JPH0444799B2 - - Google Patents

Info

Publication number
JPH0444799B2
JPH0444799B2 JP4756984A JP4756984A JPH0444799B2 JP H0444799 B2 JPH0444799 B2 JP H0444799B2 JP 4756984 A JP4756984 A JP 4756984A JP 4756984 A JP4756984 A JP 4756984A JP H0444799 B2 JPH0444799 B2 JP H0444799B2
Authority
JP
Japan
Prior art keywords
signal
line
signal line
voltage
type sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4756984A
Other languages
Japanese (ja)
Other versions
JPS60191392A (en
Inventor
Motoharu Terada
Kazumasa Murakami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP4756984A priority Critical patent/JPS60191392A/en
Publication of JPS60191392A publication Critical patent/JPS60191392A/en
Publication of JPH0444799B2 publication Critical patent/JPH0444799B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Alarm Systems (AREA)
  • Fire Alarms (AREA)

Description

【発明の詳細な説明】 [技術分野] 本発明は自火報システムの火災試験方法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a fire test method for a self-fire alarm system.

[背景技術] 従来、一般型感知器とインテリジエンス型感知
器とを併用したこの種の自火報システムにあつて
は、一般型感知器とインテリジエンス型感知器の
監視時間帯をそれぞれ設け、更に信号回線の電圧
を各時間帯ごとに区別させることにより、つまり
インテリジエンス型感知器の監視時間帯の電圧を
低くして、インテリジエンス型感知器のデータ伝
送時の消費電流を抑えるようにした自火報システ
ムが提案されている。ところでこのような自火報
システムにおいて火災試験を行うには火災試験を
回線監視とは別々に行つていたためシステム系全
体の監視と火災試験とを同時に行えなかつた。
[Background Art] Conventionally, in this type of self-fire alarm system that uses both a general type sensor and an intelligence type sensor, monitoring time periods are set for the general type sensor and the intelligence type sensor, respectively. Furthermore, by differentiating the voltage of the signal line for each time period, in other words, the voltage during the monitoring time period of the intelligence type sensor is lowered, and the current consumption during data transmission of the intelligence type sensor is suppressed. A self-fire alarm system has been proposed. However, in order to conduct a fire test on such a self-fire alarm system, the fire test was conducted separately from the line monitoring, making it impossible to monitor the entire system and conduct the fire test at the same time.

[発明の目的] 本発明は上述の問題点に鑑みて為されたもの
で、その目的とするところはシステム全体系の火
災試験を信号回線の監視と同時に行える自火報シ
ステムの火災試験方法を提供するにある。
[Object of the Invention] The present invention has been made in view of the above-mentioned problems, and its purpose is to provide a fire test method for a self-fire alarm system that can perform a fire test of the entire system at the same time as monitoring the signal line. It is on offer.

[発明の開示] 以下本発明を実施例によつて説明する。第1図
は自火報システムの基本的な概略構成図を示して
おり、受信機1から導出した信号回線lにはイン
テリジエンス型感知器2と一般型煙感知器等や熱
感知器等の一般型感知器3とを混在させて接続し
てある。受信機1は各インテリジエンス型感知器
2に対して個別に割り当てたアドレス信号を含む
パルスコード信号よりなる伝送信号Vsを信号回
線lの回線電圧(又は電流)に重畳させてサイク
リツクに順次送出して、呼び出した各インテリジ
エンス型感知器2から返送信号RSとして送られ
てくる情報の判定を行なうと共に、信号回線lの
回線電圧や回線電流のレベルを監視することによ
つて一般型感知器3からの感知動作に応じたレベ
ル信号の受信を行なう等の各種制御動作を行なう
ものである。第2図a乃至eは信号のフオーマツ
トを示しており、同図aは信号回線lの通常時の
電圧(例えば24V)と、インテリジエンス型感知
器2へ伝送信号Vsを伝送する際の電圧(ピーク
が12V)とを示しており、受信機1では伝送信号
Vs及び返送信号RSの伝送時間帯Aと、一般型感
知器3の監視の時間帯C及び信号回線lの線路監
視の時間帯Bに時分割して、上記伝送時間帯Aの
回線電圧を他の時間帯B,Cの回線電圧により低
い電圧に設定するように成つている。同図b乃至
dは各信号回線lに対して伝送信号Vsを順次切
換伝送している状態を示すタイムチヤートであ
り、同時bは1番目の信号回線lの伝送信号Vs
の伝送時間帯Aを示し、同図cは2番目の信号回
線lの伝送信号Vsの伝送時間帯Aを示し、又同
図dは本システムの最大番目の信号回線lの伝送
時間帯Aを示し、各信号回線lのそれぞれの伝送
時間帯Aにおいては各信号回線lに接続した全イ
ンテリジエンス型感知器2に対応するように順次
アクセスするための伝送信号Vsを受信機1から
伝送すると共にインテリジエンス型感知器2から
返送信号RSを伝送するのである。そして当該全
伝送が終了した段階で次の信号回線lの伝送時間
帯Aを切り換え設定し、同様に接続した全インテ
リジエンス型感知器2を順次アクセスするのであ
る。そして全回線lにおけるアクセスが終わる
と、最初の信号回線lのアクセスに戻るのであ
る。このように伝送信号Vsを時分割多重でかつ
サイクリツクに受信機1より伝送され、又返送信
号RSが当該感知器2より返送される。インテリ
ジエンス型感知器2は各別にアドレスが設定でき
るもので、受信機1から送出される伝送信号Vs
に含まれるアドレス信号が自己の設定アドレスと
一致したとき、伝送信号Vs中の制御データを取
り込んだり伝送信号Vsの後部に設けられた返送
期間中に各種情報をパルスコード信号からなる返
送信号RSとして受信機1へ重畳返送するように
なつている。一般型感知器3は所定の煙濃度又は
温度を検出すると、オン動作して適当な抵抗を介
して信号回線lを短絡し回線電流又は回線電圧等
のレベルを変え、レベル信号として受信機1へ火
災検出信号を伝送するようになつている。尚第2
図eは伝送信号Vsと返送信号RSとの関係を示
す。
[Disclosure of the Invention] The present invention will be explained below with reference to Examples. Figure 1 shows a basic schematic configuration diagram of a self-fire alarm system, in which a signal line led out from a receiver 1 includes an intelligence type sensor 2, a general type smoke detector, etc., a heat sensor, etc. A general type sensor 3 is also connected. The receiver 1 superimposes a transmission signal Vs consisting of a pulse code signal including an address signal individually assigned to each intelligence type sensor 2 on the line voltage (or current) of the signal line l and sequentially sends it out cyclically. Then, it judges the information sent as a return signal RS from each called intelligence type sensor 2, and also monitors the line voltage and line current level of the signal line l to detect the general type sensor 3. The controller performs various control operations such as receiving level signals in response to sensing operations from the sensor. Figures 2a to 2e show signal formats, and figure a shows the normal voltage of the signal line l (for example, 24V) and the voltage (for example, 24V) when transmitting the transmission signal Vs to the intelligence type sensor 2. The peak is 12V), and receiver 1 is transmitting the signal.
The line voltage in the above transmission time period A is divided into time period A for transmission of Vs and return signal RS, time period C for monitoring the general type sensor 3, and time period B for monitoring the signal line I. The voltage is set to be lower than the line voltage in time periods B and C. Figures b to d are time charts showing the state in which the transmission signal Vs is sequentially switched and transmitted to each signal line l, and simultaneous b is the time chart in which the transmission signal Vs of the first signal line l is transmitted.
, c shows the transmission time period A of the transmission signal Vs of the second signal line l, and d of the same figure shows the transmission time period A of the largest signal line l of this system. In each transmission time period A of each signal line l, a transmission signal Vs is transmitted from the receiver 1 to sequentially access all the intelligence type sensors 2 connected to each signal line l. A return signal RS is transmitted from the intelligence type sensor 2. Then, when all the transmissions are completed, the transmission time period A of the next signal line 1 is switched and set, and all the intelligence type sensors 2 connected in the same way are sequentially accessed. When the access on all lines l is completed, the access returns to the first signal line l. In this way, the transmission signal Vs is time-division multiplexed and cyclically transmitted from the receiver 1, and the return signal RS is sent back from the sensor 2. The intelligence type sensor 2 can have its own address set, and transmits the transmission signal Vs sent from the receiver 1.
When the address signal included in matches the self-set address, the control data in the transmission signal Vs is taken in, and various information is sent as a return signal RS consisting of a pulse code signal during the return period provided at the end of the transmission signal Vs. The signal is superimposed and sent back to the receiver 1. When the general type sensor 3 detects a predetermined smoke concentration or temperature, it turns on and short-circuits the signal line l through an appropriate resistor to change the level of the line current or line voltage, etc., and sends it to the receiver 1 as a level signal. It is designed to transmit a fire detection signal. Furthermore, the second
Figure e shows the relationship between the transmission signal Vs and the return signal RS.

