JPH0445424A - Orientation control film and ferroelectric liquid crystal element formed by using this film - Google Patents

Orientation control film and ferroelectric liquid crystal element formed by using this film

Info

Publication number
JPH0445424A
JPH0445424A JP15366690A JP15366690A JPH0445424A JP H0445424 A JPH0445424 A JP H0445424A JP 15366690 A JP15366690 A JP 15366690A JP 15366690 A JP15366690 A JP 15366690A JP H0445424 A JPH0445424 A JP H0445424A
Authority
JP
Japan
Prior art keywords
liquid crystal
orientation
film
alignment
ferroelectric liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15366690A
Other languages
Japanese (ja)
Inventor
Masao Yamamoto
雅夫 山本
Hideaki Mochizuki
望月 秀晃
Yuji Satani
裕司 佐谷
Katsuji Hattori
服部 勝治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP15366690A priority Critical patent/JPH0445424A/en
Publication of JPH0445424A publication Critical patent/JPH0445424A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To increase the area of orientation control of molecules, etc., and to increase the number of picture elements by providing the orientation control films formed of coated films of modified protein on supporting plates. CONSTITUTION:Transparent electrodes 12 are formed on substrates 11 and after the orientation control films 13 are formed thereon, a resin 14 is printed. Two sheets of the liquid crystal supporting plates 15 are stuck to each other and a liquid crystal 16 is injected from an aperture and the aperture is sealed to complete a liquid crystal cell. The control films are formed by subjecting the coated films essentially consisting of the protein to an orientation treatment and further exposing the films to environment of 30 to 60 deg.C and >=70% humidity. Since the protein molecules and assemblage thereof exhibit good orientation, the orientation uniform over the entire surface of the element is attained easily at a low cost if this film is applied to the liquid crystal element. Above all, the uniform orientation is attained at the low cost with the liquid crystal element formed by using a liquid crystal exhibiting a ferroelectric property while the bistability is perfectly maintained over a long period of time.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は強誘電性液晶に適した配向制御膜およびそれを
用いた強誘電性液晶素子に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an alignment control film suitable for ferroelectric liquid crystals and a ferroelectric liquid crystal element using the same.

従来の技術 液晶素子において分子やその集合体などの配向を制御す
るために、ポリイミドやポリアミドなどの合成高分子を
基板に塗布、乾燥し、その表面を布などでこすって配向
制御を行なうラビング処理を行なった配向制御膜が主に
用いられている。
Conventional technology In order to control the orientation of molecules and their aggregates in liquid crystal elements, a rubbing process involves applying synthetic polymers such as polyimide or polyamide to a substrate, drying them, and then rubbing the surface with a cloth to control the orientation. Orientation control films that have undergone this process are mainly used.

発明が解決しようとする課題 液晶素子において、分子などの配向を制御する手段の一
つであるラビング処理は単純な手段であるため、低コス
トで実施できる。しかし、大面積化および画素数の増大
が望まれるようになると従来用いていたポリイミドやポ
リアミドなどの配向制御膜ではこれに対応しきれず、配
向の均一性が不十分であった。とくに強誘電性を示す液
晶を用いた液晶素子において、分子の配向方向に双安定
性が必要とされ、従来の配向制御膜ではこの双安定性の
発現が不十分であるというWaがあった。
Problems to be Solved by the Invention In a liquid crystal element, rubbing treatment, which is one of the means for controlling the orientation of molecules, etc., is a simple means and can be carried out at low cost. However, as it became desirable to increase the area and number of pixels, the conventionally used alignment control films made of polyimide, polyamide, and the like could not meet this demand, and the uniformity of alignment was insufficient. In particular, in a liquid crystal element using a liquid crystal exhibiting ferroelectricity, bistability is required in the orientation direction of molecules, and there has been a problem that conventional alignment control films are insufficient in expressing this bistability.

