JPH0444196A - Photoelectric smoke sensor - Google Patents

Photoelectric smoke sensor

Info

Publication number
JPH0444196A
JPH0444196A JP15225990A JP15225990A JPH0444196A JP H0444196 A JPH0444196 A JP H0444196A JP 15225990 A JP15225990 A JP 15225990A JP 15225990 A JP15225990 A JP 15225990A JP H0444196 A JPH0444196 A JP H0444196A
Authority
JP
Japan
Prior art keywords
light
smoke
diffracted light
particles
diffracted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15225990A
Other languages
Japanese (ja)
Inventor
Atsuyuki Hirono
淳之 広野
Yoshiaki Kanbe
祥明 神戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP15225990A priority Critical patent/JPH0444196A/en
Publication of JPH0444196A publication Critical patent/JPH0444196A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To surely detect smoke by condensing the diffracted light, which corresponds to smoke particles and is led by a holographic element, on a photodetector to decide the smoke. CONSTITUTION:Light projecting means 1 and 2 which lead collimated light having a single wavelength to a smoke monitor area 20, a holographic element 4 which leads diffracted light of an object in the smoke monitor area, which is obtained by the light led by these means 1 and 2, to a prescribed direction in accordance with the angle of diffraction, a photodetector 6 which receives diffracted light corresponding to smoke particles which is led by the holographic element 4, and a discriminating means 3 which discriminates the existence of smoke particles based on the reception light output of the photodetector 6 are provided. Thus, the object other than smoke is not detected as smoke regardless of the existence of the object like dust other than smoke in the smoke monitor area 20 because the angle of diffracted light of the object is different from that of diffracted light of smoke particles.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、投光素子より煙監視領域に照射された光線に
よる煙監視領域内に存在する物体の回折光を受光素子に
より検出し、その回折方向によって物体が、煙であるか
否を判定する光電式煙感知器に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention detects diffracted light of an object existing within the smoke monitoring area by a light beam irradiated onto the smoke monitoring area from a light projecting element, and This invention relates to a photoelectric smoke detector that determines whether an object is smoke or not based on the direction of diffraction.

[従来の技術] 一般に光電式煙感知器は特開昭56−.147294号
、実開昭60−109189号、実開昭62−2035
8号等に示されるように煙粒子による散乱光を受光する
ことにより煙検知を行うようになっている。つまりこの
種の光電式煙感知器は第8図に示すように投光素子18
より煙監視領域20に照射された光の煙粒子による散乱
光を受光素子19により受光して煙検知を行うもので、
投光素子18と受光素子19とを図示するように光軸が
互いに交差するように配置するとともに、投光素子18
からの光が受光素子19に直接入射しないように遮光板
などを配置して構成され、煙監視領域20に煙粒子が存
在するときのみ、煙粒子により発生する散乱光が受光素
子1つに入射され煙の存在を検知するようになっている
[Prior Art] Generally, photoelectric smoke detectors are disclosed in Japanese Patent Application Laid-Open No. 1983-1983. No. 147294, Utility Model Application No. 1988-109189, Utility Model Application No. 62-2035
As shown in No. 8, etc., smoke detection is performed by receiving scattered light from smoke particles. In other words, this type of photoelectric smoke detector has a light emitting element 18 as shown in FIG.
The light receiving element 19 receives scattered light from smoke particles of light irradiated onto the smoke monitoring area 20 to perform smoke detection.
The light emitting element 18 and the light receiving element 19 are arranged so that their optical axes intersect with each other as shown in the figure, and the light emitting element 18
A light-shielding plate or the like is arranged to prevent light from directly entering the light-receiving element 19, and only when smoke particles are present in the smoke monitoring area 20, scattered light generated by smoke particles enters one light-receiving element. It is designed to detect the presence of smoke.

一方、粒子径を測定して、煙検知を行う方法も従来から
あり、この方法にはレーザー回折式粒径測定方法が一般
的である(例えば、参考文献として、島津評論 Vol
、45.No1.2 1988.6 78頁〜84頁)
。この方法を第9図に基づいて説明する。この図示例で
はレーザー21から出射されたレーザー光をレンズ22
でコーリメートして被測定粒子Xに照射する。ここで被
測定粒子Xによって光の回折が生じ、その−次回折光の
進行方向は照射方向に対して、角度θだけ異なることに
なる。
On the other hand, there is a conventional method for detecting smoke by measuring the particle size, and a laser diffraction particle size measurement method is common for this method (for example, see Shimadzu Review Vol.
, 45. No. 1.2 1988.6 pages 78-84)
. This method will be explained based on FIG. 9. In this illustrated example, the laser beam emitted from the laser 21 is transferred to the lens 22.
The beam is collimated and irradiated onto the particle X to be measured. Here, light is diffracted by the particle to be measured X, and the traveling direction of the -order diffracted light differs from the irradiation direction by an angle θ.