しかして常時においては受信機1は各インテリ
ジエンス型感知器2を接続した信号回線lを順次
切り換えて各回線lの回線電圧を切り換えかつ伝
送信号Vsを重畳伝送して順次呼び出した各イン
テリジエンス型感知器2からの感知情報を取り込
むとともに判定を行ない、また信号回線lの監視
時間帯Bで信号回線lの電圧又は電流レベルを検
出することによつて、信号回線lの短絡、開放を
検知し、また一般型感知器3の監視時間帯Cで一
般型感知器3の動作を監視するのである。
However, in normal operation, the receiver 1 sequentially switches the signal line l connected to each intelligence type sensor 2, switches the line voltage of each line l, and superimposes and transmits the transmission signal Vs to sequentially call each intelligence type sensor 2. A short circuit or an open circuit in the signal line l is detected by taking in the sensing information from the sensor 2 and making a judgment, and by detecting the voltage or current level of the signal line l in the monitoring time period B of the signal line l. , and the operation of the general sensor 3 is monitored during the monitoring time period C of the general sensor 3.

次に本発明の実施例について説明する。第3図
は上述の基本概略構成を基本とした実施例のシス
テムのブロツク図を示し、各信号回線lの終端に
は終端インピーダンスを切り換える手段を備え終
端器4を接続してある。一方受信機1は各回線l
の順次切り換えを行なうための切り換えスイツチ
SW1…を回線数だけ設けると共に、前記切り換え
スイツチSW1…の切り換えによつて当該回線に接
続される信号送受用制御回路部5と一般型感知器
3の感知動作及び信号回線lの短絡、開放を監視
するためのコンパレータ回路部6と、更に前記信
号送受用制御回路部5から抽出された返送信号
RS及び信号送受用制御回路部5を介して信号回
線lへ送出する伝送信号Vsの処理及び、コンパ
レータ回路部6からの監視信号の処理を行なう信
号処理回路部7と、各信号回線lへ電圧を印加す
る電源部(図示せず)とから構成されており、信
号送受用制御回路部5には信号回線lに伝送信号
Vsを重畳させ、又信号回線lに重畳した返送信
号RSの電流を抽出する結合回路8と、抽出され
た信号回線lの電流より返送信号RSを復調する
返送信号電流検出回路9より構成される。終端器
4は第4図に示すようにツエナーダイオードZD1
と抵抗R1,R2の直列回路を信号回線lの終端間
に接続し、これらの抵抗R1,R2の接続点をコン
デンサC0を介してトランジスタTr0のベースに接
続し、更にトランジスタTr0を終端インピーダン
ス切換用の抵抗R3を介して信号回線lの両端に
接続してあり、また更にこのトランジスタTr0
抵抗R3との直列回路を終端抵抗R0に並列接続し
て構成される。
Next, examples of the present invention will be described. FIG. 3 shows a block diagram of an embodiment of the system based on the above-mentioned basic schematic configuration, in which a terminator 4 is connected to the end of each signal line l, provided with means for switching the termination impedance. On the other hand, receiver 1 is connected to each line l.
A changeover switch for sequentially switching between
SW 1 . . . are provided for the number of lines, and by switching the changeover switch SW 1 . A return signal extracted from the comparator circuit section 6 for monitoring the opening and further from the signal transmission/reception control circuit section 5.
A signal processing circuit unit 7 processes the transmission signal Vs sent to the signal line l via the RS and signal transmission/reception control circuit unit 5, and processes a monitoring signal from the comparator circuit unit 6, The signal transmitting/receiving control circuit section 5 includes a power supply section (not shown) that applies a transmission signal to a signal line l.
Consisting of a coupling circuit 8 that superimposes Vs and extracts the current of the return signal RS superimposed on the signal line l, and a return signal current detection circuit 9 that demodulates the return signal RS from the extracted current of the signal line l. . The terminator 4 is a Zener diode ZD 1 as shown in Figure 4.
A series circuit of resistors R 1 and R 2 is connected between the ends of the signal line l, and the connection point of these resistors R 1 and R 2 is connected to the base of the transistor Tr 0 via the capacitor C 0 , and Tr 0 is connected to both ends of the signal line l via a resistor R 3 for switching the termination impedance, and a series circuit of this transistor Tr 0 and resistor R 3 is connected in parallel to the termination resistor R 0 . be done.