本発明はこのような課題を解決するもので、画素数の多
い大面積の液晶表示素子に適した強誘電性液晶の双安定
性を発現する配向制御膜とそれを用いた強誘電性液晶素
子を提供することを目的とするものである。
The present invention is intended to solve these problems, and provides an alignment control film that exhibits bistability of ferroelectric liquid crystal suitable for large-area liquid crystal display elements with a large number of pixels, and a ferroelectric liquid crystal element using the same. The purpose is to provide the following.

課題を解決するための手段 この課題を解決するために本発明は、配向処理をうけ、
かつ温度30〜60℃、湿度70%以上の環境に暴露し
て変性したタンパク賞塗膜で形成した配向制御膜を少な
くとも一方の液晶支持板上に設け、対向する液晶支持板
の間隙に強誘電性液晶を保持するようにしたものである
Means for Solving the Problems In order to solve the problems, the present invention provides the following methods:
An alignment control film formed of a proteinaceous coating film denatured by exposure to an environment with a temperature of 30 to 60°C and a humidity of 70% or more is provided on at least one of the liquid crystal support plates, and a ferroelectric film is provided in the gap between the opposing liquid crystal support plates. It is designed to hold a liquid crystal.

作用 本発明はタンパク質を主成分とする塗膜に配向処理を施
した配向膜msを用い、さらに、その配向制御膜を温度
30〜60°C1湿度70%以上の環境に暴露すること
によりタンパク賞分子やその集合体が良好な配向を示す
。また、この配向膜を液晶素子に応用した場合には、素
子の全面にわたって均一な配向を容易に低コストで実現
できる。
Function The present invention uses an alignment film ms obtained by performing an alignment treatment on a coating film containing protein as a main component, and further exposes the alignment control film to an environment with a temperature of 30 to 60°C and a humidity of 70% or more. Molecules and their aggregates exhibit good orientation. Furthermore, when this alignment film is applied to a liquid crystal device, uniform alignment can be easily achieved over the entire surface of the device at low cost.

中でも、強誘電性を示す液晶を用いた液晶素子では、双
安定性を長期間にわたり完全に保持したままで均一な配
向を低コストで実現できることとな実施例 以下本発明の一実施例の配向膜msおよびそれを用いた
液晶素子について、図面を参照しながら説明する。第1
図に本発明の配向制御膜を用いた液晶素子の構成を示す
0図に示すように、ガラスやプラスチックなどの基板1
1上にインジウム・錫酸化物(以後ITOと略す)より
なる透明電極12を形成し、その上に配向制御膜13を
形成後配向処理を施し、スペーサ兼シール樹脂14を印
刷し、2枚の液晶支持板15を貼合わせ、開口部より液
晶16を注入後、開口部を封止していわゆる液晶セルを
完成した。
In particular, in a liquid crystal element using a liquid crystal exhibiting ferroelectricity, uniform alignment can be achieved at low cost while completely maintaining bistability for a long period of time. The film ms and a liquid crystal element using the same will be explained with reference to the drawings. 1st
The figure shows the structure of a liquid crystal element using the alignment control film of the present invention.As shown in figure 0, a substrate made of glass or plastic, etc.
A transparent electrode 12 made of indium-tin oxide (hereinafter abbreviated as ITO) is formed on top of the transparent electrode 12, an alignment control film 13 is formed on top of the transparent electrode 12, an alignment treatment is performed, a spacer/sealing resin 14 is printed, and two sheets of A liquid crystal support plate 15 was bonded together, liquid crystal 16 was injected through the opening, and the opening was sealed to complete a so-called liquid crystal cell.

