JPH0444543B2 - - Google Patents

Info

Publication number
JPH0444543B2
JPH0444543B2 JP6998686A JP6998686A JPH0444543B2 JP H0444543 B2 JPH0444543 B2 JP H0444543B2 JP 6998686 A JP6998686 A JP 6998686A JP 6998686 A JP6998686 A JP 6998686A JP H0444543 B2 JPH0444543 B2 JP H0444543B2
Authority
JP
Japan
Prior art keywords
channel
temperature
data
sensitivity
ray
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP6998686A
Other languages
Japanese (ja)
Other versions
JPS62227323A (en
Inventor
Haruo Kuroji
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GE Healthcare Japan Corp
Original Assignee
Yokogawa Medical Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Medical Systems Ltd filed Critical Yokogawa Medical Systems Ltd
Priority to JP61069986A priority Critical patent/JPS62227323A/en
Publication of JPS62227323A publication Critical patent/JPS62227323A/en
Publication of JPH0444543B2 publication Critical patent/JPH0444543B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Nuclear Medicine (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Measurement Of Radiation (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は複数のチヤネルで構成されたX線検出
器を有するX線断層撮影装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an X-ray tomography apparatus having an X-ray detector composed of a plurality of channels.

(従来の技術) X線断層撮影装置はX線によつて患部の断層撮
影を行う装置である。そのX線断層撮影装置の概
略構成を第5図に示す。図において、1はX線断
層撮影行うためのX線を放射するX線管で、その
放射X線はコリメータ2によつて扇状に整形され
て被検体3を照射する。4は被検体3を透過して
入射するX線をそのエネルギーに比例した電気信
号に変換するX線検出器である。X線検出器には
数種あるが、図に示した電離箱形検出器4は、X
線吸収率の大きなXeのようなガスを高圧で封入
した電離箱を有するもので、第6図に示すように
チヤネル5は電離箱内の2つのバイアス電極6に
挟まれた空間で形成されており、バイアス電極6
に正の高電圧を与え、第5図の矢印方向からの入
射X線によつて生じたXeガスの電離によるイオ
ン電流を信号電極7から得てX線強度を検出して
いる。
(Prior Art) An X-ray tomography device is a device that performs tomography of an affected area using X-rays. A schematic configuration of the X-ray tomography apparatus is shown in FIG. In the figure, reference numeral 1 denotes an X-ray tube that emits X-rays for performing X-ray tomography, and the emitted X-rays are shaped into a fan shape by a collimator 2 and irradiate a subject 3. Reference numeral 4 denotes an X-ray detector that converts the X-rays that have passed through the subject 3 and entered into an electrical signal proportional to the energy of the X-rays. There are several types of X-ray detectors, but the ionization chamber detector 4 shown in the figure is
It has an ionization chamber filled with a gas such as Xe, which has a high linear absorption rate, under high pressure.As shown in Figure 6, the channel 5 is formed in the space between two bias electrodes 6 in the ionization chamber. bias electrode 6
A positive high voltage is applied to the signal electrode 7, and the ion current due to the ionization of the Xe gas generated by the incident X-rays from the direction of the arrow in FIG. 5 is obtained from the signal electrode 7 to detect the X-ray intensity.

(発明が解決しようとする問題点) 環境温度の変化に拘らずX線検出器4から得ら
れる出力電流が入射X線エネルギー分布を正しく
再現するためには、各チヤネル5が温度変化に拘
らず同じ形状を保つ必要がある。しかし、現実に
は、環境温度が変化すると第6図に示したX線検
出器4を例にとれば、チヤネル5を形成するバイ
アス電極6、各電極を保持している支持板(図示
せず)、各電極を固定している接着剤が膨張又は
収縮して、チヤネル5の個々の形状が変化する。
このため、断層像にリングアーテイフアクトを生
ずる場合が従来装置にはあつた。これを避けるた
めに、X線断層撮影装置の環境温度を可能な限り
恒温化すること、X線検出器をより高精度に作つ
て温度係数を小さくすること、製品検査を厳重に
して変化の少ないものを分別すること。又はX線
検出器の部分だけ恒温化すること等の手段が従来
は講じられているが、これらの手段はコスト上昇
の原因となる上に、十分な対策と言うこともでき
ない。
(Problem to be Solved by the Invention) In order for the output current obtained from the X-ray detector 4 to correctly reproduce the incident X-ray energy distribution regardless of changes in environmental temperature, each channel 5 must be Must keep the same shape. However, in reality, when the environmental temperature changes, taking the X-ray detector 4 shown in FIG. ), the adhesive fixing each electrode expands or contracts, changing the individual shape of the channel 5.
For this reason, conventional apparatuses sometimes produce ring artifacts in tomographic images. In order to avoid this, we must keep the environmental temperature of the X-ray tomography device as constant as possible, make X-ray detectors with higher precision to reduce the temperature coefficient, and conduct strict product inspections to minimize changes. to separate things. Alternatively, measures have been taken in the past, such as keeping only the X-ray detector at a constant temperature, but these measures not only cause an increase in costs, but also cannot be said to be a sufficient countermeasure.