コンパレータ回路部6は第5図に示すように信
号回線lの電圧を抵抗R4,R5で分圧してこの分
圧をコンパレータ10の非反転入力端に加え、更
に非反転入力端と接地ラインとの間には抵抗R6
とトランジスタTr1との直列回路を接続し、更に
このトランジスタTr1のベースに抵抗R7とツエナ
ーダイオードZD2との直列回路を介して、信号回
線lの非共通ラインと抵抗R8との接続点に接続
したものであり、抵抗R8は他端を接地ラインに
接続してある。受信機1の信号処理回路部7は例
えばCPU等を用いたロジツク回路から構成され、
各時間帯A,B,Cを設定する機能と、コンパレ
ータ回路部6の監視信号を入力して、その入力タ
イミンング、つまり信号が入力する監視時間帯
B、Cに応じて火災信号なのか、あるいは線路異
常かを判別する監視判別機能と、信号回線lを伝
送信号Vsの伝送に応じて順次切り換える回線切
換機能と、伝送信号Vsを予め定めた信号のフオ
ーマツト、例えばスタート信号、アドレス信号、
制御信号、返送待機信号の順で形成して前述の信
号送受用制御回路部5へ送出する伝送信号作成機
能と、返送信号RSを取り込んでインテリジエン
ス型感知器2の感知情報を判定する機能と備えて
いるものであり、火災発生時や、線路異常時には
表示又は警報を発したり、更にアドレス表示、回
線番号表示等を表示器(図示せず)で表示させた
りする制御機能を備えているものである。而し
て、受信機1は切換スイツチSW1…を順次サイク
リツクに切り換える。この切り換えによつて、信
号送受用制御回路部5に接続された信号回線lの
印加電圧は信号回線lの始端間に接続された抵抗
R4,R5の直列回路の両端電圧となる。つまり電
源部から供給される24Vの電圧はツエナーダイオ
ードZD0と抵抗R4,R5の直列回路とで分圧され
ることになり、回線電圧はツエナーダイオード
ZD0の両端電圧を差し引いた電圧、例えば24Vの
半分の12Vに落とされる。一方この電圧が落とさ
れた時間帯、つまり伝送時間帯Aには信号処理回
路部7から結合回路8へ送られてきた伝送信号
Vsが信号回線lに重畳されることになる。そし
て当該伝送時間帯Aにおいて呼び出された当該信
号回線lに接続された所定のアドレスのインテリ
ジエンス型感知器2は制御信号の後ろの返送待機
信号に対応した期間に適宜インピーダンスを介し
て信号回線lを短絡して電流モードにより、感知
情報を返送信号RSとして伝送するのである。返
送信号RSは結合回路8と返送信号電流検出回路
9とを介して復調され信号処理回路部7へ取り込
まれて火災発生中なのか正常なのかが判定され
る。
As shown in FIG. 5, the comparator circuit section 6 divides the voltage of the signal line 1 with resistors R 4 and R 5 , applies this divided voltage to the non-inverting input terminal of the comparator 10, and further connects the non-inverting input terminal and the ground line. There is a resistance R 6 between
and the transistor Tr 1 , and further connect the non-common line of the signal line l to the resistor R 8 through the series circuit of the resistor R 7 and the Zener diode ZD 2 to the base of the transistor Tr 1. The other end of resistor R8 is connected to the ground line. The signal processing circuit section 7 of the receiver 1 is composed of a logic circuit using, for example, a CPU,
There is a function to set each time period A, B, and C, and the monitoring signal of the comparator circuit section 6 is input, and depending on the input timing, that is, the monitoring time period B and C in which the signal is input, it is determined whether it is a fire signal or not. A monitoring discrimination function for determining whether there is a line abnormality, a line switching function for sequentially switching the signal line l according to the transmission of the transmission signal Vs, and a predetermined signal format for the transmission signal Vs, such as a start signal, an address signal,
A transmission signal creation function that forms a control signal and a return standby signal in that order and sends it to the signal transmission/reception control circuit unit 5, and a function that takes in the return signal RS and determines the sensing information of the intelligence type sensor 2. It is equipped with a control function that displays or issues an alarm in the event of a fire or line abnormality, as well as displaying an address display, line number display, etc. on a display (not shown). It is. Thus, the receiver 1 sequentially switches the changeover switches SW 1 . . . cyclically. By this switching, the voltage applied to the signal line l connected to the signal transmission/reception control circuit section 5 is changed to the resistance applied between the starting ends of the signal line l.
This is the voltage across the series circuit of R4 and R5 . In other words, the 24V voltage supplied from the power supply is divided by the Zener diode ZD 0 and the series circuit of resistors R 4 and R 5 , and the line voltage is divided by the Zener diode ZD 0.
The voltage is reduced by subtracting the voltage across ZD 0 , for example, 12V, which is half of 24V. On the other hand, during the time period when this voltage is dropped, that is, the transmission time period A, the transmission signal is sent from the signal processing circuit section 7 to the coupling circuit 8.
Vs will be superimposed on the signal line l. Then, the intelligence type sensor 2 at a predetermined address connected to the signal line l called out in the transmission time period A is connected to the signal line l via an appropriate impedance during a period corresponding to the return standby signal after the control signal. The sensed information is transmitted as a return signal RS in current mode by short-circuiting. The return signal RS is demodulated via the coupling circuit 8 and the return signal current detection circuit 9, and is taken into the signal processing circuit section 7, where it is determined whether a fire is occurring or normal.