(実施例1) 1.0gの牛血清アルブミンを99.0gの純水に溶か
し、1.0重量%の牛血清アルブミン水溶液を調整した
。ついで、この水溶液をITOの電極パターンを形成し
たガラス基板に回転塗布機により500回転/分で10
秒間回転塗布した後、連続して2300回転/分で1分
間回転塗布を行なった。塗布後110℃で1時間乾燥を
行なった。乾燥後、牛血清アルブミンの28が形成され
た表面をレーヨンの布を用いて同一方向に10回ラビン
グ処理を行ない配向膜allを完成した。こうして生血
清アルブミンの配向膜MWを形成したガラス液晶支持板
を2枚用意し、第2図に示すようにその片方の支持板2
2(例えば下側液晶支持板22)の配向膜m膜を形成し
た面にスペーサ兼シール樹脂25として直径2μmのガ
ラス繊維を分散した酸無水物硬化型エポキシ樹脂を1辺
のみ辺の中央に5閣幅の液晶注入口を残して他の周辺に
0.2閣幅で印刷した。このように作成した上側液晶支
持板21と下側支持板22に形成した配向制御膜のラビ
ング処理方向23.24が平行でかつ配向制御膜面を対
向さ廿た状態で加圧し、140℃で4時間加熱してエポ
キシ樹脂スペーサを硬化接着した。
(Example 1) 1.0 g of bovine serum albumin was dissolved in 99.0 g of pure water to prepare a 1.0% by weight bovine serum albumin aqueous solution. Next, this aqueous solution was applied to a glass substrate on which an ITO electrode pattern was formed using a spin coater at 500 rpm for 10 minutes.
After spin coating for seconds, spin coating was continued for 1 minute at 2300 rpm. After coating, it was dried at 110° C. for 1 hour. After drying, the surface on which bovine serum albumin 28 was formed was rubbed 10 times in the same direction using a rayon cloth to complete an alignment film ALL. Two glass liquid crystal support plates on which alignment films MW of raw serum albumin were formed in this way were prepared, and as shown in FIG. 2, one of the support plates 2
2 (for example, the lower liquid crystal support plate 22), an acid anhydride-curing epoxy resin in which glass fibers with a diameter of 2 μm are dispersed is applied as a spacer/sealing resin 25 to the surface on which the alignment film M film is formed, in the center of only one side. I left the liquid crystal inlet with a width of 0.2mm and printed around it with a width of 0.2mm. The rubbing directions 23 and 24 of the alignment control films formed on the upper liquid crystal support plate 21 and the lower support plate 22 thus created were parallel to each other, and the surfaces of the alignment control films were placed opposite each other, and pressurized at 140°C. The epoxy resin spacer was cured and bonded by heating for 4 hours.

接着後、その液晶セルを高温高温(35℃、85%)の
環境下に7日間放置後、高温高温(35℃。
After bonding, the liquid crystal cell was left in a high temperature (35°C, 85%) environment for 7 days, and then the liquid crystal cell was left in a high temperature (35°C, 85%) environment for 7 days.

85%)の環境下°で、液晶が等方性を示す温度すなわ
ち80℃付近まで液晶材料を加熱し、開口部から毛管現
象により市販の液晶16(メルク社製、商品名ZLI3
654)を汁入した。注入後、室温まで徐冷し開口部を
市販の酸無水物硬化型エポキシ樹脂で封止し、強誘電性
液晶セルを完成した。
85%), the liquid crystal material is heated to the temperature at which the liquid crystal exhibits isotropy, that is, around 80°C.
654) was added to the soup. After injection, it was slowly cooled to room temperature and the opening was sealed with a commercially available acid anhydride-curable epoxy resin to complete a ferroelectric liquid crystal cell.

このようにして完成した強誘電性液晶セルは配向ムラの
ない良好な配向状態を示し、電圧印加により、双安定性
の確保された良好な電気光学特性が得られた。さらに、
この双安定性は100時間以上経過後も劣化することな
く保持された。
The ferroelectric liquid crystal cell thus completed exhibited a good alignment state with no alignment unevenness, and upon application of a voltage, good electro-optical properties with ensured bistability were obtained. moreover,
This bistability was maintained without deterioration even after more than 100 hours had passed.

