JPH0444871Y2 - - Google Patents

Info

Publication number
JPH0444871Y2
JPH0444871Y2 JP1986061030U JP6103086U JPH0444871Y2 JP H0444871 Y2 JPH0444871 Y2 JP H0444871Y2 JP 1986061030 U JP1986061030 U JP 1986061030U JP 6103086 U JP6103086 U JP 6103086U JP H0444871 Y2 JPH0444871 Y2 JP H0444871Y2
Authority
JP
Japan
Prior art keywords
pressure
pump
horsepower
receiving surface
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1986061030U
Other languages
Japanese (ja)
Other versions
JPS62173569U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1986061030U priority Critical patent/JPH0444871Y2/ja
Publication of JPS62173569U publication Critical patent/JPS62173569U/ja
Application granted granted Critical
Publication of JPH0444871Y2 publication Critical patent/JPH0444871Y2/ja
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】 (産業上の利用分野) 本考案は、建設機械や荷役機械の産業機械等に
於て、1台の原動機により複数台の油圧ポンプを
駆動する場合に適用される馬力設定装置に関す
る。
[Detailed description of the invention] (Industrial application field) This invention is a horsepower application applied when driving multiple hydraulic pumps with one prime mover in industrial machinery such as construction machinery and cargo handling equipment. Concerning a setting device.

(従来の技術) 従来、1台の原動機により複数台の油圧ポンプ
を駆動することは行なわれており、この場合油圧
ポンプとして、ポンプ容量を可変制御することに
よりポンプ馬力を一定に制御するポンプ容量制御
装置を備えた可変容量形油圧ポンプが使用される
のが通常である。この種のポンプは、ポンプ容量
制御装置へポンプ自体の吐出する圧力流体を作用
させれば、該ポンプの吐出圧と吐出量との積で表
わされるポンプ馬力を自動的に一定に制御するこ
とが出来る。即ちポンプ吐出圧力が高まれば、ポ
ンプ容量制御装置はポンプの斜板や斜軸を移動さ
せてポンプ容量を少なくするように制御し、その
ポンプの吐出量を減少させ、ポンプ馬力を一定に
維持する。
(Prior art) Conventionally, a single prime mover has been used to drive multiple hydraulic pumps, and in this case, the hydraulic pump has a pump capacity that controls the pump horsepower to a constant level by variable control of the pump capacity. A variable displacement hydraulic pump with a control device is usually used. This type of pump can automatically control the pump horsepower, which is the product of the pump's discharge pressure and discharge amount, to a constant level by applying the pressure fluid discharged by the pump itself to the pump displacement control device. I can do it. In other words, if the pump discharge pressure increases, the pump displacement control device moves the swash plate or oblique shaft of the pump to reduce the pump displacement, thereby reducing the pump discharge volume and maintaining the pump horsepower constant. .