ここでレーザー光の波長をλとすると、被測定粒子Xの
粒子径D、波長λ、回折角θの間には次のような関係が
ある。
Here, when the wavelength of the laser beam is λ, the following relationship exists between the particle diameter D of the particle to be measured X, the wavelength λ, and the diffraction angle θ.

sinθ=1.22λ/ D     −■この一次回
折光をフーリエ変換レンズ23を用いて結像させると、
その像高rは r=1.22人f/D となる。尚fはフーリエ変換レンズ23から結像面まて
の距離を示す。ここで実際の像は光軸を中心とした円状
になるため、結像面を構成する受光要素24は受光素子
を複数個の同心円状に配置したものから構成される。こ
こでλ、fが既知ならば、回折光が入光した受光素子の
半径rから粒子径りを信号処理装置25により求めるこ
とができる。
sin θ=1.22λ/D −■ When this first-order diffracted light is imaged using the Fourier transform lens 23,
The image height r is r=1.22 person f/D. Note that f indicates the distance from the Fourier transform lens 23 to the imaging plane. Here, since the actual image is circular with the optical axis as the center, the light receiving element 24 constituting the image forming surface is composed of a plurality of light receiving elements arranged in concentric circles. Here, if λ and f are known, the particle diameter can be determined by the signal processing device 25 from the radius r of the light receiving element into which the diffracted light enters.

[発明が解決しようとする課題] ところで上記第8図に示す従来構成では、煙監視領域2
0内に煙以外の物体、例えばごみ、埃、或は煙感知器を
屋内の厨房に設置した場合の湯気等が存在した場合でも
、投光素子18より照射された光が、これらの物体によ
り散乱され、その散乱光が受光素子1つに受光されるた
め、受光素子1つ以降の信号処理手段では煙が存在して
いると判断して検知出力を発生するという誤検知の問題
があった。この問題は特に人命に拘る煙感知器に取って
、解決すべき重大な課題であった。
[Problems to be Solved by the Invention] By the way, in the conventional configuration shown in FIG.
Even if there are objects other than smoke inside the room, such as dirt, dust, or steam when a smoke detector is installed in an indoor kitchen, the light emitted from the light emitting element 18 may be affected by these objects. Since the scattered light is received by one light receiving element, there is a problem of false detection in which the signal processing means after the first light receiving element determines that smoke is present and generates a detection output. . This problem was a serious problem that needed to be solved, especially for smoke detectors, which are concerned with human life.

尚一般に光電式煙感知で検知しなければならない煙粒子
の径及び誤動作の要因となる物体の粒子径は、夫々1μ
m〜3μm及び5μm以上であることが示されている(
日本火災学会平成元年研究発表会概要集37頁〜38頁
)。
In general, the diameter of smoke particles that must be detected by photoelectric smoke detection and the particle diameter of objects that cause malfunction are each 1μ.
m ~ 3 μm and 5 μm or more (
Japanese Society of Fire Research 1989 Research Presentation Summary Collection, pages 37-38).

一方、第9図に示すレーザー回折式粒径測定方法ては、
フーリエ変換レンズ23という特殊なレンズが必要とな
るため、コストが高いという問題があった。そこで、一
般に広く使用されているレンズを用いると、その像高r
は 4 +n mとした時、r=12.4mmとなり、その
ため受光素子の口径が大きくなって、受光素子に特殊な
ものを必要とし、コスト上昇の原因となるという問題が
あった。
On the other hand, the laser diffraction particle size measurement method shown in FIG.
Since a special lens called the Fourier transform lens 23 is required, there is a problem in that the cost is high. Therefore, if a commonly used lens is used, the image height r
When 4 + nm, r=12.4 mm, which causes the diameter of the light-receiving element to become large, requiring a special light-receiving element, leading to an increase in cost.

本発明は上述の問題点に鑑みて為されたもので、その目
的とするところは高価な部品を用いずに、煙粒子の粒径
測定による煙検知を行うことができ、安価で信頼性の高
い光電式煙感知器を提供するにある。
The present invention was made in view of the above-mentioned problems, and its purpose is to enable smoke detection by measuring the size of smoke particles without using expensive parts, and to provide an inexpensive and reliable method. It is on offer to provide high quality photoelectric smoke detectors.

加えて請求項3,4項記載の発明は安全性が高く、しか
もコストが安価な投光手段を使った光電式煙感知器を提
供することを目的とする。
In addition, it is an object of the invention described in claims 3 and 4 to provide a photoelectric smoke detector using a light projecting means that is highly safe and inexpensive.