(実施例2) 1.0gの卵白アルブミンを99.0gの純水に溶かし
、1.0重量%の卵白アルブミン水溶液を調整した。こ
の水溶液を用いて実施例1に示した方法により強誘電性
液晶セルを作製した。完成した強誘電性液晶セルは、配
向ムラのない良好な配向状態を示し、良好な電気光学特
性が得られた。さらに、この双安定性は100時間以上
経過後も劣化することなく保持された。
(Example 2) 1.0 g of ovalbumin was dissolved in 99.0 g of pure water to prepare a 1.0% by weight aqueous ovalbumin solution. A ferroelectric liquid crystal cell was produced using this aqueous solution by the method shown in Example 1. The completed ferroelectric liquid crystal cell showed a good alignment state with no alignment unevenness, and good electro-optical properties were obtained. Furthermore, this bistability was maintained without deterioration even after more than 100 hours had passed.

(実施例3) 100gの兎血清アルブミンを99.0gの純水に溶か
し、1.0重量%の兎血清アルブミン水溶液を調整した
。この水溶液を用いて実施例1に示した方法により強誘
電性液晶セルを作製した。完成した強誘電性液晶セルは
、配向ムラのない良好な配向状態を示し、良好な電気光
学特性が得られた。
(Example 3) 100 g of rabbit serum albumin was dissolved in 99.0 g of pure water to prepare a 1.0% by weight rabbit serum albumin aqueous solution. A ferroelectric liquid crystal cell was produced using this aqueous solution by the method shown in Example 1. The completed ferroelectric liquid crystal cell showed a good alignment state with no alignment unevenness, and good electro-optical properties were obtained.

さらに、この双安定性は100時間以上経過後も劣化す
ることなく保持された。
Furthermore, this bistability was maintained without deterioration even after more than 100 hours had passed.

(実施例4) 0.5gのヘモグロビンを99.5gの純水に溶かし、
0.5重量%のヘモグロビン水溶液を調整した。
(Example 4) Dissolve 0.5 g of hemoglobin in 99.5 g of pure water,
A 0.5% by weight aqueous hemoglobin solution was prepared.

この水溶液を用いて実施例1に示した方法により強誘電
性液晶セルを作製した。完成した強誘電性液晶セルは、
配向ムラのない良好な配向状態を示し、良好な電気光学
特性が得られた。さらに、この双安定性は100時間以
上経過後も劣化することなく保持された。
A ferroelectric liquid crystal cell was produced using this aqueous solution by the method shown in Example 1. The completed ferroelectric liquid crystal cell is
A good alignment state with no alignment unevenness was exhibited, and good electro-optical properties were obtained. Furthermore, this bistability was maintained without deterioration even after more than 100 hours had passed.

(実施例5) 1.0gのキモトリプシンを99.0gの純水に溶かし
、1.0重量%のキモトリプシン水溶液を調整した。こ
の水溶液を用いて実施例1に示した方法により強誘電性
液晶セルを作製した。完成した強誘電性液晶セルは、配
向ムラのない良好な配向状態を示し、良好な電気光学特
性が得られた。さらに、この双安定性は100時間以上
経過後も劣化することなく保持された。
(Example 5) 1.0 g of chymotrypsin was dissolved in 99.0 g of pure water to prepare a 1.0% by weight chymotrypsin aqueous solution. A ferroelectric liquid crystal cell was produced using this aqueous solution by the method shown in Example 1. The completed ferroelectric liquid crystal cell showed a good alignment state with no alignment unevenness, and good electro-optical properties were obtained. Furthermore, this bistability was maintained without deterioration even after more than 100 hours had passed.

(実施例6) 1.0gのチトクロームを99.0gの純水に溶かし、
1.0重量%のチトクローム水溶液を調整した。
(Example 6) Dissolve 1.0 g of cytochrome in 99.0 g of pure water,
A 1.0% by weight aqueous cytochrome solution was prepared.

こめ水溶液を用いて実施例1に示した方法により強誘電
性液晶セルを作製した。完成した強誘電性液晶セルは、
配向ムラのない良好な配向状態を示し、良好な電気光学
特性が得られた。さらに、この双安定性は100時間以
上経過後も劣化することなく保持された。
A ferroelectric liquid crystal cell was produced by the method shown in Example 1 using a rice aqueous solution. The completed ferroelectric liquid crystal cell is
A good alignment state with no alignment unevenness was exhibited, and good electro-optical properties were obtained. Furthermore, this bistability was maintained without deterioration even after more than 100 hours had passed.