次に当該信号回線lから次の信号回線lへ伝送
信号Vsの伝送時間帯Aが切換スイツチSW1によ
つて切り換わると、当該信号回線lでは上記ツエ
ナーダイオードZD0の代わりに抵抗R9が抵抗R4
R5の直列回路に直列に接続されその結果回線電
圧が約24Vへ立ち上がることになる。この約24V
の電圧の立ち上がりがあると、終端器4のツエナ
ーダイオードZD1が導通して、トランジスタTr0
のベースにコンデンサC0を介してベース電流を
流す。そのためトランジスタTr0がオンして、終
端抵抗R0には抵抗R3が並列に接続されて終端イ
ンピーダンスを低くさせる。この終端インピーダ
ンスが低い期間はコンデンサC0が充電されてベ
ース電流が流れなくなるまでの期間であり、つま
りこの期間が線路の監視時間帯Bとなる。第6図
a,bは伝送時間帯Aと、信号回線lの監視時間
帯Bとの関係を示す。さてこのように終端インピ
ーダンスが低下すると、その期間回線電流は増大
することになる。この回線電流の増大によつて抵
抗R4,R5の両端電圧が所定電圧を発生すること
になる。ここで信号回線lに接続される負荷抵抗
を所定値以上と設定しておけば、その電圧は予め
定めた電圧以上の電圧となる。従つてコンパレー
タ回路部6のコンパレータ10の反転入力端に加
わる基準電圧をそれ以下と設定しておけばコンパ
レータ10は回線が正常であれば“H”の監視信
号を発生する。ここで信号回線lが任意の位置で
短絡されると、回線電流は一層増大し、抵抗R8
の両端電圧は上昇する。この電圧がツエナーダイ
オードZD2のツエナー電圧以上となつてツエナー
ダイオードZD2が導通するとトランジスタTr1
オンし、コンパレータ10の比較入力を基準電圧
以下に低下させる。従つてコンパレータ10はオ
ンし、その監視出力を“L”とする。また信号回
線lが任意の箇所で開放(断線)されると、終端
インピーダンスが回線から切り離されて、負荷イ
ンピーダンスのみとなる。この負荷インピーダン
スのみとなると、回線電流が減少して、コンパレ
ータ10の比較入力は正常時より低下する。この
低下する電圧の最大限を予め制限してある負荷イ
ンピーダンスより算出してコンパレータ10の基
準電圧を該電圧よりも高く設定しておけば上述の
回線短絡時と同様にコンパレータ10はオンし、
その出力を“L”とする。従つて信号処理回路部
7では第7図bに示す監視時間帯Bにおいてコン
パレータ回路部6の監視信号が“H”であれば回
線が正常で、第7図cのイで示すように“L”で
あれば異常発生と判定し、警報又は表示を行う。
第7図aは回線電圧のタイムチヤートを示す。と
ころで受信機1で火災試験モードが設定されてい
る場合、第12図に示すフローチヤートに信号処
理回路部7の動作が移行する。つまり信号回線l
の監視のための回線電流のレベルに応じたコンパ
レータ回路部6の出力を一般型感知器3の感知動
作による火災信号と見なす判定制御動作が信号処
理回路部7で行なわれる。つまり信号回線lの監
視出力が“H”で正常である場合、この“H”を
同時に火災発生信号と判定し、実火災発生時と同
様に警報、表示等の火災処理動作を行なうのであ
る。
Next, when the transmission time period A of the transmission signal Vs is switched from the signal line l to the next signal line l by the changeover switch SW 1 , the resistor R 9 is installed in place of the Zener diode ZD 0 in the signal line l. Resistance R 4 ,
It is connected in series to the R5 series circuit, resulting in a line voltage rise to approximately 24V. This approximately 24V
When the voltage rises, the Zener diode ZD 1 of the terminator 4 becomes conductive, and the transistor Tr 0
Let the base current flow through the capacitor C 0 to the base of . Therefore, the transistor Tr 0 is turned on, and the resistor R 3 is connected in parallel to the terminating resistor R 0 to lower the terminating impedance. This period during which the terminal impedance is low is the period until the capacitor C 0 is charged and the base current stops flowing; that is, this period is the line monitoring time period B. 6a and 6b show the relationship between the transmission time period A and the monitoring time period B of the signal line l. Now, when the termination impedance decreases in this way, the line current increases during that period. This increase in line current causes the voltage across resistors R 4 and R 5 to generate a predetermined voltage. Here, if the load resistance connected to the signal line 1 is set to a predetermined value or higher, the voltage becomes a voltage higher than the predetermined voltage. Therefore, if the reference voltage applied to the inverting input terminal of the comparator 10 of the comparator circuit section 6 is set to be lower than that, the comparator 10 will generate an "H" monitoring signal if the line is normal. If the signal line l is short-circuited at an arbitrary position, the line current increases further and the resistance R 8
The voltage across it increases. When this voltage exceeds the Zener voltage of the Zener diode ZD 2 and the Zener diode ZD 2 becomes conductive, the transistor Tr 1 is turned on and the comparison input of the comparator 10 is lowered to below the reference voltage. Therefore, the comparator 10 is turned on and its monitoring output is set to "L". Furthermore, when the signal line 1 is opened (broken) at any point, the terminal impedance is separated from the line, leaving only the load impedance. When only this load impedance exists, the line current decreases and the comparison input of the comparator 10 becomes lower than normal. If the maximum voltage drop is calculated from the pre-limited load impedance and the reference voltage of the comparator 10 is set higher than this voltage, the comparator 10 will turn on in the same way as in the case of the line short circuit described above.
The output is set to "L". Therefore, in the signal processing circuit section 7, if the monitoring signal of the comparator circuit section 6 is "H" in the monitoring time period B shown in FIG. 7b, the line is normal, and as shown in FIG. ”, it is determined that an abnormality has occurred, and an alarm or display is issued.
FIG. 7a shows a time chart of line voltage. By the way, when the fire test mode is set in the receiver 1, the operation of the signal processing circuit section 7 shifts to the flowchart shown in FIG. In other words, the signal line l
A determination control operation is performed in the signal processing circuit section 7 to consider the output of the comparator circuit section 6 according to the level of the line current for monitoring as a fire signal caused by the sensing operation of the general type sensor 3. That is, when the monitoring output of the signal line 1 is "H" and normal, this "H" is simultaneously determined to be a fire occurrence signal, and fire handling operations such as alarms and displays are performed in the same way as when a real fire occurs.

