例1 トウモロコシ澱粉15gに細菌の液化型α−アミラーゼ
18.8mgと水150sfを加え、沸騰水浴中で攪拌
、液化し直ちに120℃で15分間オートクレーブし、
放冷した後、水酸化ナトリウム水溶液でpH8,4に調
整した0次いで、プルラナーゼa 5 opvN、1!
:(:、 5生成酵素45IUを加え、50℃で9時間
反応させた後、100℃で30分間加熱して失活させた
。この時点で生成した糖の組成を第1表にサンプル1と
して示す。
Example 1 18.8 mg of bacterial liquefied α-amylase and 150 sf of water were added to 15 g of corn starch, stirred and liquefied in a boiling water bath, and immediately autoclaved at 120° C. for 15 minutes.
After cooling, the pH was adjusted to 8.4 with an aqueous sodium hydroxide solution, followed by pullulanase a 5 opvN, 1!
:(:, 45 IU of the 5-producing enzyme was added, reacted at 50°C for 9 hours, and then heated at 100°C for 30 minutes to inactivate it. The composition of the sugar produced at this point is shown in Table 1 as Sample 1. show.

上記反応液にα−アミラーゼ(商品名:ターマミル60
L)を150μf加え、50°cで2時間反応させた0
反応終了後、直ちに塩酸でpH4,5に調整し、120
℃で15分間オートクレーブした0次いで、ケイソウ土
濾過で不溶物を除去してC5水飴を得た。この水飴の組
成を第1表にサンプル2として示す。
Add α-amylase (product name: Termamil 60) to the above reaction solution.
Add 150μf of L) and react at 50°C for 2 hours.
Immediately after the reaction was completed, the pH was adjusted to 4.5 with hydrochloric acid, and the pH was adjusted to 120
The mixture was autoclaved at 0.degree. C. for 15 minutes, and then insoluble matter was removed by diatomaceous earth filtration to obtain C5 starch syrup. The composition of this starch syrup is shown in Table 1 as Sample 2.

糖組成(%) GI   G2   G3   G4   G5   
G6   G6〈 サシプル 1 サンプル2 1.4 5.3 9.6 7.0 16.1 5.6 7.9 50.5 55.4 4.9 3.2 26.7 6.4 表から明らかなように、G6および66以上の高分子部
分が合計31.6%であったものが、ターマミル反応に
より9.6%に減少した。また、G5も50.5%から
55.4%に増加した。なお、得られた反応液の糖組成
は高速液体クロマトグラフィー(以下、HPLCという
。)で分析した。HPLCの分析条件は次の通りである
Sugar composition (%) GI G2 G3 G4 G5
G6 G6〈 Sashipur 1 Sample 2 1.4 5.3 9.6 7.0 16.1 5.6 7.9 50.5 55.4 4.9 3.2 26.7 6.4 It is clear from the table As shown, the total amount of G6 and 66 or higher polymer moieties was 31.6%, which was reduced to 9.6% by the termamyl reaction. G5 also increased from 50.5% to 55.4%. The sugar composition of the obtained reaction solution was analyzed by high performance liquid chromatography (hereinafter referred to as HPLC). The HPLC analysis conditions are as follows.

使用機器:島津製作所製 LC−4A カラム :バイオラッド製 アミネックスカーボハイド
レイト HPX−42A 7.8we(直径)x300m 溶出液 :蒸留水 温度:80℃ 検出:R丁 実施例2 モチトウモロコシ澱粉70gに細菌の液化型αアミラー
ゼ17.5mgと水700dを加え、沸騰水浴中で攪拌
、液化し直ちに120″Cで15分間オートクレーブし
、放冷した後、水酸化ナトリウム水溶液でpH8,45
に調整した。次いで、G5生成酵素140Itlを加え
、50℃で5時間反応させた後、100℃で30分間加
熱して失活させ、放冷した。この時点で生成した糖の組
成を第2表にサンプル3として示す。
Equipment used: LC-4A manufactured by Shimadzu Corporation Column: Aminex Carbohydrate HPX-42A manufactured by Bio-Rad 7.8we (diameter) x 300m Eluent: Distilled water temperature: 80°C Detection: R-Cho Example 2 Waxy corn starch 70g Add 17.5 mg of bacterial liquefied α-amylase and 700 d of water, stir in a boiling water bath, liquefy, immediately autoclave at 120''C for 15 minutes, allow to cool, and add sodium hydroxide aqueous solution to pH 8.45.
Adjusted to. Next, 140 Itl of G5-generating enzyme was added and reacted at 50°C for 5 hours, heated at 100°C for 30 minutes to inactivate, and allowed to cool. The composition of the sugar produced at this point is shown in Table 2 as Sample 3.