(比較例1) 1.0gの牛血清アルブミンを99.0gの純水に溶か
し、1.0重量%の牛血清アルブミン水溶液を調整した
。ついで、この水溶液をITO電極のパターンを形成し
たガラス基板に回転塗布機で500回転/分で10秒間
回転塗布した後、連続して2300回転/分で1分間塗
布を行なった。
(Comparative Example 1) 1.0 g of bovine serum albumin was dissolved in 99.0 g of pure water to prepare a 1.0% by weight bovine serum albumin aqueous solution. Next, this aqueous solution was spin-coated on a glass substrate on which an ITO electrode pattern was formed at 500 rpm for 10 seconds using a spin coater, and then continuously coated at 2300 rpm for 1 minute.

塗布後110℃の電気炉で1時間乾燥を行なった。After coating, it was dried for 1 hour in an electric furnace at 110°C.

乾燥後、牛血清アルブミンの塗膜が形成された表面をレ
ーヨンの布を用いて同一方向に10回ラビング処理を行
ない配向制御膜を完成した。こうして生血清アルブミン
の配向制御膜を形成したガラス液晶支持板を2枚用意し
第2図に示すようにその片方の支持板(例えば下側液晶
支持板22)の配向制御膜を形成した面にスペーサ兼シ
ール樹脂25として直径2μmのガラス繊維を分散した
酸無水物硬化型エポキシ樹脂を1辺のみ辺の中央に5閣
幅の液晶注入口を残して他の周辺に0.2閣幅で印刷し
た。このようにして作製した上側液晶支持板21と下側
支持板22に形成した配向制御膜のラビング処理方向2
3.24が平行でかつ配向制御膜面を対向させた状態で
加圧し、140℃で4時間加熱してエポキシ樹脂スペー
サを硬化接着した。接着後、その液晶セルを温度10℃
、湿度30%の環境下に7日間放置後、温度10″C9
湿度30%の環境下で、その液晶が等方性を示す温度す
なわち80℃付近まで加熱し、開口部から毛管現象によ
り市販の液晶16(メルク社製、商品名ZL I 36
54)を注入した。注入後、室温まで徐冷し開口部を市
販の酸無水物硬化型エポキシ樹脂で封止し、強誘電性液
晶セルを完成した。このようにして完成した強誘電性液
晶セルは、電圧印加により双安定性は確保されたが、そ
の双安定性は24時間以内に劣化した。
After drying, the surface on which the bovine serum albumin coating was formed was rubbed 10 times in the same direction using a rayon cloth to complete an orientation control film. Two glass liquid crystal support plates on which the alignment control film of raw serum albumin is formed are prepared in this way, and as shown in FIG. As a spacer/sealing resin 25, an acid anhydride-curing epoxy resin containing glass fibers with a diameter of 2 μm is printed, leaving a liquid crystal injection port with a width of 5 mm in the center of one side, and printing with a width of 0.2 mm on the other periphery. did. Rubbing treatment direction 2 of the alignment control film formed on the upper liquid crystal support plate 21 and the lower support plate 22 thus produced
3.24 were parallel and the orientation control film surfaces faced each other, pressure was applied, and the epoxy resin spacer was cured and bonded by heating at 140° C. for 4 hours. After bonding, the liquid crystal cell is heated to 10℃.
, After being left in an environment with 30% humidity for 7 days, the temperature was 10"C9.
In an environment with a humidity of 30%, the liquid crystal is heated to a temperature at which it exhibits isotropy, that is, around 80°C, and a commercially available liquid crystal 16 (manufactured by Merck & Co., trade name: ZL I 36) is formed by capillary action from the opening.
54) was injected. After injection, it was slowly cooled to room temperature and the opening was sealed with a commercially available acid anhydride-curable epoxy resin to complete a ferroelectric liquid crystal cell. Although bistability of the ferroelectric liquid crystal cell thus completed was ensured by voltage application, the bistability deteriorated within 24 hours.