該ポンプ容量制御装置の1例の概略は、第1図
示の如くであり、可変容量形の油圧ポンプaの斜
板等に制御シリンダbのロツドcを連結し、該制
御シリンダbのロツド側の室dに該ポンプaの吐
出圧を作用させるようにパイロツト回路eが設け
られる。更に制御シリンダbのヘツド側の室f
は、該ポンプaの吐出圧による力とばねgを介し
てのロツドcによる力とで往復動されるサーボ弁
hにより、タンクi或はロツド側の室dに接続さ
れるように構成される。そして油圧ポンプaの吐
出圧が高まるとサーボ弁hがばねgに抗して移動
し、制御シリンダbの室d,fを連通させるので
制御シリンダbのロツドcはポンプaの容量を少
なくするように斜板等を移動させる。該ロツドc
の移動でサーボ弁hがヘツド側の室fをタンクi
に接続するようになると制御シリンダbの移動が
止まり、ポンプaは減少した吐出量となるので吐
出圧と吐出量の積で表わされるポンプ馬力を自動
的に一定に維持出来る。またポンプaの吐出圧が
低くなつたときは、サーボ弁hはばねgの弾力に
押されてヘツド側の室fをタンクiに接続するよ
うに移動し、これによれば制御シリンダbのロツ
ドcはポンプ容量を多くするように移動すると共
にばねgの弾力を弱めるように移動するのでサー
ボ弁hはヘツド側の室fとタンクiの通路を次第
に絞り、制御シリンダb及びロツドcの移動が止
る。従つてポンプaの吐出圧の低いときも、吐出
量を多くしてポンプ馬力を一定とすることが出来
る。
An example of the pump displacement control device is schematically shown in Figure 1, in which a rod c of a control cylinder b is connected to a swash plate or the like of a variable displacement hydraulic pump a, and a rod c of a control cylinder b is connected to the swash plate of a variable displacement hydraulic pump a. A pilot circuit e is provided to apply the discharge pressure of the pump a to the chamber d. Furthermore, the chamber f on the head side of the control cylinder b
is connected to the tank i or the chamber d on the rod side by a servo valve h that is reciprocated by the force of the discharge pressure of the pump a and the force of the rod c via the spring g. . When the discharge pressure of hydraulic pump a increases, servo valve h moves against spring g and communicates chambers d and f of control cylinder b, so that rod c of control cylinder b reduces the capacity of pump a. Move the swash plate, etc. The rod c
servo valve h moves chamber f on the head side to tank i.
When the control cylinder b stops moving and the discharge amount of the pump a decreases, the pump horsepower expressed as the product of the discharge pressure and the discharge amount can be automatically maintained constant. Furthermore, when the discharge pressure of pump a becomes low, servo valve h is pushed by the elasticity of spring g and moves to connect chamber f on the head side to tank i. According to this, the rod of control cylinder b Since c moves to increase the pump capacity and at the same time moves to weaken the elasticity of spring g, servo valve h gradually narrows the passage between chamber f on the head side and tank i, causing control cylinder b and rod c to move. Stop. Therefore, even when the discharge pressure of pump a is low, the pump horsepower can be kept constant by increasing the discharge amount.

このような自ら馬力一定に制御出来るようにし
たポンプaは、その複数台を1台の原動機jによ
り駆動する場合、各ポンプaの合計馬力を該原動
機jの定格出力の範囲内に設定しておくだけで原
動機jを過負荷状態に陥いらせることが防止出来
て便利である。
When a plurality of pumps a, which can be controlled to maintain constant horsepower by themselves, are driven by one prime mover j, the total horsepower of each pump a must be set within the range of the rated output of the prime mover j. It is convenient because it can prevent the prime mover j from being overloaded just by leaving it in place.

(考案が解決しようとする問題点) 前記のような馬力を一定に制御出来るポンプ容
量制御装置を備えたポンプaの複数台を、1台の
原動機jにより駆動した場合、簡単に各ポンプa
に設定した馬力を変更出来ない不便がある。例え
ば、原動機jが内燃機関であるとき、標高の高い
地域では、原動機jの出力は、平地にあるときよ
りも低下するので、各ポンプaの合計馬力も少な
くしなければ原動機jは過負荷状態になることが
予想され、この場合各ポンプaのポンプ容量制御
装置を作動させて馬力の設定を少なくする必要が
ある。
(Problem to be solved by the invention) When a plurality of pumps a equipped with pump capacity control devices capable of controlling horsepower at a constant level as described above are driven by one prime mover j, each pump a can easily be
There is an inconvenience that you cannot change the horsepower setting. For example, when prime mover j is an internal combustion engine, the output of prime mover j will be lower in high altitude areas than when it is on level ground, so unless the total horsepower of each pump a is also reduced, prime mover j will be overloaded. In this case, it is necessary to operate the pump capacity control device of each pump a to reduce the horsepower setting.

本考案は、1台の原動機により駆動される複数
台のポンプの各ポンプ容量制御装置の設定を原動
機の動力状態に応じて簡単に変更出来る馬力設定
装置を提供することを目的とするものである。
The object of the present invention is to provide a horsepower setting device that can easily change the settings of each pump capacity control device for a plurality of pumps driven by a single prime mover according to the power state of the prime mover. .