[課題を解決するための手段] 請求項1記載の発明は上述の目的を達成するために、単
一波長のみのコリメートされた光を煙監視領域に導く投
光手段と、該投光手段により導かれた光によって得られ
る煙監視領域内に存在する物体の回折光を回折角に応じ
て所定方向へ導くホログラフィック素子と、該ホログラ
フィック素子により導かれた煙粒子に対応する回折光を
受光する受光素子と、該受光素子の受光出力に基づいて
煙粒子の存在を判定する判定手段とを備えたものである
[Means for Solving the Problems] In order to achieve the above-mentioned object, the invention according to claim 1 includes a light projection means for guiding collimated light of only a single wavelength to a smoke monitoring area, and a light projection means by the light projection means. A holographic element that guides diffracted light of an object existing within a smoke monitoring area obtained by the guided light in a predetermined direction according to a diffraction angle, and receives diffracted light corresponding to smoke particles guided by the holographic element. The apparatus includes a light-receiving element for detecting a smoke particle, and a determining means for determining the presence of smoke particles based on the light-receiving output of the light-receiving element.

尚請求項2記載の発明は半導体レーザー等のレーザーか
らなる投光素子と、レーザー光をコリメートするレンズ
とによって投光手段を構成している。
In the second aspect of the invention, the light projecting means is constituted by a light projecting element made of a laser such as a semiconductor laser, and a lens that collimates the laser beam.

また請求項3記載の発明は発光ダイオードからなる投光
素゛子と、該投光素子からの光をコリメートするレンズ
と、該コリメートされた光から単一波長の光を選択する
回折格子とによって投光手段を構成している。
In addition, the invention according to claim 3 uses a light emitting element made of a light emitting diode, a lens that collimates the light from the light emitting element, and a diffraction grating that selects light of a single wavelength from the collimated light. It constitutes a light projecting means.

更に請求項4記載の発明は光ダイオードからなる投光素
子と、コリメート機能を持つ非軸パラボラリフレクタ等
の凹面鏡と、該凹面鏡の鏡面部分に配置されコリメート
された光から単一波長の光を選択する回折格子とによっ
て投光手段を構成している。
Furthermore, the invention according to claim 4 includes a light projecting element made of a photodiode, a concave mirror such as an off-axis parabolic reflector having a collimating function, and a single wavelength of light is selected from the collimated light disposed on the mirror surface of the concave mirror. The light projecting means is constituted by the diffraction grating.

[作用] 而して本発明では煙監視領域内に存在する物体に照射し
た光は、上記物体が煙粒子である場合のみ、その回折光
がホログラフィック素子によって導かれて受光素子上に
集光されることになり、その受光出力が所定レベルに達
すると、煙粒子が存在すると判定手段が判定するのであ
る。つまり煙感知領域内に煙以外の埃等の物体が存在し
ていても、その回折光の角度が煙粒子による回折光と異
なるため、煙以外の物体を煙として検知することがなく
、高い信頼性が得られる。またフーリエ変換レンズのよ
うなコスト高となる部品を使用しなくて済むのである。
[Function] According to the present invention, only when the object is a smoke particle, the diffracted light of the light irradiated onto an object existing within the smoke monitoring area is guided by the holographic element and focused onto the light receiving element. When the received light output reaches a predetermined level, the determining means determines that smoke particles are present. In other words, even if there is an object other than smoke such as dust within the smoke detection area, the angle of the diffracted light is different from the diffracted light from smoke particles, so objects other than smoke will not be detected as smoke, resulting in high reliability. You can get sex. It also eliminates the need for expensive components such as Fourier transform lenses.

尚レーザーを用いず、発光ダイオードを投光素子として
使用する請求項3.4記載の発明では、レーザー光使用
に比べて安全性が高くなる。
Note that the invention according to claim 3 or 4, in which a light emitting diode is used as a light projecting element without using a laser, has higher safety than the use of laser light.

[実施例] 以下本発明を実施例により説明する。[Example] The present invention will be explained below with reference to Examples.

第1図は本発明の一実施例を示し、この実施例では投光
手段を投光素子1と、投光レンズ2とから構成しており
、投光素子1としてはレーザー光のような単一波長の光
を発光する半導体レーザー等のレーザーを用い、投光レ
ンズ2にはコリメートレンズを用い、投光素子1からの
光を煙監視領域20に投光レンズ2にコリメートして導
くようになっている。
FIG. 1 shows an embodiment of the present invention. In this embodiment, the light projecting means is composed of a light projecting element 1 and a light projecting lens 2. A laser such as a semiconductor laser that emits light of one wavelength is used, and a collimating lens is used for the projection lens 2, so that the light from the projection element 1 is collimated and guided to the projection lens 2 to the smoke monitoring area 20. It has become.

上記煙監視領域20に対して上記投光手段と反対側には
ホログラフィック素子4を配置し、このホログラフィッ
ク素子4の光軸と投光手段の光軸9とを合致させている
A holographic element 4 is arranged on the opposite side of the light projecting means with respect to the smoke monitoring area 20, and the optical axis of this holographic element 4 and the optical axis 9 of the light projecting means are aligned.

またホログラフィック素子4の後方で、上記光軸9の延
長線上には受光素子6を配置している。
Further, a light receiving element 6 is arranged behind the holographic element 4 and on an extension of the optical axis 9.