(比較例2) 1.0gの卵白アルブミンを99.0gの純水に溶かし
、1,0重量%の卵白アルブミン水溶液を調整した。こ
の水溶液を用いて比較例1に示した方法により強誘電性
液晶セルを作製した。完成した強誘電性液晶セル・は、
電圧印加により双安定性は確保されたが、その双安定性
は24時間以内に劣化した。
(Comparative Example 2) 1.0 g of ovalbumin was dissolved in 99.0 g of pure water to prepare a 1.0% by weight aqueous ovalbumin solution. A ferroelectric liquid crystal cell was produced using this aqueous solution by the method shown in Comparative Example 1. The completed ferroelectric liquid crystal cell is
Although bistability was ensured by voltage application, the bistability deteriorated within 24 hours.

(比較例3) 1.0gの兎血清アルブミンを99.0gの純水に溶か
し、1.0重量%の兎血清アルブミン水溶液を調整した
。この水溶液を用いて比較例1に示した方法により強誘
電性液晶セルを作製した。完成した強誘電性液晶セルは
、電圧印加により双安定性は確保されたが、その双安定
性は24時間以内に劣化した。
(Comparative Example 3) 1.0 g of rabbit serum albumin was dissolved in 99.0 g of pure water to prepare a 1.0% by weight rabbit serum albumin aqueous solution. A ferroelectric liquid crystal cell was produced using this aqueous solution by the method shown in Comparative Example 1. Although bistability of the completed ferroelectric liquid crystal cell was ensured by voltage application, the bistability deteriorated within 24 hours.

(比較例4) 0.5gのヘモグロビンを99.5gの純水に溶カし、
0.5重量%のヘモグロビン水溶液を調整した。
(Comparative Example 4) Dissolve 0.5g of hemoglobin in 99.5g of pure water,
A 0.5% by weight aqueous hemoglobin solution was prepared.

この水溶液を用いて比較例1に示した方法により強誘電
性液晶セルを作製した。完成した強誘電性液晶セルは、
電圧印加により双安定性は確保されたが、その双安定性
は24時間以内に劣化した。
A ferroelectric liquid crystal cell was produced using this aqueous solution by the method shown in Comparative Example 1. The completed ferroelectric liquid crystal cell is
Although bistability was ensured by voltage application, the bistability deteriorated within 24 hours.

(比較例5) 1.0gのキモトリプシンを99.0gの純水に溶かし
、1.0重量%のキモトリプシン水溶液を調整した。こ
の水溶液を用いて比較例1に示した方法により強誘電性
液晶セルを作製した。完成した強誘電性液晶セルは、電
圧印加により双安定性は確保されたが、その双安定性は
24時間以内に劣化した。
(Comparative Example 5) 1.0 g of chymotrypsin was dissolved in 99.0 g of pure water to prepare a 1.0% by weight chymotrypsin aqueous solution. A ferroelectric liquid crystal cell was produced using this aqueous solution by the method shown in Comparative Example 1. Although bistability of the completed ferroelectric liquid crystal cell was ensured by voltage application, the bistability deteriorated within 24 hours.

(比較例6) 1.0gのチトクロームを99.0gの純水に溶かし、
1.0重量%のチトクローム水溶液を調整した。
(Comparative Example 6) Dissolve 1.0g of cytochrome in 99.0g of pure water,
A 1.0% by weight aqueous cytochrome solution was prepared.

この水溶液を用いて比較例1に示した方法により強誘電
性液晶セルを作製した。完成した強誘電性液晶セルは、
電圧印加により双安定性は確保されたが、その双安定性
は24時間以内に劣化した。
A ferroelectric liquid crystal cell was produced using this aqueous solution by the method shown in Comparative Example 1. The completed ferroelectric liquid crystal cell is
Although bistability was ensured by voltage application, the bistability deteriorated within 24 hours.