さて次に終端器4のトランジスタTr0がオフし
て一般型感知器3の監視時間帯Cになると、終端
抵抗R0のみが終端インピーダンスとして接続さ
れることになる。この場合終端インピーダンスが
高くなるため、回線電流が減少するが、コンパレ
ータ回路部6の比較入力電圧が基準電圧以下とな
らないように終端抵抗R0の値を設定することに
よつて、一般型感知器3が動作しない限りコンパ
レータ回路部6のコンパレータ10の出力は
“H”となる。
Next, when the transistor Tr 0 of the terminator 4 is turned off and the monitoring time period C of the general sensor 3 begins, only the terminating resistor R 0 is connected as the terminating impedance. In this case, the termination impedance increases, so the line current decreases, but by setting the value of the termination resistor R0 so that the comparison input voltage of the comparator circuit section 6 does not fall below the reference voltage, it is possible to 3 does not operate, the output of the comparator 10 of the comparator circuit section 6 becomes "H".

つまり監視信号が“H”であれば、一般型感知
器3の動作状態が正常を示しており、信号処理回
路部7はこの監視信号“H”であれば火災発生無
しと判定する。さて一般型感知器3は信号回線l
に対して抵抗R10とツエナーダイオードZD3とセ
ンサ接点sとの直列回路を接続されており、セン
サ接点sが火災感知と同時にオンすると、低抵抗
値の抵抗R10と例えばツエナー電圧が10Vのツエ
ナーダイオードZD3との直列回路を介して信号回
線lを短絡することになる。従つて信号回線lの
始端間の電圧は低下し、コンパレータ回路部6の
コンパレータ10の比較入力電圧は基準電圧以下
となる。そのためコンパレータ10の出力は
“L”となり、信号処理回路部7は一般型感知器
3の監視時間帯Cにおいて、第7図cのロで示す
ように監視信号が“L”となれば火災発生と判定
し、警報あるいは表示等の動作を行うのである。
ここで消費電流の低減化のために感知動作が判定
されると直ちに当該信号回線lの電圧を伝送時間
帯Aと同じレベルに低下させてもよい。勿論サイ
リスタをセンサ接点sの代わりに用いた場合には
保持電流を回線電圧が低下しても確保できるよう
にツエナーダイオードZD3及び抵抗R10の値を設
定しておくのは言うまでもない。第8図は一般型
感知器3の他例を示し、この一般型感知器3はセ
ンサ接点sが閉じられた際に抵抗R11に生じる電
圧降下を利用して発光ダイオードからなる確認灯
LEDを点灯させるようにしたものである。
That is, if the monitoring signal is "H", this indicates that the general sensor 3 is in a normal operating state, and if the monitoring signal is "H", the signal processing circuit section 7 determines that there is no fire outbreak. Now, the general type sensor 3 is the signal line l
A series circuit consisting of a resistor R 10 , a Zener diode ZD 3 , and a sensor contact s is connected to The signal line l will be short-circuited via the series circuit with the Zener diode ZD 3 . Therefore, the voltage between the starting ends of the signal line 1 decreases, and the comparison input voltage of the comparator 10 of the comparator circuit section 6 becomes below the reference voltage. Therefore, the output of the comparator 10 becomes "L", and the signal processing circuit section 7 determines that if the monitoring signal becomes "L" in the monitoring time period C of the general type sensor 3, as shown in FIG. It is determined that this is the case and takes actions such as warning or display.
Here, in order to reduce current consumption, the voltage of the signal line 1 may be lowered to the same level as the transmission time period A as soon as the sensing operation is determined. Of course, when a thyristor is used in place of the sensor contact s, it goes without saying that the values of the Zener diode ZD 3 and the resistor R 10 should be set so that the holding current can be maintained even if the line voltage drops. FIG. 8 shows another example of the general type sensor 3. This general type sensor 3 uses the voltage drop that occurs in the resistor R11 when the sensor contact s is closed to generate a confirmation light consisting of a light emitting diode.
It is designed to light up an LED.