尚この受光素子6は必ずしも光軸9の延長線上に配置す
る必要はないが、光軸9の延長線上に配置するときは投
光手段から投光された光が煙粒子Xの流れ等の影響を受
けずに直進した場合に直接受光素子6に入射するのを防
止するために、図示するように受光素子6の前方に光を
しゃ断するストッパ5を設ける必要がある。尚ストッパ
5は第2図(a)に示すようにホログラフィック素子4
の上に作り込んでも良く、また第2図(b)に示すよう
にホログラフィック素子4の光軸を中心に適当な領域(
煙粒子Xによる回折光入射領域10以外の領域)までを
遮光体11で覆い、光軸上には小孔12を設け、投光手
段の光軸9上でストッパ5の代わりにホログラフィック
素子4の背後に別の受光素子(図示せず)配し、この受
光素子を利用して光軸調整をも行なえるようにしても良
い。
Note that this light receiving element 6 does not necessarily have to be arranged on an extension of the optical axis 9, but when it is arranged on an extension of the optical axis 9, the light emitted from the light emitting means is affected by the flow of smoke particles X, etc. In order to prevent the light from directly entering the light receiving element 6 when the light travels straight without receiving any light, it is necessary to provide a stopper 5 in front of the light receiving element 6 to block the light, as shown in the figure. The stopper 5 is connected to the holographic element 4 as shown in FIG. 2(a).
Alternatively, as shown in FIG. 2(b), an appropriate area (
A light shielding body 11 covers the area (excluding the incident area 10 of diffracted light caused by smoke particles Another light-receiving element (not shown) may be arranged behind the light-receiving element so that the optical axis can be adjusted using this light-receiving element.

ホログラフィック素子4は回折光を所定方向へ導く機能
を有するもので、第3図はその機能を説明するための図
であり、ホログラフィック素子4は次のように機能する
The holographic element 4 has a function of guiding diffracted light in a predetermined direction, and FIG. 3 is a diagram for explaining the function. The holographic element 4 functions as follows.

まず検知すべき対象の煙の粒子径を1μm〜3μmであ
るとし、投光素子1の波長をλとすると、その−次回折
角θは、上記式〇により求まる。また照射光のビーム径
をW、煙監視領域3の光軸方向の長さをlとしたとき、
煙粒子による一次回折光7の存在する領域10は第2図
(b)に図示するようになる。
First, assuming that the particle size of the smoke to be detected is 1 μm to 3 μm, and the wavelength of the light projecting element 1 is λ, the -order diffraction angle θ is determined by the above equation. Also, when the beam diameter of the irradiation light is W and the length of the smoke monitoring area 3 in the optical axis direction is l,
A region 10 in which the first-order diffracted light 7 due to smoke particles exists is shown in FIG. 2(b).

ここで煙監視領域20からホログラフィック素子4まで
の距離をdとすると、ホログラフィック素子4上に煙粒
子Xの回折光7に対応する回折路子を書き込む領域は第
3図の斜線イで示すように求まる。
Here, if the distance from the smoke monitoring area 20 to the holographic element 4 is d, then the area where the diffraction path corresponding to the diffracted light 7 of the smoke particles X is written on the holographic element 4 is as shown by the diagonal line A in FIG. It is determined by

次に受光素子6が投光系の光軸9上にある場合の回折格
子の形状を考える。
Next, consider the shape of the diffraction grating when the light receiving element 6 is located on the optical axis 9 of the light projecting system.

まず回折格子の周期を八とすると、光軸方向成分 ア、1、)sinθ+ +l T、、ut l sin
θo= l K l −=■を満足するときに煙粒子の
回折光7が受光素子6に入力する。尚0式において、θ
1は入射光角度、θ0は出射光角度、 ア、oは入射光
の方向ベクトル、?、、、は出射光角度を示し、また1
?8日−ア。、、、l−2π/λで、Kは回折格子の格
子ベクトルを示し、11;jl=2π/△である。この
関係を満足するように回折格子の形状を決定すれば良い
First, if the period of the diffraction grating is 8, then the optical axis direction component a, 1,) sin θ+ +l T,, ut l sin
Diffracted light 7 of smoke particles enters the light receiving element 6 when θo=lKl−=■ is satisfied. In addition, in equation 0, θ
1 is the incident light angle, θ0 is the output light angle, a, o is the direction vector of the incident light, ? , , indicates the outgoing light angle, and 1
? 8th - a. , , l−2π/λ, K indicates the grating vector of the diffraction grating, and 11;jl=2π/Δ. The shape of the diffraction grating may be determined so as to satisfy this relationship.