(問題点を解決するための手段) 本考案では、圧力流体によりポンプ馬力を一定
に制御するポンプ容量制御装置を備えた可変容量
形の油圧ポンプを複数台設け、これら油圧ポンプ
を1台の原動機で駆動するようにしたものに於
て、各ポンプ容量制御装置に作用する圧力流体の
通路を互に接続し、該通路を、シヤトル弁で選択
した各油圧ポンプのうちの最も高い吐出圧を導入
する圧力導入路に接続し、該圧力導入路に、摺動
により該圧力導入路の開閉と前記通路のタンクへ
の接続とを行なう開閉制御部材を設け、該開閉制
御部材に、これが圧力導入路を開く方向に押圧さ
れるように各油圧ポンプの吐出圧が夫々同方向に
作用する同面積の複数の受圧面を形成すると共に
圧力導入路を閉じて通路をタンクに接続する方向
に押圧するように前記各受圧面の合計面積を有し
且つポンプ容量制御装置へ導入された圧力が作用
する対向受圧面を形成し、更に外部からのパイロ
ツト圧力の作用により該対向受圧面に生ずる力と
同方向の力を生じさせる補助受圧面を形成し、該
パイロツト圧力に比例した馬力設定に、制御する
ようにした。
(Means for solving the problem) In the present invention, a plurality of variable displacement hydraulic pumps each equipped with a pump displacement control device that controls the pump horsepower to a constant level using pressure fluid are provided, and these hydraulic pumps are combined into one prime mover. In the hydraulic pump, the pressure fluid passages acting on each pump displacement control device are connected to each other, and the highest discharge pressure of each hydraulic pump selected by a shuttle valve is introduced into the passage. The pressure introduction path is connected to the pressure introduction path, and the pressure introduction path is provided with an opening/closing control member that slides to open and close the pressure introduction path and connect the passage to the tank. A plurality of pressure receiving surfaces of the same area are formed so that the discharge pressure of each hydraulic pump acts in the same direction so as to be pressed in the opening direction, and the pressure introduction passage is closed and pressed in the direction to connect the passage to the tank. has the total area of each of the pressure receiving surfaces and forms an opposing pressure receiving surface on which the pressure introduced into the pump displacement control device acts, and further in the same direction as the force generated on the opposing pressure receiving surface by the action of the pilot pressure from the outside. An auxiliary pressure-receiving surface is formed to generate a force, and the horsepower is controlled to a setting proportional to the pilot pressure.

(作用) 可変容量形の油圧ポンプの例えば2台を、1台
の原動機に連結し、各ポンプにはポンプ馬力を一
定に制御する作動を圧力流体により行なうポンプ
容量制御装置が設けられることは従来のものと同
様であるが、本考案のものでは各ポンプの吐出圧
が一方向に開閉制御弁の受圧面に作用し、これと
対向する対向受圧面にポンプ容量制御装置に導入
された圧力が作用し、更にパイロツト圧力が補助
受圧面に作用するので、該開閉制御部材を介して
ポンプ容量制御装置のサーボ弁に作用する流体圧
力を、各ポンプの吐出圧とパイロツト圧力とに応
じた圧力に制御することが出来、またサーボ弁に
作用する流体圧力は各ポンプのうちの最も高いも
のをシヤトル弁で選択して利用するのでサーボ弁
の作動のための特別の油圧源が不用である。
(Function) Conventionally, for example, two variable displacement hydraulic pumps are connected to one prime mover, and each pump is provided with a pump displacement control device that uses pressure fluid to control pump horsepower to a constant level. However, in the present invention, the discharge pressure of each pump acts in one direction on the pressure receiving surface of the on-off control valve, and the pressure introduced into the pump displacement control device acts on the opposing pressure receiving surface. Furthermore, since the pilot pressure acts on the auxiliary pressure receiving surface, the fluid pressure acting on the servo valve of the pump displacement control device via the opening/closing control member is adjusted to a pressure corresponding to the discharge pressure and pilot pressure of each pump. Moreover, since the fluid pressure acting on the servo valve is selected by the shuttle valve and used by the highest fluid pressure among the pumps, a special hydraulic power source for operating the servo valve is not required.