第9図は受信機1のコンパレータ回路部6と、
信号送受用制御回路部5の結合回路8及び返送信
号電流検出回路9との具体的実施例回路を示し、
この実施例では各回線ごとに設けられたコンパレ
ータ回路部6のコンパレータ10の出力を対応す
るホトカプラ11を介して信号処理回路部7へ送
出するようになつている。また回線切り換えは信
号処理回路部9からのスキヤン信号でホトカプラ
12を駆動してスイツチング部13のトランジス
タTr2,Tr3をオフし、該トランジスタTr4をオン
して該トランジスタTr4介して信号回線lを信送
受用制御回路部5に接続するようになつている。
ホトカプラ12は各回線毎に設けられ、順次スキ
ヤン信号によつて駆動される。またホトカプラ1
2がオフであるときにはトランジスタTr2,Tr3
がオンしてトランジスタTr2を介して信号回線l
の非共通側の一線を抵抗R9を介して接地するの
である。しかしてコンパレータ回路部6、スイツ
チング部13からなる回路Xは各回線毎に設けら
れる。信号送受用制御回路部5の結合回路8は各
信号回線lに対応して設けてある上記各スイツチ
ング部13の出力が共通接続された点と、接地と
の間にトランジスタTr5と電流検出用抵抗R12と、
ツエナー電圧が12VのツエナーダイオードZD0
の直列回路を接続して構成され、伝送信号Vsの
データが信号処理回路部7よりホトカプラ14を
介して送出されてくると、トランジスタTr6を介
してトランジスタTr5を伝送信号Vsのデータに対
応してオン、オフさせ、オン時にはツエナーダイ
オードZD0で回線電圧を12Vに設定し、オフ時に
はトランジスタTr5に並列接続したツエナー電圧
が5VのツエナーダイオードZD4と前記ツエナー
ダイオードZD0によつて回線電圧に伝送信号Vs
を重畳させるのである。一方返送信号RSは伝送
信号Vsの返送待機信号、つまり“H”のとき回
線電流のレベルとして送られてくるもので、この
電流モードの信号は電流検出用抵抗R12の両端電
圧に変換されて検出されるのである。返送信号電
流検出回路9はこの検出された電圧をアンプ15
によつて増幅して、コンパレータ16によつて雑
音と信号とに弁別すると共に波形整形して返送信
号RSを復調するのである。そしてこの返送信号
RSはホトカプラ17を介して信号処理回路部9
へ送られるのである。図中18はコンパレータ1
6の基準電圧発生用のアンプである。
FIG. 9 shows the comparator circuit section 6 of the receiver 1,
A specific example circuit of the coupling circuit 8 and the return signal current detection circuit 9 of the signal transmission/reception control circuit section 5 is shown,
In this embodiment, the output of the comparator 10 of the comparator circuit section 6 provided for each line is sent to the signal processing circuit section 7 via the corresponding photocoupler 11. In addition, line switching is performed by driving the photocoupler 12 with a scan signal from the signal processing circuit unit 9, turning off the transistors Tr 2 and Tr 3 of the switching unit 13, and turning on the transistor Tr 4 to switch the signal line via the transistor Tr 4 . 1 is connected to the transmission/reception control circuit section 5.
A photocoupler 12 is provided for each line and is sequentially driven by scan signals. Also, photocoupler 1
When transistors Tr 2 and Tr 3 are off, transistors Tr 2 and Tr 3
is turned on and the signal line l is connected via transistor Tr 2 .
The line on the non-common side of is grounded via resistor R9 . Thus, a circuit X consisting of a comparator circuit section 6 and a switching section 13 is provided for each line. A coupling circuit 8 of the signal transmission/reception control circuit section 5 connects a transistor Tr 5 for current detection between the point where the outputs of the switching sections 13 provided corresponding to each signal line 1 are commonly connected and the ground. with resistance R 12 ,
It is configured by connecting a series circuit with a Zener diode ZD 0 whose Zener voltage is 12V, and when the data of the transmission signal Vs is sent from the signal processing circuit section 7 through the photocoupler 14 , it is connected to the Tr 5 is turned on and off according to the data of the transmission signal Vs, and when it is on, the line voltage is set to 12V with the Zener diode ZD 0 , and when it is off, the Zener diode ZD 4 with a Zener voltage of 5V is connected in parallel to the transistor Tr 5 . and the transmission signal Vs to the line voltage by the Zener diode ZD 0
It superimposes the On the other hand, the return signal RS is a return standby signal of the transmission signal Vs, that is, it is sent as the line current level when it is "H", and this current mode signal is converted to the voltage across the current detection resistor R12 . It is detected. The return signal current detection circuit 9 converts this detected voltage into an amplifier 15.
The signal is amplified by the comparator 16, and the signal is distinguished from noise by the comparator 16, and the return signal RS is demodulated by shaping the waveform. And this return number
RS is connected to the signal processing circuit section 9 via the photocoupler 17.
It will be sent to. 18 in the figure is comparator 1
This is an amplifier for generating the reference voltage of No. 6.