上記反応液にプルラナーゼ2100PtlN、  α−
アミラーゼ(商品名:ターマミル60L)を100μl
加え、50℃で5時間反応させた。反応終了後、直ちに
塩酸でpH4,5に調整し、120℃で15分間オート
クレーブした。次いで、ケイソウ土濾過で不溶物を除去
してG5水飴を得た。この水飴の組成を第2表にサンプ
ル4として示す。
Pullulanase 2100PtlN, α-
100μl of amylase (product name: Termamil 60L)
The mixture was added and reacted at 50°C for 5 hours. Immediately after the reaction was completed, the pH was adjusted to 4.5 with hydrochloric acid, and the mixture was autoclaved at 120°C for 15 minutes. Next, insoluble matter was removed by diatomaceous earth filtration to obtain G5 starch syrup. The composition of this starch syrup is shown in Table 2 as Sample 4.

I!組成(%) GI  G2  G3  G4  G5  G6  G
6<サンプル3  0    0.9   1.6  
1.829.1  0.7  65.9サンプル4  
 3.1mM2.4  18.0  8.651.3 
 2.2   4.4表から明らかなように、得られた
G5水飴中の06およびG6以上の高分子部分が合計6
.6%であり、51.3%を含むG5を中心とした低分
子糖が大部分を占めている。
I! Composition (%) GI G2 G3 G4 G5 G6 G
6<Sample 3 0 0.9 1.6
1.829.1 0.7 65.9 sample 4
3.1mM2.4 18.0 8.651.3
2.2 As is clear from Table 4.4, the total amount of polymer moieties of 06 and G6 or higher in the obtained G5 starch syrup is 6.
.. 6%, and low molecular weight sugars mainly containing G5 account for 51.3%.

実施例3 モチトウモロコシ澱粉40gに細菌の液化型αアミラー
ゼ32賜gと水400dを加え、沸l水浴中で攪拌、液
化し直ちに120℃で15分間オートクレーブし、放冷
した後、0.05M)リス塩酸緩衝液100dを加え、
p)18.4に調整した。
Example 3 32 grams of bacterial liquefied α-amylase and 400 grams of water were added to 40 grams of waxy corn starch, stirred in a boiling water bath, liquefied, immediately autoclaved at 120°C for 15 minutes, left to cool, and then mixed with 0.05 M) Add 100 d of Lis-HCl buffer,
p) Adjusted to 18.4.

次いで、G5生成酵素200IUとプルラナーゼ120
0PUNを加え、50℃で4.5時間反応させた後、1
00℃で30分間加熱して失活させ、放冷した。この時
点で生成した糟の組成を第3表にサンプル5として示す
、また、HPLC溶出曲線を第1図に示す。
Next, 200 IU of G5-generating enzyme and 120 IU of pullulanase
After adding 0PUN and reacting at 50°C for 4.5 hours, 1
The mixture was heated at 00° C. for 30 minutes to inactivate it, and then allowed to cool. The composition of the cellulose produced at this point is shown in Table 3 as Sample 5, and the HPLC elution curve is shown in FIG.

上記反応液に3N塩酸を加え、pH6に調整後、α−ア
ミラーゼ(商品名:ターマミル60L)を200μ!加
え、50″Cで2時間反応させた。反応終了後、直ちに
塩酸でpH4,5に調整し、120℃で15分間オート
クレーブした。次いで、ケイソウ土濾過で不溶物を除去
してG5水飴を得た。
Add 3N hydrochloric acid to the above reaction solution to adjust the pH to 6, then add 200μ of α-amylase (trade name: Termamil 60L)! After the reaction, the pH was adjusted to 4.5 with hydrochloric acid and autoclaved for 15 minutes at 120°C. Next, insoluble matter was removed by diatomaceous earth filtration to obtain G5 starch syrup. Ta.

二の水飴の組成を第3表にサンプル6として示す。The composition of Ni-no-Mizuame is shown in Table 3 as Sample 6.

また、HPLC溶出曲線を第2図に示す。Moreover, the HPLC elution curve is shown in FIG.