該補助受圧面に生ずる力は、制御弁により圧力
制御されたパイロツト圧のPPにその面積Bを乗
じて算出される。ポンプが例えば2台でありその
吐出圧が夫々P1及びP2、各受圧面の面積がA、
対向受圧面の面積が2A、ポンプ容量制御装置に
作用する圧力がPcであるなら、該開閉制御部材の
釣合いは(P1+P2)A=2APc+B・PPで表わさ
れる。これによればPcは(P1+P2)/2−(B×
PP)/2Aとなる。従つてポンプの各吐出圧及び
パイロツト圧力に応じて圧力をポンプ容量制御装
置へ作用させることが出来、その圧力に従つて自
動的に各ポンプ容量制御装置のサーボ弁が作動
し、各ポンプの馬力を一定に制御出来る。該開閉
制御部材は間歇的に圧力導入路をタンクへ連通す
るように作動し、常時タンクに圧力流体を流すこ
とはないので流体エネルギーの損失の発生が少な
い。
The force generated on the auxiliary pressure receiving surface is calculated by multiplying the pilot pressure PP, which is pressure-controlled by the control valve, by its area B. For example, there are two pumps, their discharge pressures are P 1 and P 2 respectively, the area of each pressure receiving surface is A,
If the area of the opposing pressure-receiving surface is 2A and the pressure acting on the pump displacement control device is P c , the balance of the opening/closing control member is expressed as (P 1 +P 2 )A=2AP c +B·PP. According to this, P c is (P 1 + P 2 )/2−(B×
PP)/2A. Therefore, pressure can be applied to the pump displacement control device in accordance with each discharge pressure and pilot pressure of the pump, and the servo valve of each pump displacement control device is automatically operated according to the pressure, thereby increasing the horsepower of each pump. can be controlled at a constant level. The opening/closing control member operates intermittently to connect the pressure introduction path to the tank, and does not constantly flow pressure fluid into the tank, so there is little loss of fluid energy.

(実施例) 本考案の実施例を2台の油圧ポンプを設けた図
面第2図につき説明すると、同図に於て符号1,
1は1台の原動機21により駆動される可変容量
形の油圧ポンプ、2,2は各油圧ポンプ1にその
ポンプ容量を可変制御すべく設けられたポンプ容
量制御装置を示し、各ポンプ容量制御装置2の構
成部材は従来のものと同様で、ポンプ1の斜板等
に制御シリンダ3のロツド4を連結し、該制御シ
リンダ3のロツド側の室5に自己のポンプ1のポ
ンプ吐出圧を作用させるようにパイロツト回路6
が設けられ、更に制御シリンダ3のヘツド側の室
7は、圧力流体による力と長短2本1組のばね8
を介してのロツド4による力とで往復動されるサ
ーボ弁9により、タンク10或はロツド側の室5
に接続されるように構成される。図示の例では該
サーボ弁9にピストン11を介して圧力流体が作
用するようにした。
(Embodiment) An embodiment of the present invention will be explained with reference to FIG. 2, which shows two hydraulic pumps.
Reference numeral 1 indicates a variable displacement hydraulic pump driven by one prime mover 21, and 2 and 2 indicate pump capacity control devices provided in each hydraulic pump 1 to variably control the pump capacity. 2 is the same as the conventional one, and the rod 4 of the control cylinder 3 is connected to the swash plate of the pump 1, and the pump discharge pressure of the own pump 1 is applied to the chamber 5 on the rod side of the control cylinder 3. Pilot circuit 6
Further, the chamber 7 on the head side of the control cylinder 3 is provided with a force due to pressure fluid and a set of two springs 8, long and short.
A servo valve 9 that is reciprocated by the force of the rod 4 through the tank 10 or the chamber 5 on the rod side
configured to be connected to. In the illustrated example, pressure fluid acts on the servo valve 9 via a piston 11.