尚インテリジエンス型感知器2の回路構成は例
えば煙感知器として第10図に示すようなものが
有る。つまりベース19aとヘツド19bとから
器体部が構成され、ヘツド19b内には受光素子
21a,21bの受光レベルに応じたアナログ信
号をそれぞれ出力する出力回路部23a,23b
と、発光素子24a,24bの発光を制御する発
光制御部25a,25bとを備えてある。煙検知
部20は発光素子24aと受光素子21aとが対
向配置され、発光素子24bと受光素子21bと
が対向配置され、発光素子24aの光を直接受光
素子21aで受光し、発光素子24bの光を直接
受光素子21bで受光し、更に発光素子24aか
ら発射された光の散乱光を受光素子21bで受光
し、発光素子24bから発射された光の散乱光を
受光素子21aで受光するようになつており、発
光素子24aと受光素子21bとで第1のセンシ
ング系を、また発光素子24bと受光素子21a
とで第2のセンシング系を構成しており、通常の
警戒状態では両センシング系の動作は交互に為さ
れるようになつている。一方ベース19aはヘツ
ド19bを着脱自在に装着すると共にヘツド19
b内の回路に電源を供給し且つ出力回路部23
a,23bの出力と、発光制御部25a,25b
とを制御するもので、内部には出力回路部23
a,23bからのアナログ信号をA/D変換して
デジタルな受光レベルデータを出力する信号変換
回路部26a,26bと、該信号変換回路部26
a,26bからの出力データを取り込んで、受信
機1への返送情報とし、該情報に基づいたパルス
コード信号からなる返送信号Vsを作成すると共
にアドレス設定部27で設定されたアドレスと、
信号回線lを介して受信機1から伝送される伝送
信号Vsの制御データを取り込んで、各発光制御
部25a,25bを制御すると共に、伝送信号
Vsの後ろに続く返送待機期間に上記返送信号Vs
を送出する等の信号処理を行う演算信号処理回路
部28と、信号回線lとを結合して、前記伝送信
号Vsを抽出したりあるいは返送信号RSを信号回
線lへ重畳させる結合回路部29と該結合回路部
29を通じて電源を得る電源部30を少なくとも
備えているものである。
The circuit configuration of the intelligence type sensor 2 is as shown in FIG. 10, for example, as a smoke sensor. In other words, the base 19a and the head 19b constitute a body part, and the head 19b includes output circuit parts 23a and 23b that respectively output analog signals according to the light reception levels of the light receiving elements 21a and 21b.
and light emission control sections 25a and 25b that control the light emission of the light emitting elements 24a and 24b. In the smoke detection unit 20, a light emitting element 24a and a light receiving element 21a are arranged facing each other, a light emitting element 24b and a light receiving element 21b are arranged facing each other, and the light from the light emitting element 24a is directly received by the light receiving element 21a, and the light from the light emitting element 24b is directly received by the light receiving element 21a. is directly received by the light receiving element 21b, the scattered light emitted from the light emitting element 24a is received by the light receiving element 21b, and the scattered light of the light emitted from the light emitting element 24b is received by the light receiving element 21a. The light emitting element 24a and the light receiving element 21b form the first sensing system, and the light emitting element 24b and the light receiving element 21a form the first sensing system.
The two sensing systems constitute a second sensing system, and in a normal alert state, both sensing systems operate alternately. On the other hand, the base 19a has the head 19b removably attached thereto, and the head 19a
The output circuit section 23 supplies power to the circuit in b.
a, 23b outputs and light emission control units 25a, 25b
It controls the output circuit section 23.
Signal conversion circuit units 26a and 26b that A/D convert analog signals from a and 23b and output digital received light level data, and the signal conversion circuit unit 26
a, 26b, and sends it as return information to the receiver 1, creates a return signal Vs consisting of a pulse code signal based on the information, and the address set by the address setting section 27,
The control data of the transmission signal Vs transmitted from the receiver 1 via the signal line l is taken in to control each light emission control section 25a, 25b, and the transmission signal
In the return waiting period following Vs, the above return signal Vs
an arithmetic signal processing circuit section 28 that performs signal processing such as transmitting a The device includes at least a power supply unit 30 that obtains power through the coupling circuit unit 29.

尚上記のコンパレータ回路部6は信号回線lの
監視と一般型感知器3の監視とに用いているが、
個別にコンパレータ回路部を設けても良い。また
受信機1は他のシステム系に信号を中継する中継
器から構成しても良い。更に信号回線lの監視は
次のようにしてもよい。つまり全回線電圧を第1
図a,b,cに示すように一斉に手動で低電圧レ
ベルに一旦落として、次に信号回線lの監視時間
帯B′をそれぞれで作り出し、任意のときに信号
回線lの監視を行うようにしてもよい。また上記
受信機1の代わりの他のシステムに対する中継器
としての機能を持つ受信機1を用いてもよい。
The above comparator circuit section 6 is used to monitor the signal line 1 and the general type sensor 3, but
A separate comparator circuit section may be provided. Further, the receiver 1 may be constructed from a repeater that relays signals to other systems. Furthermore, the signal line l may be monitored as follows. In other words, the total line voltage is
As shown in Figures a, b, and c, you can manually lower the voltage all at once to a low voltage level, then create a monitoring time period B' for each signal line l, and monitor signal line l at any time. You can also do this. Further, instead of the receiver 1 described above, a receiver 1 having a function as a repeater for other systems may be used.

[発明の効果] 本発明は上述の自火報システムにおいて信号回
線の監視時間帯に流れる回線電流のレベルを火災
電流値と見なして受信機側で火災処理動作を行わ
せるので、信号回線の監視と同時に火災試験が行
え、従つてシステム全体系のチエツクが一度に行
えて効率の良い運用ができるという効果が有る。
[Effects of the Invention] In the self-fire alarm system described above, the present invention treats the level of the line current flowing during the monitoring time period of the signal line as the fire current value and causes the receiver side to perform a fire treatment operation. At the same time, a fire test can be performed, and the entire system can therefore be checked at once, resulting in more efficient operation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の基本となる全体の概略回路ブ
ロツク図、第2図は同上の動作説明用タイムチヤ
ート、第3図は本発明の一実施例の回路ブロツク
図、第4図は同上の終端器の回路図、第5図は同
上のコンパレータ回路部の回路図、第6図は同上
の終端器の動作説明図、第7図はコンパレータ回
路部の動作説明図、第8図は同上の一般型感知器
の他例の回路図、第9図は同上使用の受信機の要
部の具体回路図、第10図は同上使用のインテリ
ジエンス型煙感知器の要部ブロツク図、第11図
は同上の他の実施例の動作説明図、第12図は火
災試験時の受信機の動作説明図のフローチヤート
であり、1は受信機、2はインテリジエンス型感
知器、3は一般型感知器、4は終端器、6はコン
パレータ回路部、10はコンパレータ回路部、A
は伝送時間帯、Bは信号回線の監視時間帯、Cは
一般型感知器の監視時間帯、Vsは伝送信号、l
は信号回線である。
Fig. 1 is an overall schematic circuit block diagram that is the basis of the present invention, Fig. 2 is a time chart for explaining the operation of the same as above, Fig. 3 is a circuit block diagram of an embodiment of the present invention, and Fig. 4 is the same as above. The circuit diagram of the terminator, Fig. 5 is the circuit diagram of the comparator circuit section same as above, Fig. 6 is an explanatory diagram of the operation of the above terminator, Fig. 7 is an explanation diagram of the operation of the comparator circuit section, and Fig. 8 is the circuit diagram of the same as above. A circuit diagram of another example of a general type sensor, Fig. 9 is a specific circuit diagram of the main part of the receiver used in the above, Fig. 10 is a block diagram of the main part of the intelligence type smoke detector used in the above, Fig. 11 12 is a flowchart illustrating the operation of the receiver in the fire test, 1 is the receiver, 2 is the intelligence type sensor, and 3 is the general type sensor. 4 is a terminator, 6 is a comparator circuit section, 10 is a comparator circuit section, A
is the transmission time period, B is the signal line monitoring time period, C is the general sensor monitoring time period, Vs is the transmission signal, l
is a signal line.