糖組成(%) GI  G2  G3  G4  [;5  G6  
G6<サンプル5   0    6.2   8.4
  5.349.7  4.1  26.3サンプル6
  2.812.0  15.9  7.853.4 
 1.7   6.4表から明らかなように、得られた
G5水飴にはG6および06以上の高分子部分が合計8
.1%しか含まれておらず、G5を5334%含む低分
子糟が大部分を占めている。
Sugar composition (%) GI G2 G3 G4 [;5 G6
G6<Sample 5 0 6.2 8.4
5.349.7 4.1 26.3 Sample 6
2.812.0 15.9 7.853.4
1.7 As is clear from Table 6.4, the obtained G5 starch syrup contains a total of 8 G6 and 06 or higher polymer moieties.
.. It only contains 1%, and the majority is low-molecular weight, which contains 5334% G5.

[発明の効果〕 本発明によれば、マルトヘキサオース以上の重合度をも
つマルトオリゴ糟や高分子デキストリンの含有率が非常
に少ないマルトペンタオースを効率良く製造することが
できる。
[Effects of the Invention] According to the present invention, it is possible to efficiently produce maltopentaose which has a very low content of malto-oligo pulp and polymer dextrin having a degree of polymerization higher than maltohexaose.

得られたG5水飴は包接粉末化基材5食品改良剤などの
ほか、病人、幼児、老人用滋養食品原料としての用途が
期待される。
The obtained G5 starch syrup is expected to be used not only as a clathrate powder base material 5 food improver, but also as a raw material for nutritional foods for sick people, infants, and the elderly.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は、実施例で得た糖液のHPLC溶出
曲線でる。 図中、Glはグルコース、G2はマルトース。 G3はマルトトリオース、G4はマルトテトラオース、
G5はマルトペンタオース、G6はマルトヘキサオース
2 Dはデキストリンを示す。 特許出願人 塩水港精糖株式会社 農林水産省食品総合研究所長 新技術事業団 第 図 溶出時間 分 第 図 溶出時間 分
FIGS. 1 and 2 show HPLC elution curves of the sugar solutions obtained in Examples. In the figure, Gl is glucose and G2 is maltose. G3 is maltotriose, G4 is maltotetraose,
G5 is maltopentaose, G6 is maltohexaose 2, and D is dextrin. Patent Applicant: Shimizu Port Refining Co., Ltd. Director, Food Research Institute, Ministry of Agriculture, Forestry and Fisheries New Technology Corporation Figure Elution Time Figure Elution Time

Claims (2)

【特許請求の範囲】[Claims] (1)澱粉、澱粉の組成画分及び澱粉の分解生成物のう
ちの少なくとも1種の物質にマルトペンタオース生成酵
素を作用させた後、α−アミラーゼを作用させることを
特徴とするマルトペンタオース水飴の製造方法。
(1) Maltopentaose, which is produced by treating at least one substance among starch, a compositional fraction of starch, and a decomposition product of starch with a maltopentaose-generating enzyme, and then treating with α-amylase. Method for producing starch syrup.
(2)マルトペンタオース生成酵素が下記の性質を有す
るものである請求項1記載の方法。 i)、本酵素はアミロース、可溶性澱粉、馬鈴薯澱粉、
甘藷澱粉、米澱粉、タピオカ澱粉、トウモロコシ澱粉、
モチトウモロコシ澱粉、サゴ澱粉などに作用してマルト
ペンタオースを生成する。 ii)、本酵素は45℃にてpH6〜7が至適であり、
pH6.5〜9で安定である。 iii)、本酵素はpH6.5において至適温度は50
〜55℃であり、55℃以上の温度で15分間放置する
と失活する。 iv)、本酵素は0.4mMパラクロロ安息香酸第二水
銀及び1mMモノヨードアセトアミド溶液中で阻害を受
けるが、阻害率は40〜50%である。 v)、本酵素の分子量は72500±2500(ディス
クゲル電気泳動法による)である。 vi)、本酵素の等電点はpH6.5(アンフォライン
電気泳動法による)である。
(2) The method according to claim 1, wherein the maltopentaose-generating enzyme has the following properties. i) This enzyme contains amylose, soluble starch, potato starch,
Sweet potato starch, rice starch, tapioca starch, corn starch,
It acts on waxy corn starch, sago starch, etc. to produce maltopentaose. ii) This enzyme has an optimum pH of 6 to 7 at 45°C;
Stable at pH 6.5-9. iii) The optimal temperature for this enzyme is 50 at pH 6.5.
~55°C, and is deactivated if left at a temperature of 55°C or higher for 15 minutes. iv) This enzyme is inhibited in 0.4mM mercuric parachlorobenzoate and 1mM monoiodoacetamide solution, but the inhibition rate is 40-50%. v) The molecular weight of this enzyme is 72,500±2,500 (according to disk gel electrophoresis). vi) The isoelectric point of this enzyme is pH 6.5 (according to ampholine electrophoresis).
JP2150048A 1990-06-11 1990-06-11 Process for producing maltopentaose starch syrup Expired - Fee Related JP2829329B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2150048A JP2829329B2 (en) 1990-06-11 1990-06-11 Process for producing maltopentaose starch syrup