尚回折光7は円錐状に発生するため回折格子の溝は光軸
9を中心とした同心円状になる。また、灯具外の物体か
ら発生する回折光8については、光軸9以外のところに
設けた受光素子(図示せず)に集光するように、回折格
子を設計する。第5図(a)(b)はその回折格子の一
例の状態を示しており、D、は煙粒子による回折光7が
入射する領域13の両端の最外径を、D2は煙粒子以外
の回折光8が入射する領域14の最外径を示し、領域1
4の回折格子の周期Δ2を、領域13の回折格子の周期
Δ1に比べて小さくしている。
Note that since the diffracted light 7 is generated in a conical shape, the grooves of the diffraction grating are concentric circles centered on the optical axis 9. Furthermore, the diffraction grating is designed so that the diffracted light 8 generated from an object outside the lamp is focused on a light receiving element (not shown) provided at a location other than the optical axis 9. FIGS. 5(a) and 5(b) show an example of the state of the diffraction grating, where D is the outermost diameter at both ends of the region 13 where the diffracted light 7 due to smoke particles is incident, and D2 is the outermost diameter of the area 13 where the diffracted light 7 due to smoke particles is incident. Indicates the outermost diameter of the region 14 on which the diffracted light 8 enters, and the region 1
The period Δ2 of the diffraction grating in region 4 is smaller than the period Δ1 of the diffraction grating in region 13.

勿論回折光8を煙感知器の信号処理に用いない場合は、
ポログラフィック素子4の入射側の面を鏡面にして影響
のないところに反射させてもよい。
Of course, if the diffracted light 8 is not used for signal processing of a smoke detector,
The incident side surface of the porographic element 4 may be made a mirror surface to reflect the light to a place where it will not be affected.

ポログラフィック素子4の作成方法は、第4図<a>に
示すように例えばガラス基盤30等の上に電子線レジス
ト31を塗布して電子線ビーム32により回折格子を描
画する方法や、第4図(b)に示すようにカラス基盤3
0のエツチング層30a等の上にフォトレジスト33を
塗布して、イオンビーム34を照射してエツチングし回
折格子を形成する方法等がある。
The porographic element 4 can be produced by, for example, applying an electron beam resist 31 on a glass substrate 30 or the like and drawing a diffraction grating using an electron beam 32, as shown in FIG. Crow base 3 as shown in figure (b)
There is a method of coating a photoresist 33 on the etching layer 30a etc. of 0 and etching it by irradiating it with an ion beam 34 to form a diffraction grating.

而してポログラフィック素子4に導かれた煙粒子Xによ
る回折光7は受光素子6に集光され、その受光出力は第
1図(C)に示す判定手段3の回路に入力して煙の有無
が判定される。つまり受光出力は増幅回路26で増幅さ
れた後、比較回路27に入力して基準値発生口FIPt
29で発生させる基準値と比較され、受光出力のレベル
が基準値を越えたとき煙監視領域20に煙粒子Xが存在
している判定され、出力回路28より煙検知信号が出力
される。
The diffracted light 7 from the smoke particles X guided to the porographic element 4 is focused on the light receiving element 6, and the received light output is input to the circuit of the determining means 3 shown in FIG. 1(C) to detect the smoke. The presence or absence is determined. In other words, the received light output is amplified by the amplifier circuit 26 and then inputted to the comparison circuit 27 and then input to the reference value generation port FIPt.
When the level of the received light output exceeds the reference value, it is determined that smoke particles X are present in the smoke monitoring area 20, and a smoke detection signal is output from the output circuit 28.

上記実施例では投光素子1として、半導体レーザーを用
いているが、半導体レーザー、ガスレーザー等、レーザ
ーはその扱い方を誤ると人体に害を与える危険性もあり
、また発光ダイオードに比べてかなり高価である。
In the above embodiment, a semiconductor laser is used as the light emitting element 1, but lasers such as semiconductor lasers and gas lasers have the risk of harming the human body if handled incorrectly, and are considerably more sensitive than light emitting diodes. It's expensive.

そこて第6図(a)に示すように発光ダイオードを投光
素子1に用い、その投光素子1から第6図(b)に示す
波長を持つ出射光をコリメートするレンズ2及び反射型
の回折格子15を用いて第6図(C)に示す単一波長成
分の光のみを煙監視領域20に照射するようにしても良
い。
Therefore, as shown in FIG. 6(a), a light emitting diode is used as the light emitting element 1, and a lens 2 and a reflective type are used to collimate the emitted light from the light emitting element 1 with the wavelength shown in FIG. 6(b). The smoke monitoring area 20 may be irradiated with only the light of a single wavelength component shown in FIG. 6(C) using the diffraction grating 15.

ここて上記0式において、所望の波長λ。、入射光角度
θオ、格子周期へが決定された時、波長が変化すれば出
射角度θ。が変化して不要な波長成分λ、は第6図(a
)に示すように煙監視領域20に達しないのである。而
して上記構成によりレーザーを用いない安全で且つ安価
な投光手段が達成される。
Here, in the above equation 0, the desired wavelength λ. When the incident light angle θ and the grating period are determined, if the wavelength changes, the output angle θ. The unnecessary wavelength component λ due to the change in is shown in Figure 6 (a
), the smoke monitoring area 20 is not reached. Thus, with the above configuration, a safe and inexpensive light projecting means that does not use a laser can be achieved.