本発明は上記の点に鑑みてなされたもので、そ
の目的は、低廉なコストで温度変化に起因する各
チヤネルの実測データの変化を補正し、正しいX
線断層撮影を行い得るX線断層撮影装置を実現す
ることにある。
The present invention has been made in view of the above points, and its purpose is to correct changes in the measured data of each channel caused by temperature changes at low cost, and to correct the
An object of the present invention is to realize an X-ray tomography apparatus capable of performing ray tomography.

(問題点を解決するための手段) 前記の問題を解決する本発明は、複数のチヤネ
ルで構成されたX線検出器を有するX線断層撮影
装置において、照射X線が被検体を通らずに直接
入射する位置に代表チヤネルを配設したX線検出
器を用いると共に、該代表チヤネル及び測定用チ
ヤネルの感度の温度特性を記憶する記憶手段、ま
たは、照射X線が直接入射し温度変化による出力
変動が他のチヤネルと比較して充分小さい基準用
チヤネル感度に対する代表チヤネルの感度及び前
記基準用チヤネルの感度に対する測定用チヤネル
感度の温度特性を記憶する記憶手段と、該記憶手
段に記憶された温度特性及び前記代表チヤネルで
の実測データに基づき各測定用チヤネルでの実測
データの温度補正を行う演算手段とを設けたこと
を特徴とするものである。
(Means for Solving the Problems) The present invention solves the above problems in an X-ray tomography apparatus having an X-ray detector configured with a plurality of channels, in which the irradiated X-rays do not pass through the subject. In addition to using an X-ray detector with a representative channel arranged at a position where the irradiated X-rays are directly incident, a storage means for storing temperature characteristics of sensitivity of the representative channel and the measurement channel, or an X-ray detector that is directly incident with irradiated X-rays and outputs due to temperature changes. Storage means for storing temperature characteristics of the sensitivity of the representative channel with respect to the sensitivity of the reference channel and the sensitivity of the measurement channel with respect to the sensitivity of the reference channel, the fluctuation of which is sufficiently small compared to other channels; and the temperature stored in the storage means. The present invention is characterized in that it includes a calculation means for performing temperature correction on the actual measurement data in each measurement channel based on the characteristics and the actual measurement data on the representative channel.

(作用) 代表チヤネル及び測定用チヤネルの感度の温度
特性、または、基準用チヤネルの感度に対する代
表チヤネルの感度及び基準用チヤネルの感度に対
する測定用チヤネルの感度の温度特性を予めメモ
リに記憶しておき、その温度特性と代表チヤネル
の実測データとを用いて、測定用チヤネルでの実
測データの温度補正を行う。
(Function) The temperature characteristics of the sensitivity of the representative channel and the measurement channel, or the temperature characteristics of the sensitivity of the representative channel with respect to the sensitivity of the reference channel and the sensitivity of the measurement channel with respect to the sensitivity of the reference channel are stored in advance in the memory. , temperature correction of the actual measurement data in the measurement channel is performed using the temperature characteristics and the actual measurement data of the representative channel.

(実施例) 以下に図面を参照して本発明の実施例を詳細に
説明する。
(Example) Examples of the present invention will be described in detail below with reference to the drawings.