本考案の特徴とする構成は次の通りである。即
ち各ポンプ容量制御装置2の各サーボ弁9に作用
する圧力流体の通路12は互に接続され、該通路
12はシヤトル弁13で選択した各油圧ポンプ
1,1のうちの最も高い吐出圧を導入する圧力導
入路14に接続され、該圧力導入路14には摺動
により該圧力導入路14の開閉と前記通路12の
タンク10への接続とを行なうスプール状の開閉
制御部材15が設けられる。該開閉制御部材15
には、2台の油圧ポンプ1,1の吐出圧が夫々に
作用ししかも同方向に作用する同面積の2つの受
圧面16,17を形成し、該部材15が圧力導入
路14を開く方向に押圧されるようにすると共
に、圧力導入路14を閉じて通路12をタンク1
0に接続する方向に該部材15を押圧するよう
に、各受圧面16,17の合計面積を有し且つサ
ーボ弁9に導入された圧力が作用する対向受圧面
18を形成し、更にパイロツト回路19で外部か
ら必要に応じて導入されるパイロツト圧力の作用
により、該対向受圧面18に生ずる力と同方向の
力を生じさせる補助受圧面20が形成される。
The features of the present invention are as follows. That is, the pressure fluid passages 12 acting on each servo valve 9 of each pump displacement control device 2 are connected to each other, and the passage 12 receives the highest discharge pressure of each hydraulic pump 1 selected by a shuttle valve 13. A spool-shaped opening/closing control member 15 is connected to the pressure introduction path 14 to be introduced, and is provided with a spool-shaped opening/closing control member 15 that slides to open and close the pressure introduction path 14 and connect the passage 12 to the tank 10. . The opening/closing control member 15
, two pressure receiving surfaces 16 and 17 of the same area are formed on which the discharge pressures of the two hydraulic pumps 1 and 1 act respectively and in the same direction, and the direction in which the member 15 opens the pressure introduction path 14 is formed. At the same time, the pressure introduction passage 14 is closed and the passage 12 is connected to the tank 1.
An opposing pressure receiving surface 18 having the total area of the respective pressure receiving surfaces 16 and 17 and on which the pressure introduced into the servo valve 9 acts is formed so as to press the member 15 in the direction of connecting to the pilot circuit. At 19, an auxiliary pressure receiving surface 20 is formed which generates a force in the same direction as the force generated on the opposing pressure receiving surface 18 by the action of a pilot pressure introduced from the outside as required.

該開閉制御部材15は、受圧面16,17に作
用するポンプ1,1の吐出圧と、補助受圧面20
に作用パイロツト圧の変化に応じて、圧力導入路
14の開閉や通路12をタンク10に接続する摺
動を行ない、その摺動は通路12の圧力即ちポン
プ容量制御装置2,2に作用する圧力が前記式を
満足するようになつたとき停止する。開閉制御部
材15により制御された圧力は、通路12を介し
てポンプ容量制御装置2,2のサーボ弁9に作用
し、第1図示のものと同様の作動によりポンプ容
量が制御され、ポンプ1,1の馬力が一定に制御
される。
The opening/closing control member 15 controls the discharge pressure of the pumps 1, 1 acting on the pressure receiving surfaces 16, 17 and the auxiliary pressure receiving surface 20.
In response to changes in pilot pressure, the pressure introduction passage 14 is opened and closed, and the passage 12 is slid to connect it to the tank 10, and the sliding action changes the pressure in the passage 12, that is, the pressure acting on the pump displacement control devices 2, 2. Stops when satisfies the above formula. The pressure controlled by the opening/closing control member 15 acts on the servo valve 9 of the pump displacement control device 2, 2 through the passage 12, and the pump displacement is controlled by the same operation as that shown in the first figure. 1 horsepower is controlled to be constant.

その制御形態は、第3図の曲線A,Bで示すよ
うに変化し、パイロツト圧力を入れない時は曲線
Aに沿つて吐出流量が変化し、パイロツト圧力を
入れるとパイロツト圧力に比例してそのまま上方
へスライドさせた曲線Bに沿つてポンプ1,1の
馬力一定の制御が行なえ、この場合には設定馬力
があがる。該原動機21が内燃機関であれば、こ
れを高所地区で運転した場合と低地で運転した場
合とで出力が異なるが、平地ではある値のパイロ
ツト圧力を入れ曲線Bの高馬力設定で運転し、高
地ではパイロツト圧力を0Kgf/cm2にする事によ
り低馬力設定(曲線A)で使用すれば特別の調整
を必要とすることなくエンジンの出力馬力を常に
有効に使用できる。尚、開閉制御部材15は、図
示のものでは受圧面16,17を形成したプラン
ジヤ15aと、対向受圧面18を形成したスプー
ル15b及び補助受圧面20を形成したプランジ
ヤ15cで構成したが、これらプランジヤ等は一
本の部材で構成することも可能である。
The control form changes as shown by curves A and B in Figure 3. When no pilot pressure is applied, the discharge flow rate changes along curve A, and when pilot pressure is applied, it remains unchanged in proportion to the pilot pressure. The horsepower of the pumps 1, 1 can be controlled to be constant along the upwardly slid curve B, and in this case, the set horsepower increases. If the prime mover 21 is an internal combustion engine, the output will be different depending on whether it is operated at high altitudes or at low altitudes, but when operating on level ground, a certain value of pilot pressure is applied and the engine is operated at the high horsepower setting of curve B. At high altitudes, by setting the pilot pressure to 0 kgf/cm 2 and using the low horsepower setting (curve A), the engine's output horsepower can always be used effectively without the need for special adjustment. In the illustrated example, the opening/closing control member 15 is composed of a plunger 15a on which pressure receiving surfaces 16 and 17 are formed, a spool 15b on which an opposing pressure receiving surface 18 is formed, and a plunger 15c on which an auxiliary pressure receiving surface 20 is formed. etc., can also be constructed from a single member.