なお、上記の実施例において、強誘電性液晶セルの放置
および液晶注入時の環境を温度30〜60℃、湿度70
%以上の範囲内で変化させた場合も同様の結果が得られ
た。
In the above example, the environment during leaving the ferroelectric liquid crystal cell and injecting the liquid crystal was set at a temperature of 30 to 60°C and a humidity of 70°C.
Similar results were obtained when the ratio was changed within a range of % or more.

また、上記の実施例において、配向制御膜としてミオグ
ロビン、ミオゲン、ヘムエリトチン、フェリチン、免疫
グロブリン、インスリン、ヌクレアーゼを用いた場合も
同様の結果が得られた。
Further, in the above examples, similar results were obtained when myoglobin, myogen, heme erythtin, ferritin, immunoglobulin, insulin, and nuclease were used as the orientation control membrane.

また、上記の実施例においては、透明電極上に形成した
タンパク質の表面をラビングしたが、本発明は透明電極
上に短絡防止のために形成する酸化珪素などの上に形成
したタンパク質の表面をラビングした場合にも適用でき
る。
In addition, in the above example, the surface of the protein formed on the transparent electrode was rubbed, but in the present invention, the surface of the protein formed on the silicon oxide etc. formed on the transparent electrode to prevent short circuits was rubbed. It can also be applied when

発明の効果 以上の実施例の説明からも明らかなように本発明によれ
ば、タンパク質を主成分とする塗膜に配向処理を施し液
晶配向制御膜を作成し、さらにその配向制御膜を温度3
0〜60℃、湿度70%以上の環境下にさらすことでタ
ンパク質の分子やその集合体などの配向を制御すること
が可能になる。
Effects of the Invention As is clear from the description of the embodiments above, according to the present invention, a liquid crystal alignment control film is created by applying an alignment treatment to a coating film containing protein as a main component, and the alignment control film is further heated at a temperature of 3.
By exposing it to an environment of 0 to 60°C and humidity of 70% or more, it becomes possible to control the orientation of protein molecules and their aggregates.

また、この配向制御膜を液晶素子に応用した場合には、
液晶素子の全面にわたって均一な配向を容易に低コスト
で実現でき、中でも強誘電性を示す液晶を用いた液晶素
子では、強誘電性液晶の双安定性を長期間にわたり完全
に保持した液晶素子が実現できるという効果が得られる
Furthermore, when this alignment control film is applied to a liquid crystal element,
Uniform alignment can be easily achieved over the entire surface of a liquid crystal element at low cost. Among liquid crystal elements that use ferroelectric liquid crystals, liquid crystal elements that completely maintain the bistability of ferroelectric liquid crystals for a long period of time have been developed. The effect is that it can be realized.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の液晶素子の断面図、第2図
は本発明の配向制御膜および強誘電性液晶素子の平面図
である。 11・・・・・・基板、12・・・・・・透明電極層、
13・・・・・・配向制御膜、14・・・・・・スペー
サ兼シール樹脂、15・・・・・・液晶支持板、16・
・・・・・液晶、21・・・・・・上側液晶支持板、2
2・・・・・・下側液晶支持板、23・・・・・・上側
液晶支持板のラビング処理方向、24・・・・・・下側
液晶支持板のラビング処理方向、25・・・・・・スペ
ーサ兼シール樹脂。
FIG. 1 is a cross-sectional view of a liquid crystal element according to an embodiment of the present invention, and FIG. 2 is a plan view of an alignment control film and a ferroelectric liquid crystal element of the present invention. 11...Substrate, 12...Transparent electrode layer,
13...Alignment control film, 14...Spacer/sealing resin, 15...Liquid crystal support plate, 16.
...Liquid crystal, 21... Upper liquid crystal support plate, 2
2...Lower liquid crystal support plate, 23...Rubbing direction of upper liquid crystal support plate, 24...Rubbing direction of lower liquid crystal support plate, 25... ...Spacer and seal resin.