Claims (1)

【特許請求の範囲】[Claims] 1 信号回線を感知動作時に適宜インピーダンス
を介して短絡する一般型感知器と、アドレスが個
別に割り当てられ当該アドレスデータ含む伝送信
号が信号回線に重畳されて受信されると信号回線
に返送信号を重畳させて感知情報を返送するイン
テリジエンス型感知器と、各インテリジエンス型
感知器に対して個別に割り当てたアドレスデータ
を含むパルスコード信号よりなる上記伝送信号を
信号回線に回線電圧もしくは回線電流に重畳させ
てサイクリツクに順次時分割多重伝送し、呼び出
した各インテリジエンス型感知器から返送信号と
して送られてくる感知情報の判定を行なうと共に
信号回線の回線電圧もしくは回線電流のレベルを
監視することにより一般型感知器の感知動作を検
出し、かつ信号回線の終端器を介して流れる回線
電流のレベルにより信号回線を監視する受信機と
を備えと共に、上記伝送信号と返送信号とを伝送
させる伝送時間帯と、信号回線を監視する監視時
間帯と、一般型感知器を監視する監視時間帯とを
時分割的に順次設定する手段と、伝送信号の伝送
時間帯の信号回線の回線印加電圧を他の時間帯の
回線印加電圧よりも低く設定する信号回線電圧切
換手段と、伝送時間帯からの次の信号回線の監視
時間帯へ切り換わる時の回線電圧の立ち上がりを
検知して信号回線の終端に接続した終端インピー
ダンスを信号回線の監視時間帯において低く設定
して回線電流を増大させる終端インピーダンス切
換手段とを備えた自火報システムにおいて、信号
回線の監視時間帯に流れる回線電流のレベルを火
災電流値と見なして受信機側で火災処理動作を行
わせることを特徴とする自火報システムの火災試
験方法。
1. A general type sensor that short-circuits a signal line via impedance as appropriate during sensing operation, and when an address is individually assigned and a transmission signal containing the address data is superimposed on the signal line and received, a return signal is superimposed on the signal line. The above-mentioned transmission signal, which consists of an intelligence type sensor and a pulse code signal containing address data individually assigned to each intelligence type sensor, is superimposed on the line voltage or line current on the signal line. The signals are then cyclically and sequentially time-division multiplexed, and the sensed information sent as a return signal from each called-up intelligence sensor is judged, and the line voltage or line current level of the signal line is monitored. a receiver that detects the sensing operation of the type sensor and monitors the signal line based on the level of line current flowing through the signal line terminator, and a transmission time period in which the transmission signal and the return signal are transmitted. means for sequentially setting a monitoring time period for monitoring a signal line and a monitoring time period for monitoring a general type sensor in a time-sharing manner; Signal line voltage switching means that is set lower than the line applied voltage for the time zone, and connects to the end of the signal line by detecting the rise in line voltage when switching from the transmission time zone to the next signal line monitoring time zone. In a self-fire alarm system, the level of the line current flowing during the signal line monitoring time is set to a fire current value. A fire test method for a self-fire alarm system, characterized in that the receiver side performs a fire treatment operation based on the assumption that
JP4756984A 1984-03-12 1984-03-12 Fire testing for self-fire alarm system Granted JPS60191392A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4756984A JPS60191392A (en) 1984-03-12 1984-03-12 Fire testing for self-fire alarm system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4756984A JPS60191392A (en) 1984-03-12 1984-03-12 Fire testing for self-fire alarm system

Publications (2)

Publication Number Publication Date
JPS60191392A JPS60191392A (en) 1985-09-28
JPH0444799B2 true JPH0444799B2 (en) 1992-07-22

Family

ID=12778861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4756984A Granted JPS60191392A (en) 1984-03-12 1984-03-12 Fire testing for self-fire alarm system

Country Status (1)

Country Link
JP (1) JPS60191392A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2552295B2 (en) * 1987-06-25 1996-11-06 松下電工株式会社 Automatic fire alarm system
JPH0792876B2 (en) * 1989-07-15 1995-10-09 松下電工株式会社 Fire detection terminal
JP4782517B2 (en) * 2005-09-15 2011-09-28 ホーチキ株式会社 Fire alarm system

Also Published As

Publication number Publication date
JPS60191392A (en) 1985-09-28

Similar Documents

Publication Publication Date Title
US4613848A (en) Multiple-zone intrusion detection system
US5017905A (en) Fire alarm system
JPS60117939A (en) Information transmission system
JP2001184571A (en) Fire alarm system
US4385287A (en) Multiple alarm condition detection and signalling
JP3979586B2 (en) Fire detectors and fire alarm equipment
JPH0444799B2 (en)
EP0367486B1 (en) Fire alarm system
JP3563254B2 (en) Fire alarm and detector
JPH0444797B2 (en)
JPH0444798B2 (en)
JP3205801B2 (en) Remote control operation method and device for terminal of disaster prevention equipment
JP4058100B2 (en) Fire detectors and fire alarm equipment
JP2004133770A (en) Fire alarm facility and fire sensor
JP2854491B2 (en) Disaster prevention monitoring device and method
JPH02214239A (en) Signal transmission circuit in transmission line
JP3711466B2 (en) Fire detector
GB2065348A (en) Multiple alarm condition detection and signalling
JPH0552999B2 (en)
JPH01287799A (en) Fire alarm device
JPH0426945Y2 (en)
JP3267885B2 (en) Fire alarm and fire detector
JPH0535479B2 (en)
JP2775065B2 (en) Method and system for detecting short circuit of detector line in fire monitoring system using multiplex transmission
JP2902258B2 (en) Disaster prevention monitoring device