(考案の効果) 以上のように本考案では、1台の原動機で駆動
される複数台の可変容量形の油圧ポンプの各ポン
プ容量制御装置のサーボ弁に作用する流体圧力を
パイロツト圧と各油圧ポンプの吐出圧とにより作
動される開閉制御部材で制御したので、外部から
原動機の出力変化に対応して各ポンプの馬力の設
定をパイロツト圧の圧力を変化させることにより
無段階に変化させ得、該開閉制御部材は制御のた
めに圧力導入路を間歇的にタンクに連通するだけ
であるので少ない流量を消費するに留まり、流体
エネルギ損失が少ない。また各ポンプ容量制御装
置のサーボ弁を作動させる圧力源は各ポンプの吐
出圧を利用するので特別の設備を必要とせず装置
の構成が簡単になる等の効果がある。
(Effects of the invention) As described above, in this invention, the fluid pressure acting on the servo valve of each pump displacement control device of a plurality of variable displacement hydraulic pumps driven by one prime mover is combined with the pilot pressure and each hydraulic pressure. Since it is controlled by an opening/closing control member operated by the discharge pressure of the pump, the horsepower setting of each pump can be changed steplessly by changing the pilot pressure in response to changes in the output of the prime mover from the outside. Since the opening/closing control member only communicates the pressure introduction path with the tank intermittently for control purposes, only a small amount of flow is consumed and fluid energy loss is small. Further, since the pressure source for operating the servo valve of each pump capacity control device uses the discharge pressure of each pump, special equipment is not required and the structure of the device is simplified.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来例の線図、第2図は本考案の実施
例の線図、第3図は本考案の実施例の馬力一定制
御曲線図である。 1,1……可変容量形油圧ポンプ、2,2……
ポンプ容量制御装置、9……サーボ弁、10……
タンク、12……通路、13……シヤトル弁、1
4……圧力導入路、15……開閉制御部材、1
6,17……受圧面、18……対向受圧面、20
……補助受圧面、21……原動機。
FIG. 1 is a diagram of the conventional example, FIG. 2 is a diagram of the embodiment of the present invention, and FIG. 3 is a constant horsepower control curve diagram of the embodiment of the present invention. 1, 1... Variable displacement hydraulic pump, 2, 2...
Pump capacity control device, 9... Servo valve, 10...
Tank, 12... Passage, 13... Shuttle valve, 1
4...Pressure introduction path, 15...Opening/closing control member, 1
6, 17...Pressure receiving surface, 18...Opposing pressure receiving surface, 20
... Auxiliary pressure receiving surface, 21 ... Prime mover.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 圧力流体が作用したサーボ弁によりポンプ馬力
を一定に制御するポンプ容量制御装置を備えた可
変容量形の油圧ポンプを複数台設け、これら油圧
ポンプを1台の原動機で駆動するようにしたもの
に於て、各ポンプ容量制御装置のサーボ弁に作用
する圧力流体の通路を互に接続し、該通路を、シ
ヤトル弁で選択した各油圧ポンプのうちの最も高
い吐出圧を導入する圧力導入路に接続し、該圧力
導入路に、摺動により該圧力導入路の開閉と前記
通路のタンクへの接続とを行なう開閉制御部材を
設け、該開閉制御部材に、これが圧力導入路を開
く方向に押圧されるように各油圧ポンプの吐出圧
が夫々同方向に作用する同面積の複数の受圧面を
形成すると共に圧力導入路を閉じて通路をタンク
に接続する方向に押圧するように前記各受圧面の
合計面積を有し且つサーボ弁へ導入された圧力が
作用する対向受圧面を形成し、更に外部からのパ
イロツト圧力の作用により該対向受圧面に生ずる
力と同方向の力を生じさせる補助受圧面を形成し
たことを特徴とする複数台の油圧ポンプの馬力設
定装置。
A plurality of variable displacement hydraulic pumps each equipped with a pump displacement control device that controls the pump horsepower to a constant level using a servo valve applied with pressure fluid are installed, and these hydraulic pumps are driven by a single prime mover. The pressure fluid passages that act on the servo valves of each pump capacity control device are connected to each other, and the passages are connected to a pressure introduction passage that introduces the highest discharge pressure of each hydraulic pump selected by the shuttle valve. The pressure introduction passage is provided with an opening/closing control member that slides to open and close the pressure introduction passage and connect the passage to the tank, and the opening/closing control member is pressed in a direction to open the pressure introduction passage. A plurality of pressure-receiving surfaces having the same area are formed so that the discharge pressure of each hydraulic pump acts in the same direction, and each of the pressure-receiving surfaces is formed so as to close the pressure introduction passage and press the passage in the direction of connecting it to the tank. An auxiliary pressure receiving surface that has a total area and forms an opposing pressure receiving surface on which the pressure introduced into the servo valve acts, and further produces a force in the same direction as the force generated on the opposing pressure receiving surface due to the action of external pilot pressure. A horsepower setting device for multiple hydraulic pumps, characterized in that:
JP1986061030U 1986-04-24 1986-04-24 Expired JPH0444871Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1986061030U JPH0444871Y2 (en) 1986-04-24 1986-04-24