第6図実施例におけるレンズ2の代わりに第7図に示す
ように非軸パラボラリフレクタ−17のような凹面鏡で
コーリメート機能を持たせるとともに、非軸パラボラリ
フレクタ−17の鏡面16に回折格子15を配置しても
良い。
As shown in FIG. 7, instead of the lens 2 in the embodiment of FIG. 6, a concave mirror such as an off-axis parabolic reflector 17 is used to provide a collimate function, and a diffraction grating 15 is provided on the mirror surface 16 of the off-axis parabolic reflector 17. You can also place it.

この実施例の場合非軸パラボラリフレクタ−17の焦点
位置に設けた発光ダイオードからなる投光素子1から出
射した光を非軸パラボラリフレター17の鏡面16と回
折格子15とにより、第6図実施例と同様に所定の波長
λ。の光のみをコリメートして煙監視領域20へ導き、
他の波長λの光の方向を煙監視領域20から外すのある
。この実施例において回折格子15の作製方法としては
、予め光軸パラボラリフレクタ−16の形状をしたカラ
ス基材にレジストを塗布し、第4図で示しな方法で、回
折格子15を作製する方法の他、折り曲げなど容易に変
形可能な材料に回折格子を作った後に、鏡面に貼り合わ
せるなどの方法がある。上記構成によってもレーザーを
用いない安全で安価な投光手段が得られる。
In this embodiment, the light emitted from the light emitting element 1 consisting of a light emitting diode provided at the focal point of the off-axis parabolic reflector 17 is reflected by the mirror surface 16 of the off-axis parabolic reflector 17 and the diffraction grating 15, as shown in FIG. As in the example, the predetermined wavelength λ. collimates only the light and guides it to the smoke monitoring area 20,
The direction of light of other wavelengths λ may be removed from the smoke monitoring area 20. In this embodiment, the method for manufacturing the diffraction grating 15 is to apply a resist to a glass base material in the shape of an optical axis parabolic reflector 16 in advance, and to manufacture the diffraction grating 15 by a method not shown in FIG. Another method is to make a diffraction grating out of a material that can be easily bent or otherwise deformed, and then bond it to a mirror surface. The above configuration also provides a safe and inexpensive light projecting means that does not use a laser.

尚第4図に示すホログララフイック素子4は透過型のみ
を示したが、適当に配置を変えれば、反射型でもよい。
Although the holographic element 4 shown in FIG. 4 is only of a transmission type, it may be of a reflection type if the arrangement is changed appropriately.

また第6図、第7図に用いる回折格子15についても適
当に配置を変えれば透過型でもよい。
Furthermore, the diffraction grating 15 used in FIGS. 6 and 7 may also be of a transmission type if the arrangement is changed appropriately.

回折光については全て一次回折光のみで示したが、二次
以上の高次の回折光は一次回折光に比へ、パワーがかな
り劣るので省略している。
Regarding the diffracted light, only the first-order diffracted light is shown, but the second-order and higher-order diffracted lights are omitted because their power is considerably inferior to that of the first-order diffracted light.

更にホログララフイック素子4、回折格子15とも図面
などではラメラ−格子で示したが、勿論エシュレット格
子等他の形状でもよい。
Further, although both the holographic element 4 and the diffraction grating 15 are shown as lamellar gratings in the drawings, they may of course have other shapes such as echelette gratings.

[発明の効果1 請求項1記載の発明は単一波長のみのコリメートされた
光を煙監視領域に導く投光手段と、該投光手段により導
かれた光によって得られる煙監視領域内に存在する物体
の回折光を回折角に応じて所定方向へ導くホログラフィ
ック素子と、該ホログラフィック素子により導かれた煙
粒子に対応する回折光を受光する受光素子と、該受光素
子の受光出力に基づいて煙粒子の存在を判定する判定手
段とを備えたので、煙監視領域内に存在する物体に照射
した光は、上記物体が煙粒子である場合のみ、その回折
光がホログラフィック素子によって導かれて受光素子上
に集光することができ、確実に煙検知が行えるものであ
って、煙感知領域内に灯具外の埃等の物体が存在してい
ても、その物体を煙として検知することがなく、高い信
頼性が得られ、またフーリエ変換レンズのようなコスト
高となる部品を使用しなくて済むから製作費が安価にな
るという効果がある門 また請求項3記載の発明、請求項4記載の発明はレーザ
ーを用いず、発光ダイオードを投光素子として使用する
ため、安価に安全性を増すことができるという効果があ
る。
[Effect of the Invention 1 The invention as claimed in claim 1 includes a light projecting means for guiding collimated light of only a single wavelength to a smoke monitoring area, and a light projecting means that exists within the smoke monitoring area obtained by the light guided by the light projecting means. a holographic element that guides diffracted light from an object to a predetermined direction according to a diffraction angle, a light receiving element that receives diffracted light corresponding to smoke particles guided by the holographic element, and a light receiving element based on the light receiving output of the light receiving element. According to the present invention, the diffracted light of the light irradiated onto an object existing within the smoke monitoring area is guided by the holographic element only when the object is a smoke particle. The light can be focused on the light-receiving element, and smoke can be detected reliably, and even if there is an object such as dust outside the lamp within the smoke detection area, the object can be detected as smoke. The invention according to claim 3 also has the effect that high reliability can be obtained without the need for high-cost parts such as a Fourier transform lens, and manufacturing costs are reduced because it does not require the use of expensive parts such as Fourier transform lenses. The invention described in item 4 uses a light emitting diode as a light projecting element without using a laser, so it has the effect of increasing safety at low cost.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a>は請求項1及び2記載の発明に対応する実
施例の全体図、第1図(b)は同上のホログラフィック
素子部の斜視図、第1図(c)は同上の回路構成図、第
2図(a)は同上に用いるホログラフィック素子の別の
例を示す側面図、第2図(b)は同上に用いるホログラ
フィック素子の他の例の正面図、第3図は同上のホログ
ラフィック素子に対する煙粒子による回折光の存在領域
及び機能の説明図、第4図(a)(b)は同上のホログ
ラフィック素子の作製方法説明図、第5図(a)及び(
b)は同上に用いるホログラフィック素子の正面図及び
要部拡大側面図、第6図(a)は請求項3記載の発明に
対応する実施例の構成図、第6図(b)(c)は同上の
動作説明図、第7図は請求項4記載の発明に対応する実
施例の構成図、第8図は従来例の説明図、第9図はレー
ザー回折式粒径測定方法の説明図である。 1は投光素子、2はレンズ、3は判定手段、4はホログ
ラフィック素子、5はストッパ、6は受光素子、7.8
は回折光、15は回折格子、16は鏡面、17は非軸パ
ラボラリフレクタ、20は煙監視領域、Xは煙粒子であ
る。 代理人 弁理士 石 1)長 七 宴 、−= (’、+ +’I’l ’f Ln t# ト
(’、+ %r+−撃 酬 !3B歴 K”<覇舖酬 ポ、″S−回製α 藝ム=コV かが「・O= r+ (’<l−N X 1は投光素子 ]6は鏡面 17は非軸パラホラリフレクタ 20は煙監視領域 Xは煙粒子 メ8図
FIG. 1(a) is an overall view of an embodiment corresponding to the invention described in claims 1 and 2, FIG. 1(b) is a perspective view of the holographic element portion of the same as above, and FIG. A circuit configuration diagram, FIG. 2(a) is a side view showing another example of the holographic element used in the same as above, FIG. 2(b) is a front view of another example of the holographic element used in the same as above, and FIG. 4(a) and 4(b) are diagrams explaining the method for manufacturing the holographic element, and FIGS. 5(a) and
b) is a front view and an enlarged side view of essential parts of the holographic element used in the above, FIG. 6(a) is a configuration diagram of an embodiment corresponding to the invention as claimed in claim 3, and FIGS. 6(b) and (c) is an explanatory diagram of the same operation as above, FIG. 7 is a configuration diagram of an embodiment corresponding to the invention as claimed in claim 4, FIG. 8 is an explanatory diagram of a conventional example, and FIG. 9 is an explanatory diagram of a laser diffraction particle size measuring method. It is. 1 is a light projecting element, 2 is a lens, 3 is a determining means, 4 is a holographic element, 5 is a stopper, 6 is a light receiving element, 7.8
is a diffracted light, 15 is a diffraction grating, 16 is a mirror surface, 17 is an off-axis parabolic reflector, 20 is a smoke monitoring area, and X is a smoke particle. Agent Patent Attorney Ishi 1) Long Seven Banquets, -= (', +'I'l 'f Ln t# To(', + %r+-Response! 3B History K"<Haketsupo,"S - Reproduction α Art = CoV Kaga "・O=r+ ('<l-N figure

Claims (4)

【特許請求の範囲】[Claims] (1)単一波長のみのコリメートされた光を煙監視領域
に導く投光手段と、該投光手段により導かれた光によっ
て得られる煙監視領域内に存在する物体の回折光を回折
角に応じて所定方向へ導くホログラフィック素子と、該
ホログラフィック素子により導かれた煙粒子に対応する
回折光を受光する受光素子と、該受光素子の受光出力に
より煙粒子の存在を判定する判定手段とを備えた光電式
煙感知器。
(1) A light projection means that guides collimated light of only a single wavelength to a smoke monitoring area, and a diffraction angle of the diffracted light of an object existing within the smoke monitoring area obtained by the light guided by the light projection means. a holographic element that guides the smoke particles in a predetermined direction according to the direction of the smoke particles; a light receiving element that receives the diffracted light corresponding to the smoke particles guided by the holographic element; and a determining means that determines the presence of the smoke particles based on the light receiving output of the light receiving element. Photoelectric smoke detector with
(2)半導体レーザー等のレーザーからなる投光素子と
、レーザー光をコリメートするレンズとによって投光手
段を構成したことを特徴とする請求項1記載の光電式煙
感知器。
(2) The photoelectric smoke detector according to claim 1, wherein the light projecting means is constituted by a light projecting element made of a laser such as a semiconductor laser, and a lens that collimates the laser light.
(3)発光ダイオードからなる投光素子と、該投光素子
からの光をコリメートするレンズと、該コリメートされ
た光から単一波長の光を選択する回折格子とによって投
光手段を構成したことを特徴とする請求項1記載の光電
式煙感知器。
(3) The light projecting means is constituted by a light projecting element made of a light emitting diode, a lens that collimates the light from the light projecting element, and a diffraction grating that selects light of a single wavelength from the collimated light. The photoelectric smoke detector according to claim 1, characterized in that:
(4)発光ダイオードからなる投光素子と、コリメート
機能を持つ非軸パラボラリフレクタ等の凹面鏡と、該凹
面鏡の鏡面部分に配置されコリメートされた光から単一
波長の光を選択する回折格子とによって投光手段を構成
したことを特徴とする請求項1記載の光電式煙感知器。
(4) A light emitting element consisting of a light emitting diode, a concave mirror such as an off-axis parabolic reflector with a collimating function, and a diffraction grating arranged on the mirror surface of the concave mirror to select light of a single wavelength from the collimated light. 2. The photoelectric smoke detector according to claim 1, further comprising a light projecting means.
JP15225990A 1990-06-11 1990-06-11 Photoelectric smoke sensor Pending JPH0444196A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15225990A JPH0444196A (en) 1990-06-11 1990-06-11 Photoelectric smoke sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15225990A JPH0444196A (en) 1990-06-11 1990-06-11 Photoelectric smoke sensor

Publications (1)

Publication Number Publication Date
JPH0444196A true JPH0444196A (en) 1992-02-13

Family

ID=15536574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15225990A Pending JPH0444196A (en) 1990-06-11 1990-06-11 Photoelectric smoke sensor

Country Status (1)

Country Link
JP (1) JPH0444196A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006275998A (en) * 2005-03-02 2006-10-12 Kyoto Univ Apparatus for measuring light scattering
WO2014033921A1 (en) * 2012-08-31 2014-03-06 日本フェンオール株式会社 Light emitting unit and photoelectric smoke detector, and suction-type smoke detection system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006275998A (en) * 2005-03-02 2006-10-12 Kyoto Univ Apparatus for measuring light scattering
WO2014033921A1 (en) * 2012-08-31 2014-03-06 日本フェンオール株式会社 Light emitting unit and photoelectric smoke detector, and suction-type smoke detection system
US8743366B2 (en) 2012-08-31 2014-06-03 Fenwal Controls Of Japan, Ltd. Light emission portion, photoelectric smoke sensor, and suction-type smoke sensing system
CN103999135A (en) * 2012-08-31 2014-08-20 日本芬翁股份有限公司 Light emission portion, photoelectric smoke sensor, and suction-type smoke sensing system

Similar Documents

Publication Publication Date Title
US10444111B2 (en) DOE defect monitoring utilizing total internal reflection
US4857895A (en) Combined scatter and light obscuration smoke detector
JP6542385B2 (en) Micro object detection device
US10605695B2 (en) Interrogating DOE integrity by reverse illumination
US10048163B1 (en) Monitoring DOE performance using total internal reflection
US9739701B2 (en) Particle sensor
KR20080082455A (en) Smoke sensor
JP3454173B2 (en) Optical dust sensor optical system
JP7387712B2 (en) Apparatus and method for optically monitoring at least one area
JP2003515738A (en) Apparatus for measuring the size of substantially spherical particles, such as opaque droplets, by diffraction
US4221485A (en) Optical smoke detector
KR102258809B1 (en) Detection apparatus for micro dust and organism
JPH0444196A (en) Photoelectric smoke sensor
JP2006528348A (en) Improved design of particle sensor system
CN109754565B (en) Photoelectric smoke sensing dark room for smoke detection
JPH0829542A (en) Optical apparatus and light receiving method
WO2004008117A2 (en) Method and apparatus for monitoring particles flowing in a stack
JPH07318309A (en) Distance measuring device using laser light
JPH07146115A (en) Optical sensor
US20210156783A1 (en) Smoke detector for aspiration smoke detector system
KR20180099397A (en) Light sensing device and Apparatus for sensing particle
JPS6238312A (en) Distance detecting device
JP3494148B2 (en) Focus detection device and laser inspection processing device
KR20160071492A (en) Optical system for sensors with optical method and photo sensors including the same optical system
JPH09113436A (en) Particle detection method