第1図は本発明の一実施例の本体及びデータ処
理部の概略構成を示したブロツク図である。図に
おいて第5図と同じ部分には同じ符号を付してあ
る。図中、8はX線検出器4内に設けた基準用チ
ヤネル(以下Rchという)で、照射X線が被検体
3を通らずに直接入射する位置に他のチヤネルの
基準として配設され、スキヤン中絶えず変化する
可能性のあるX線の強度の補正をするものであ
る。このRch8は複数個設ける必要があるので、
本実施例では6個設けてある。9はX線検出器4
内に設けた代表チヤネル(以下Mchという)で、
照射X線が被検体3を通らずに直接入射する位置
に測定用チヤネル(以下Achという)5の温度把
握用に設けたものである。上記各チヤネルのデー
タはマルチプレクサやA/Dコンバータ等でなる
データ収集部10を介してコンピユータ11に取
り込まれ、コンピユータ11によつて後述の温度
補正処理やその他の前処理がなされるようになつ
ている。本実施例では、画像再構成のための演算
は専用の高速演算装置12にて行う。13はコン
ピユータ11に取り込まれたデータ(投影デー
タ)をそのままストアしたり、前処理及び再構成
演算処理後のデータ等をストアする外部メモリで
ある。このメモリ13は、後述のように、Mch
9及びAch5の感度の温度特性も記憶することに
なる。尚、Mch9及びAch5の感度の温度特性を
記憶するとは、Mch9及びAch5の感度が温度変
化に対してどように変化するかを知り得るデータ
を記憶することを意味する。
FIG. 1 is a block diagram showing a schematic configuration of a main body and a data processing section according to an embodiment of the present invention. In the figure, the same parts as in FIG. 5 are given the same reference numerals. In the figure, 8 is a reference channel (hereinafter referred to as Rch) provided in the X-ray detector 4, which is provided as a reference for other channels at a position where the irradiated X-rays directly enter without passing through the object 3. This is to compensate for the intensity of the X-rays, which may constantly change during the scan. Since it is necessary to provide multiple Rch8,
In this embodiment, six are provided. 9 is the X-ray detector 4
The representative channel (hereinafter referred to as Mch) established within
This measurement channel (hereinafter referred to as Ach) 5 is provided at a position where the irradiated X-rays directly enter the object 3 without passing through it, in order to ascertain the temperature. The data of each channel is taken into the computer 11 via the data collection section 10, which includes a multiplexer, A/D converter, etc., and the computer 11 performs temperature correction processing and other preprocessing, which will be described later. There is. In this embodiment, calculations for image reconstruction are performed by a dedicated high-speed calculation device 12. Reference numeral 13 denotes an external memory that stores data (projection data) taken into the computer 11 as is, or stores data after preprocessing and reconstruction calculation processing. This memory 13 is, as described later, Mch
The temperature characteristics of the sensitivities of Ach 9 and Ach 5 are also stored. Note that storing the temperature characteristics of the sensitivities of Mch9 and Ach5 means storing data that allows knowing how the sensitivities of Mch9 and Ach5 change with respect to temperature changes.

次に上記実施例の動作に併せて温度補正の手法
を第2図、第3図を参照して説明する。第2図は
Mch9の温度特性の一例を示すグラフであり、
第3図はAch5の中の任意のチヤネル(ここでは
m番目のチヤネルとする)の温度特性の一例を示
すグラフである。これらの図において、各記号は
次のように定義される。即ち、温度t℃における
Mch9の出力をMt、Ach5のm番目のチヤネル
における被検体3の存在しないときのt℃におけ
る出力をAmt、t℃における6個のRch8の出力
の平均値をRtとしている。Rch8の出力について
平均値を用いるのは、第5図のチヤネルにおい
て、温度変化のために1つの電極が変形して容積
が変化しても隣接のチヤネルとの合計容積は変化
しないので、平均値を求めることによりRch8の
出力は温度変化に対しても略一定となり、温度係
数が殆ど0と見做されるからである。本実施例で
はMch9、Ach5の各実測データとして、照射X
線の強度の変動の影響を防止するため、Mch9、
Ach5の各出力をそのまま用いずに、これら出力
データをRch8の出力の平均値で割つたもを用い
ている。この場合、Rch8の出力の平均値は前述
のように温度係数が殆ど0と見做されるため、各
チヤネルのスキヤンの都度データを取らないで1
つの温度に対するデータを使用してよいが、本実
施例では一層正確を期するため、各チヤネルの測
定の都度測定している。
Next, a method of temperature correction will be explained with reference to FIGS. 2 and 3 in conjunction with the operation of the above embodiment. Figure 2 is
It is a graph showing an example of temperature characteristics of Mch9,
FIG. 3 is a graph showing an example of the temperature characteristics of an arbitrary channel (here, the m-th channel) in Ach5. In these figures, each symbol is defined as follows. That is, at a temperature t°C
The output of Mch9 is Mt, the output at t° C. when the subject 3 is not present in the m-th channel of Ach5 is Amt, and the average value of the six Rch8 outputs at t° C. is Rt. The reason why the average value is used for the output of Rch 8 is because in the channel shown in Figure 5, even if one electrode is deformed due to temperature change and the volume changes, the total volume with the adjacent channels does not change. This is because, by determining , the output of Rch 8 becomes approximately constant even with temperature changes, and the temperature coefficient is considered to be almost 0. In this example, as each actual measurement data of Mch9 and Ach5, irradiation
To prevent the influence of fluctuations in line strength, Mch9,
Instead of using each output of Ach5 as is, the data obtained by dividing these output data by the average value of the output of Rch8 is used. In this case, the temperature coefficient of the average value of the output of Rch 8 is considered to be almost 0 as described above, so it is not necessary to take data every time the scan of each channel is performed.
Although data for one temperature may be used, in this example, to ensure greater accuracy, measurements are taken each time each channel is measured.

被検体3の断層撮影に先立つてMch9及びAch
5の温度特性を読み込まなければならないが、こ
れは次のようにする。被検体3の存在しない状態
で各チヤネルのX線入力に対する出力をX線検出
器4の温度がt1℃とt2℃の場合について得て、こ
れを一度メモリ13にストアした後、Rch8の出
力を読み出して各温度におけるその平均値Rt1
Rt2を求め、各温度におけるMch9及びAch5の
出力を割つて、第4図に示す如きデータを得、こ
れをMch9,Ach5の各チヤネルにおける実測デ
ータとして再度メモリ13にストアする。Mch
9,Ach5の各チヤネル温度特性は各々一定では
ないが、熱による膨張、収縮を主原因としている
ので、1つのチヤネルに注目すれば温度変化に比
例しており、その再現性もよい。従つて、温度特
性は温度に対してリニアと考えてよく、例えば、
第4図の測定結果からMch9の実測データは第
2図の温度特性曲線を画き、Ach5の1つのチヤ
ネルは第3図のような温度特性曲線を画く、但
し、この温度特性曲線は説明のために画いたもの
で、メモリ13にはt1℃とt2℃の2点における各
チヤネルの実測データを保存してあるのみであ
る。しかし、この2点での各データを読み込むこ
とで、Mch9及びAch5の感度の温度特性を読み
込んだことになる。
Mch9 and Ach prior to tomography of subject 3
We need to read the temperature characteristics of No. 5, which can be done as follows. In the absence of the object 3, the output for the X-ray input of each channel is obtained when the temperature of the X-ray detector 4 is t 1 °C and t 2 °C, and after storing this in the memory 13, Read out the output and find its average value Rt 1 at each temperature,
Rt 2 is determined and the outputs of Mch9 and Ach5 at each temperature are divided to obtain data as shown in FIG. 4, which is stored again in the memory 13 as actual measurement data for each channel of Mch9 and Ach5. Mch
9. The temperature characteristics of each channel of Ach5 are not constant, but since the main cause is expansion and contraction due to heat, if we focus on one channel, it is proportional to the temperature change, and its reproducibility is also good. Therefore, the temperature characteristics can be considered to be linear with respect to temperature, for example,
From the measurement results shown in Figure 4, the actual measurement data of Mch9 draws the temperature characteristic curve shown in Figure 2, and one channel of Ach5 draws a temperature characteristic curve as shown in Figure 3.However, this temperature characteristic curve is for illustration purposes only. The memory 13 only stores actual measurement data for each channel at two points, t 1 °C and t 2 °C. However, by reading each data at these two points, the temperature characteristics of the sensitivity of Mch9 and Ach5 are read.

次にX線断層撮影装置の実際のスキヤン動作に
ついて説明する。このスキヤン中絶えずAch5,
Rch8,Mch9によつてデータを収集している
が、ある時点における1スキヤンについて説明す
る。コンピユータ11は先ずRch8,Mch9,
Ach5の出力をデータ収集部10を介して取り込
み、そのときのX線検出器4の温度tを求める。
具体的には、Mt/Rtが温度tに対してリニアに
変化し、次式の (t2−t1):(t−t1)=(Mt2/Rt2−Mt1/Rt1
):(Mt/Rt−Mt1/Rt1) が成り立つことを利用する。この式を温度tにつ
いて整理すると(1)式が得られる。
Next, the actual scanning operation of the X-ray tomography apparatus will be explained. During this scan, Ach5,
Data is collected by Rch8 and Mch9, and one scan at a certain point in time will be explained. The computer 11 first uses Rch8, Mch9,
The output of Ach5 is taken in via the data collection unit 10, and the temperature t of the X-ray detector 4 at that time is determined.
Specifically, Mt/Rt changes linearly with temperature t, and the following equation (t 2 − t 1 ): (t − t 1 )=(Mt 2 /Rt 2 −Mt 1 /Rt 1
): (Mt/Rt−Mt 1 /Rt 1 ) is established. When this equation is rearranged with respect to temperature t, equation (1) is obtained.

t={(t2−t1)(Mt/Rt−Mt1/Rt1)/(Mt2
/Rt2−Mt1/Rt1)}+t1…(1) そこで、コンピユータ11は(1)式より温度tを
求める。次にこの温度tとメモリ13にストアし
てあるAch5の温度t1,t2の実測データを用いて
Ach5の全チヤネルにおける被検体3が存在しな
いときの実測データの予測を行う。今、Ach5の
m番目のチヤネルを例にとればこの予測は
Amt/Rtが温度tに対してリニアに変化し、次
式 (t2−t1):(t−t1)=(Amt2/Rt2−Amt1
Rt1):(Amt/Rt−Amt1/Rt1)が成り立つこと
を利用する。この式をAmt/Rtについて整理す
ると、次の(2)式 Amt/Rt=〔{(t−t1)(Amt2/Rt2−Amt1/Rt
1)}/(t2−t1)〕+Amt1/Rt1…(2) が得られるので、この演算を行うことにより容易
に予測値を得ることができる。基準温度での実測
データ例えば温度t1における実測データAmt1
Rt1を用いれば、被検体3が存在する場合に得た
実測データPAmt/Rt(但し、PAmtは被検体3
が存在したときのm番目のAch5の出力)を常に
基準温度t1におけるデータに換算することができ
る。即ち、温度t1に換算した求めるべき実測デー
タをPAmt1/R1とすると、温度補正がなされた
実測データPAmt1/Rtは次式により求められる。
t={( t2t1 )(Mt/Rt− Mt1 / Rt1 )/( Mt2
/Rt 2 −Mt 1 /Rt 1 )}+t 1 (1) Then, the computer 11 calculates the temperature t from equation (1). Next, using this temperature t and the measured data of temperatures t 1 and t 2 of Ach 5 stored in the memory 13,
The actual measurement data when the subject 3 is not present in all channels of Ach5 is predicted. Now, if we take the m-th channel of Ach5 as an example, this prediction is
Amt/Rt changes linearly with temperature t, and the following formula (t 2 - t 1 ): (t - t 1 ) = (Amt 2 / Rt 2 - Amt 1 /
Rt 1 ): Uses the fact that (Amt/Rt−Amt 1 /Rt 1 ) holds. If we rearrange this equation regarding Amt/Rt, we get the following equation (2) Amt/Rt=[{(t-t 1 )(Amt 2 /Rt 2 −Amt 1 /Rt
1 )}/(t 2 −t 1 )]+Amt 1 /Rt 1 (2), so the predicted value can be easily obtained by performing this calculation. Actual measurement data at reference temperature For example, actual measurement data at temperature t 1 Amt 1 /
If Rt 1 is used, the measured data PAmt/Rt obtained when subject 3 exists (however, PAmt is
can always be converted into data at the reference temperature t1 . That is, if the actual measurement data to be obtained converted into temperature t 1 is PAmt 1 /R 1 , then the temperature-corrected actual measurement data PAmt 1 /Rt can be obtained by the following equation.

PAmt1/Rt1=(PAmt/Rt)×{(Amt1/Rt1)/
(Amt/Rt)}…(3) コンピユータ11は(3)式による演算をAch5の
各チヤネル全部に亘つて行い、更に必要な前処理
があればそれも行つた後、該データを高速演算装
置12に送り、画像の再構成演算を行わせ、得ら
れた画像データをメモリ13に一旦ストアし、こ
こから必要なデータを取り出して指示された画像
表示を行う。
PAmt 1 / Rt 1 = (PAmt / Rt) × {(Amt 1 / Rt 1 ) /
(Amt/Rt)}...(3) The computer 11 performs the calculation according to equation (3) over all channels of Ach 5, and after performing any necessary preprocessing, the data is sent to a high-speed calculation device. 12 to perform image reconstruction calculations, and the obtained image data is temporarily stored in the memory 13, from which necessary data is extracted and the instructed image is displayed.

上記のように、本実施例では、予め温度t1,t2
の2点で全チヤネルの被検体3を通らない実測デ
ータを求めておき、その後被検体3のスキヤン中
においてMch9の実測データから(1)式の演算を
行つて温度を求め、得た温度を用いてその温度に
おけるAch5の各構成チヤネルの被検体3が存在
しないときの実測データの予測値を(2)式により
得、その値に基づき被検体3を置いたスキヤンに
よりAch5から得られた実測データを(3)式により
基準の温度における実測データに換算し、温度補
正を行つている。この過程において、実用上、被
検体3の第1回のスキヤンにおいてMch9の実
測データを取り、Ach5の所要の温度補正を行う
が、その後はスキヤンに時間を要して温度が変化
する可能性のある場合、例えば、数分毎にAch9
の実測データを更新して温度補正を行う。
As mentioned above, in this example, the temperatures t 1 and t 2 are set in advance.
Obtain the actual measurement data that does not pass through the object 3 of all channels at the two points, and then calculate the temperature by calculating the formula (1) from the actual measurement data of Mch 9 during the scan of the object 3. Using Equation (2), we obtain the predicted value of the actual measured data in each constituent channel of Ach 5 at that temperature when the object 3 is not present, and based on that value, we calculate the predicted value of the actual measurement data obtained from Ach 5 by scanning with object 3 placed. The data is converted to actual measurement data at the reference temperature using equation (3), and temperature correction is performed. In this process, in practice, the actual measurement data of Mch9 is taken during the first scan of the object 3, and the required temperature correction of Ach5 is performed, but after that, the scan takes time and the temperature may change. In some cases, for example, Ach9 every few minutes
Update the actual measurement data and perform temperature correction.

尚、本発明は上記実施例に限定されるものでは
ない。例えば、上記実施例においてはX線検出器
として電離箱形検出器を用いた場合について述べ
たが、前方に各チヤネル毎にタングステン板によ
つて仕切られたコリメータを設けた半導体検出器
であつてもよい。又、代表チヤネルが温度に対し
て敏感になるように電極板固定用接着剤を加減し
てもよく、バイメタルのように温度変化に対して
変形量の大きな電極板を使用してもよい。更にt1
℃,t2℃における実測データを用いて(1)式及び(2)
式の演算を行つたが、第2図、第3図に示す如き
特性曲線に示すデータを各温度に亘つてメモリ1
3にストアし、逐次読出すことによつて補正を行
つてもよい。又、(1)〜(3)式の演算を逐次行う必要
はなく、これらを合成した式を用いて補正を行つ
てもよい。更に、Mch9の感度/Rch8の感度及
びAch5の感度/Rch8の感度を温度特性を示す
データとしてメモリ13にストアして用いたが、
X線エネルギーが安定している場合はRch8を使
用しないで、Mch9及びAch5の感度そのもの
(実測データ)を温度特性を示すデータとしてメ
モリ13にストアして用いるものであつてもよ
い。
Note that the present invention is not limited to the above embodiments. For example, in the above embodiment, an ionization chamber type detector is used as the X-ray detector, but it is also possible to use a semiconductor detector with a collimator partitioned by a tungsten plate for each channel in front Good too. Further, the amount of adhesive for fixing the electrode plate may be adjusted so that the representative channel is sensitive to temperature, and an electrode plate such as a bimetal that deforms greatly in response to temperature changes may be used. further t 1
℃, t 2 ℃ using the measured data, equations (1) and (2)
The formula was calculated, and the data shown in the characteristic curves shown in Figures 2 and 3 were stored in the memory 1 over each temperature.
The correction may be performed by storing the data in 3 and sequentially reading the data. Further, it is not necessary to perform the calculations of equations (1) to (3) sequentially, and the correction may be performed using a combination of these equations. Furthermore, the sensitivity of Mch9/sensitivity of Rch8 and the sensitivity of Ach5/sensitivity of Rch8 were stored in the memory 13 and used as data indicating temperature characteristics.
When the X-ray energy is stable, Rch 8 may not be used, and the sensitivities themselves (actual measurement data) of Mch 9 and Ach 5 may be stored in the memory 13 as data indicating temperature characteristics.

(発明の効果) 以上説明したように本発明によれば、特別な設
備を必要とせず、X線断層撮影装置が通常有して
いる記憶手段と演算手段を使用して低廉なコスト
で実測データの温度補正を行えるX線断層装置を
実現することができる。
(Effects of the Invention) As explained above, according to the present invention, actual measurement data can be obtained at low cost without requiring any special equipment and by using the storage means and calculation means that X-ray tomography apparatuses normally have. It is possible to realize an X-ray tomography apparatus that can perform temperature correction.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の本体及び処理部の
概略構成を示したブロツク図、第2図は代表チヤ
ネルの温度特性曲線一例を示す図、第3図は測定
用チヤネルの中の1チヤネルの温度特性曲線の一
例を示す図、第4図はメモリにストアされた温度
t1,t2における各チヤネルの実測データの説明
図、第5図は従来のX線断層撮影装置の概略構成
図、第6図は電離箱形検出器の電極配置図であ
る。 1……X線管、2……コリメータ、3……被検
体、4……X線検出器、5……測定用チヤネル
(Ach)、6……バイアス電極、7……信号電極、
8……基準用チヤネル(Rch)、9……代表チヤ
ネル(Mch)、10……データ収集部、11……
コンピユータ、12……高速演算装置、13……
メモリ。
FIG. 1 is a block diagram showing a schematic configuration of the main body and processing section of an embodiment of the present invention, FIG. 2 is a diagram showing an example of the temperature characteristic curve of a representative channel, and FIG. 3 is a diagram showing one example of the temperature characteristic curve of a representative channel. A diagram showing an example of the temperature characteristic curve of the channel, Figure 4 shows the temperature stored in memory.
An explanatory diagram of the measured data of each channel at t 1 and t 2 , FIG. 5 is a schematic configuration diagram of a conventional X-ray tomography apparatus, and FIG. 6 is an electrode arrangement diagram of an ionization chamber detector. 1... X-ray tube, 2... Collimator, 3... Subject, 4... X-ray detector, 5... Measurement channel (Ach), 6... Bias electrode, 7... Signal electrode,
8... Reference channel (Rch), 9... Representative channel (Mch), 10... Data collection section, 11...
Computer, 12... High-speed arithmetic device, 13...
memory.

Claims (1)

【特許請求の範囲】 1 複数のチヤネルで構成されたX線検出器を有
するX線断層撮影装置において、照射X線が被検
体を通らずに直接入射する位置に代表チヤネルを
配設したX線検出器を用いると共に、該代表チヤ
ネル及び測定用チヤネル感度の温度特性を記憶す
る記憶手段と、該記憶手段に記憶された温度特性
及び前記代表チヤネルでの実測データに基づき各
測定用チヤネルでの実測データの温度補正を行う
演算手段とを設けたことを特徴とするX線断層撮
影装置。 2 複数のチヤネルで構成されたX線検出器を有
するX線断層撮影装置において、照射X線が被検
体を通らずに直接入射する位置に配設した代表チ
ヤネルと、照射X線強度の変動を検出するために
照射X線が被検体を通らずに直接入射する位置に
配設し温度変化による出力変動が他のチヤネルと
比較して充分小さい基準用チヤネルを備えたX線
検出器を用いると共に、基準用チヤネルの感度に
対する代表チヤネルの感度及び基準用チヤネル感
度に対する測定用チヤネルの感度の温度特性を記
憶する記憶手段と、該記憶手段に記憶された温度
特性及び前記代表チヤネルでの実測データに基づ
き各測定用チヤネルでの実測データの温度補正を
行う演算手段とを設けたことを特徴とするX線断
層撮影装置。
[Claims] 1. An X-ray tomography apparatus having an X-ray detector composed of a plurality of channels, in which a representative channel is arranged at a position where the irradiated X-rays directly enter the subject without passing through it. Using a detector, a storage means for storing temperature characteristics of the representative channel and measurement channel sensitivity, and actual measurement in each measurement channel based on the temperature characteristics stored in the storage means and actual measurement data in the representative channel. An X-ray tomography apparatus characterized by comprising: arithmetic means for temperature-correcting data. 2. In an X-ray tomography system that has an X-ray detector composed of multiple channels, a representative channel is placed at a position where the irradiated X-rays directly enter without passing through the subject, and fluctuations in the irradiated X-ray intensity are For detection, an X-ray detector is installed at a position where the irradiated X-rays directly enter the subject without passing through it, and the output fluctuation due to temperature changes is sufficiently small compared to other channels. , storage means for storing the temperature characteristics of the sensitivity of the representative channel with respect to the sensitivity of the reference channel and the sensitivity of the measurement channel with respect to the sensitivity of the reference channel, and the temperature characteristics stored in the storage means and the actual measurement data in the representative channel. 1. An X-ray tomography apparatus characterized by comprising: a calculation means for correcting the temperature of actual measurement data in each measurement channel based on the temperature.
JP61069986A 1986-03-28 1986-03-28 X-ray tomographic imaging apparatus Granted JPS62227323A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61069986A JPS62227323A (en) 1986-03-28 1986-03-28 X-ray tomographic imaging apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61069986A JPS62227323A (en) 1986-03-28 1986-03-28 X-ray tomographic imaging apparatus

Publications (2)

Publication Number Publication Date
JPS62227323A JPS62227323A (en) 1987-10-06
JPH0444543B2 true JPH0444543B2 (en) 1992-07-22

Family

ID=13418500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61069986A Granted JPS62227323A (en) 1986-03-28 1986-03-28 X-ray tomographic imaging apparatus

Country Status (1)

Country Link
JP (1) JPS62227323A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6437201B2 (en) 2013-01-29 2018-12-12 キヤノンメディカルシステムズ株式会社 Medical image processing apparatus and X-ray CT apparatus

Also Published As

Publication number Publication date
JPS62227323A (en) 1987-10-06

Similar Documents

Publication Publication Date Title
JP6133231B2 (en) X-ray energy spectrum measuring method, X-ray energy spectrum measuring apparatus and X-ray CT apparatus
US4178510A (en) Device for measuring the spatial distribution of radiation absorption in a slice of a body
JP2006078486A (en) Detecting apparatus for medical diagnostic equipment and medical imaging diagnostic method
US5056020A (en) Method and system for the correction of image defects of a scanner due to the movements of the latter
US4211926A (en) Tomographic imaging system
EP0105618B1 (en) X-ray imaging system having radiation scatter compensation and method
EP1818688A2 (en) Nuclear medical apparatus
US4066902A (en) Radiography with detector compensating means
GB1602521A (en) Arrangement for producing an image of a body section using gamma or x-radiation
US5680427A (en) Normalization of tomographic image data
US8395126B2 (en) X-ray imaging apparatus, X-ray imaging method, and computer storage medium
JP2006058296A (en) Tomograph and method thereof
CN102469975A (en) X-ray examination device and method
US5528649A (en) Method of calibrating a radiological system and of measuring the equivalent thickness of an object
US6014420A (en) X-ray CT apparatus
US4277686A (en) Device for determining internal body structures by means of scattered radiation
US7006599B2 (en) Radiographic apparatus
CN1315437C (en) Diaphragm regulating method of computer lamination contrast and computer lamination contrast apparatus
US9678227B2 (en) Radiation analyzing apparatus
JP2882048B2 (en) Sensing element sensitivity correction method and X-ray detector
JPH0444543B2 (en)
JPH05217689A (en) Method and device for x-ray photographing
US10070840B2 (en) X-ray computed tomography apparatus and radiation medical imaging diagnostic apparatus
US5872830A (en) Device and method of imaging or measuring of a radiation source
JP3556409B2 (en) Reactor power measurement device