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1986061030U JPH0444871Y2 (en) 1986-04-24 1986-04-24

Publications (2)

Publication Number Publication Date
JPS62173569U JPS62173569U (en) 1987-11-04
JPH0444871Y2 true JPH0444871Y2 (en) 1992-10-22

Family

ID=30893988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1986061030U Expired JPH0444871Y2 (en) 1986-04-24 1986-04-24

Country Status (1)

Country Link
JP (1) JPH0444871Y2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59181282U (en) * 1983-05-19 1984-12-03 川崎重工業株式会社 Input control device for variable displacement pump

Also Published As

Publication number Publication date
JPS62173569U (en) 1987-11-04

Similar Documents

Publication Publication Date Title
EP0059708B1 (en) Horsepower consumption control for variable displacement pumps
US4696163A (en) Control valve and hydraulic system employing same
US9488163B2 (en) Fluid control system
US5778669A (en) Hydraulic positioning system with internal counterbalance
EP0667452A1 (en) Capacity control device in variable capacity hydraulic pump
US4116587A (en) Load plus differential pressure compensator pump control assembly
US4194363A (en) Fluid horsepower control system
JPH0444871Y2 (en)
JPH0439429Y2 (en)
JPH0439428Y2 (en)
US4815289A (en) Variable pressure control
JPH0617761A (en) Power controller for at least two variable discharge hydraulic pump
JPH0441269Y2 (en)
JPH0441270Y2 (en)
US4862691A (en) Pump drive speed regulator with control-pressure-generating valve having spring biased by cam face on load directional control valve
US4332531A (en) Variable displacement pump with torque limiting control
JPH0310401Y2 (en)
US3996744A (en) Automatic control for hydraulic power transmission
RU2052673C1 (en) Electrohydraulic servo drive
JP2587379Y2 (en) Horsepower control device for variable displacement pump
JPS6327101Y2 (en)
JP2556845B2 (en) Variable displacement pump output controller
EP0139719B1 (en) Automatic supply and exhaust valve assembly
JPS5823026Y2 (en) Concrete pump drive control device
JPS5840313Y2 (en) Output control device for multiple hydraulic pumps