Claims (4)

【特許請求の範囲】[Claims] (1)タンパク質を主成分とする塗料を液晶支持板に塗
布し、この塗膜を温度30〜60℃、湿度70%RH以
上の環境に暴露した配向制御膜。
(1) An alignment control film in which a paint containing protein as a main component is applied to a liquid crystal support plate, and this paint film is exposed to an environment with a temperature of 30 to 60°C and a humidity of 70% RH or more.
(2)配向制御膜が、配向処理されている請求項(1)
記載の配向制御膜。
(2) Claim (1) in which the alignment control film is subjected to alignment treatment.
The orientation control film described above.
(3)少なくとも一方の基板上に配向処理を施し、さら
に温度30〜60℃、湿度70%RH以上の環境に暴露
したタンパク質を主成分とする配向制御膜を有する一対
の対向する液晶支持板の間隙に液晶物質を保持する配向
制御膜を用いた強誘電性液晶素子。
(3) A pair of opposing liquid crystal support plates each having an alignment control film containing protein as a main component, which has been subjected to an alignment treatment on at least one of the substrates, and which has been exposed to an environment of a temperature of 30 to 60°C and a humidity of 70% RH or more. A ferroelectric liquid crystal element that uses an alignment control film that holds liquid crystal material in the gap.
(4)対向する液晶支持板の間隙に保持する液晶物質が
強誘電性を示す請求項(3)記載の配向制御膜を用いた
強誘電性液晶素子。
(4) A ferroelectric liquid crystal element using the alignment control film according to claim (3), wherein the liquid crystal substance held in the gap between the opposing liquid crystal support plates exhibits ferroelectricity.
JP15366690A 1990-06-12 1990-06-12 Orientation control film and ferroelectric liquid crystal element formed by using this film Pending JPH0445424A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15366690A JPH0445424A (en) 1990-06-12 1990-06-12 Orientation control film and ferroelectric liquid crystal element formed by using this film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15366690A JPH0445424A (en) 1990-06-12 1990-06-12 Orientation control film and ferroelectric liquid crystal element formed by using this film

Publications (1)

Publication Number Publication Date
JPH0445424A true JPH0445424A (en) 1992-02-14

Family

ID=15567523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15366690A Pending JPH0445424A (en) 1990-06-12 1990-06-12 Orientation control film and ferroelectric liquid crystal element formed by using this film

Country Status (1)

Country Link
JP (1) JPH0445424A (en)

Similar Documents

Publication Publication Date Title
JPS6327817A (en) Liquid crystal display device
JPH02157822A (en) Orientation control film and orientation control method and liquid crystal display element
JPH04284423A (en) Orientation controlling film and liquid crystal element
JPH02311822A (en) Orientation control film, orientation control film and liquid crystal element
JPH02311824A (en) Orientation control film and liquid crystal element
JPH0339932A (en) Liquid crystal element
JPH0445424A (en) Orientation control film and ferroelectric liquid crystal element formed by using this film
JPH05134257A (en) Orientati0n control method and ferroelectric liquid crystal element
JPH0194318A (en) Liquid crystal display element
JPH06332012A (en) Production of liquid crystal electrooptical device
JPH04131826A (en) Liquid crystal orientation control film and ferroelectric liquid crystal element
JPH02311823A (en) Orientation control film and liquid crystal element
JP3026880B2 (en) Rubbing cloth for aligning liquid crystal molecules and method for manufacturing liquid crystal display element
JPH02311821A (en) Orientation control film, orientation control method and liquid crystal element
JPH022517A (en) Orientation control film and liquid crystal element using same
JPH02157824A (en) Orientation control film and orientation control method and liquid crystal display element
JPH04284422A (en) Orientation control film and liquid crystal element
JPH02157823A (en) Orientation control film and orientation control method and liquid crystal display element
JPH0443325A (en) Ferroelectric liquid crystal element
JPS62170937A (en) Liquid crystal electrooptical element
JP3594766B2 (en) Liquid crystal device and method of manufacturing the same
JPH0457021A (en) Ferroelectric liquid crystal element
JP2824504B2 (en) Liquid crystal substrate alignment processing method and liquid crystal cell manufacturing method
JP3212976B2 (en) Liquid crystal electro-optical device
JPH0457022A (en) Ferroelectric liquid crystal element