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2150048A JP2829329B2 (en) 1990-06-11 1990-06-11 Process for producing maltopentaose starch syrup

Publications (2)

Publication Number Publication Date
JPH0445794A true JPH0445794A (en) 1992-02-14
JP2829329B2 JP2829329B2 (en) 1998-11-25

Family

ID=15488370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2150048A Expired - Fee Related JP2829329B2 (en) 1990-06-11 1990-06-11 Process for producing maltopentaose starch syrup

Country Status (1)

Country Link
JP (1) JP2829329B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2288714A1 (en) 2008-05-09 2011-03-02 Cargill, Incorporated Low-viscosity reduced-sugar syrup, methods of making, and applications thereof
US9540668B2 (en) 2012-01-31 2017-01-10 Tate & Lyle Ingredients Americas Llc Reduced sugar syrups and methods of making reduced sugar syrups
US9730464B2 (en) 2008-05-09 2017-08-15 Cargill, Incorporated Carbohydrate compositions
US11291222B2 (en) 2013-03-15 2022-04-05 Cargill, Incorporated Carbohydrate compositions

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2288714A1 (en) 2008-05-09 2011-03-02 Cargill, Incorporated Low-viscosity reduced-sugar syrup, methods of making, and applications thereof
EP2288714A4 (en) * 2008-05-09 2014-12-03 Cargill Inc Low-viscosity reduced-sugar syrup, methods of making, and applications thereof
US9730464B2 (en) 2008-05-09 2017-08-15 Cargill, Incorporated Carbohydrate compositions
US9540668B2 (en) 2012-01-31 2017-01-10 Tate & Lyle Ingredients Americas Llc Reduced sugar syrups and methods of making reduced sugar syrups
US11291222B2 (en) 2013-03-15 2022-04-05 Cargill, Incorporated Carbohydrate compositions

Also Published As

Publication number Publication date
JP2829329B2 (en) 1998-11-25

Similar Documents

Publication Publication Date Title
EP0688872B1 (en) Process for preparing starchy products
CA1282724C (en) Enzymatic hydrolysis of granular starch directly to glucose
Hizukuri et al. Multi-branched nature of amylose and the action of debranching enzymes
EP0464095B1 (en) Novel hyperthermostable alpha - amylase
EP0140410B1 (en) Novel enzyme product and its use in the saccharification of starch
US3701714A (en) Processes for the production of oligosaccharides having fructose molecules on their reducing ends
US4603110A (en) Starch hydrolyzates and preparation thereof
JPS6318480B2 (en)
JPH0445794A (en) Production of maltopentaose syrup
US5501968A (en) Thermostable cyclodextrin glycosyl transferase and processes using it
CN108396041B (en) Method for improving transparency of starch liquefaction product
JP3109841B2 (en) Process for producing maltohexaose and maltoheptaose-containing starch sugar
US4782143A (en) Starch hydrolyzates and preparation thereof
EP0506790B1 (en) A method for enzymatically converting starch into cyclodextrins
US4814267A (en) Method for preparing high conversion syrups and other sweeteners
JPH0533991B2 (en)
JPH03236787A (en) Production of thick malt syrup
JPS6225977A (en) Novel amylase
JPH0823990A (en) Production of oligosaccharide
JP2840772B2 (en) How to increase glucose yield
JPS6149955B2 (en)
JPS6344360B2 (en)
JPS6012038B2 (en) Method for producing starch bran with high maltotriose content
JPH06335394A (en) Production of starchy saccharide containing maltohexaose at high ratio
JPS63226295A (en) Production of maltopentaose using novel maltopentaose-producing enzyme

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees